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Abstract: Elliptic Curve Cryptography (ECC) is a technology based on the arithmetic
of elliptic curves used to build strong and efficient cryptosystems and infrastructures.
Several ECC systems, such as the Diffie–Hellman key exchange and the Elliptic Curve
Digital Signature Algorithm, are deployed in real-life applications to enhance the security
and efficiency of digital transactions. ECC has gained even more importance since the
introduction of Bitcoin, the peer-to-peer electronic cash system, by Satoshi Nakamoto in
2008. In parallel, the integration of artificial intelligence, particularly machine learning,
in various applications has increased the demand for robust cryptographic systems to
ensure safety and security. In this paper, we present an overview of machine learning and
Elliptic Curve Cryptography algorithms. We begin with a detailed review of the main
ECC systems and evaluate their efficiency and security. Subsequently, we investigate
potential applications of machine learning-based techniques to enhance the security and
performance of ECC. This study includes the generation of optimal parameters for ECC
systems using machine learning algorithms.

Keywords: elliptic curve cryptography; artificial intelligence; machine learning

1. Introduction
In cryptography, the security of a cryptosystem is often based on the hardness of a

known and believed hard problem, such as factorization, discrete logarithm, and Learn-
ing With Errors (LWEs). Some of such hard problems could be solved with the help of
algorithms implemented in large-scale quantum computers. A typical example is Shor’s
algorithm [1], which could break the most popular and most widely used public key
cryptosystems, such as RSA [2] and Elliptic Curve Cryptography (ECC) [3,4].

Introduced independently by Koblitz [3] and Miller [4] in 1984, ECC is a subfield of
asymmetric cryptography. It uses the algebraic properties of elliptic curves over finite
fields, and its security is based on the hardness of the Elliptic Curve Discrete Logarithm
Problem (ECDLP). ECC allows key exchange [5], encryption and decryption [6], digital
signature [7], random number generation [8], and requires smaller key sizes compared
with other asymmetric systems such as RSA. ECC is used in industrial applications such
as the Bitcoin digital currency [9], the security of the transport layer [10], and various
communication services.

The use of machine learning techniques in cryptography and security is still a rapidly
evolving topic. Nevertheless, machine learning has already been deployed in certain
applications, mainly for security issues. In recent years, machine learning algorithms have
been used to implement and enhance the efficiency and security of various cryptographic
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systems. These algorithms are applied to analyze cryptosystems, detect intrusions, test the
security of systems, and perform cryptanalysis.

The connection between machine learning (ML) and cryptography was first discussed
by Rivest [11] in 1991. Since then, various intersections between the two fields have been
extensively studied, covering both cryptography and cryptanalysis, the two subfields of
cryptology. In cryptography, the schemes proposed in [12–14] are based on neural network
models, while the schemes proposed in [15,16] are based on deep learning.

ML is employed to select optimal secret keys for use in encryption and decryption
in a symmetric system, as well as optimal public keys for encryption in an asymmetric
system [17–20]. ML is also utilized to observe the algebraic properties of encrypted data
and to test the vulnerabilities of cryptographic systems [21]. Furthermore, it helps to
understand the weaknesses and vulnerabilities of security and privacy and develop resilient
defenses [22]. Various machine learning algorithms are also leveraged to build effective
intrusion detection software packages, targeting both intrusions and attacks [23,24].

In cryptanalysis applications, Alani [25] introduced an attack on DES and Triple-DES
based on a neural network. In 2015, Maghrebi et al. [26] proposed a method to apply deep
learning in side-channel attacks.

In the ECC field, there are plenty of schemes for which implementation as well as
security are challenging tasks. In [27], Tellez and Ortíz presented a study for possible
applications of the Genetic Algorithm (GA) and the Particle Swarm Optimization (PSO),
two artificial intelligence (AI) algorithms, to generate strong parameters for ECC. In [28],
Villegas and Cordero presented an experimental evaluation of the resistance of ECC to
simple power attacks using ML models. In [29], Weissbart et al. presented several attacks
on the Edwards Digital Signature Algorithm (EdDSA) using machine learning techniques.
In [30], Wøien et al. presented a neural network model for asymmetric encryption, fo-
cusing on algorithms in ECC. In [31], the performance of the execution time, the energy
consumption, and the memory usage of the encryption/decryption algorithms of several
lightweight cryptographic systems are studied using machine learning models.

In this paper, the main objective is to study how Elliptic Curve Cryptography can
be performed with the support of machine learning. Section 2 provides an overview of
the main concepts of artificial intelligence and machine learning. Section 3 introduces
the arithmetical theory of elliptic curves. Section 4 examines elliptic curve cryptography.
Section 5 discusses the main attacks on ECC. Section 6 explores the application of machine
learning in the field of ECC. Section 7 summarizes and concludes this paper.

2. Artificial Intelligence and Machine Learning
AI is a combination of science and technology. It is based on several disciplines in

engineering and mathematics, such as algebra, statistics, probability, and chaos theory.
Other fields, including biology, computer science, information theory, and linguistics,
also contribute to AI. Today, AI is applied across various fields such as vision systems,
gaming, finance and banking, healthcare, language processing and recognition, self-driving
vehicles, pharmaceutical discovery, chatbots, robotics, computer vision, data analysis,
and cybersecurity.

2.1. Overview of Machine Learning

ML is a subfield of AI focused on creating, testing, and adapting computer proce-
dures, algorithms, and programs that can automatically improve by learning from past
experiences. It is used in various applications, such as financial fraud detection, healthcare
report analysis, agricultural optimization, information dissemination, financial investment
optimization, traffic prediction, and language translation.
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There are three categories of machine learning algorithms: supervised, reinforcement,
and unsupervised.

• Supervised learning. In supervised learning, the machine is under the supervision of
an operator. The input and the output datasets are labeled and known to the operator
and are proposed to the algorithm that is implemented in the machine. The task of
the algorithm is to find a link between the input and the output datasets. To this end,
the algorithm must identify patterns from the input dataset, learn from former statisti-
cal occurrences, and propose predictions. If the predictions are far from correct, then
some parts of the algorithm are improved. This process continues until the predictions
are acceptable, and the errors are sufficiently minimized. To improve the algorithm,
several techniques are used such as classification, linear regression, and forecasting.
The ultimate goal is that the algorithm can make correct predictions on any unseen
data. A typical application of supervised learning is fraud detection. Fraudulent and
suspicious transactions can be detected by the algorithm using stored data.

• Reinforcement learning. In this category of machine learning, the algorithm is trained
to take certain accurate actions. This can be accomplished by rewarding the good ac-
tions and blaming the bad ones. To be accurate, the algorithm learns from experiences
how to achieve a goal in an optimal way through interactions with the environment.
The algorithm has to discover the actions that are desired or not. A typical example
of reinforcement learning is autonomous driving. A solid autonomous driver must
analyze and make several decisions and behaviors in various situations such as finding
an optimal path, avoiding dense traffic, predicting travel time, and driving safely.

• Unsupervised learning. In unsupervised learning, the machine is independent of any
human operator. The machine learning algorithm analyses and clusters the unlabeled
datasets without the need for human help or intervention. The clustering technique
permits the discovery of the hidden patterns and groups of unlabeled datasets based
on their categories, similarities, and differences. The goal of unsupervised learning is
to group the datasets into clusters that are more organized within an optimal number
of classes. A typical application of unsupervised learning is customer segmentation
by commercial companies. They can use an unsupervised learning algorithm to
categorize their customer’s common needs and cluster them into categories to propose
their products to potential buyers.

2.2. Overview of Perceptron and Multilayer Perceptron

The perceptron is a basic supervised learning algorithm and the simplest type of
artificial neural network, invented by Rosenblatt in 1958 [32]. There are two families of
perceptrons: single-layer perceptrons, which can process only linear activation functions,
and multilayer perceptrons, which can process nonlinear activation functions.

A single-layer perceptron is designed to categorize several binary inputs and give one
binary output, generally 0 or 1. It is composed of several basic components, including an
input layer, weights, a bias, an activation function, and a single output layer (see Figure 1).
The perceptron starts by taking the bias, and a list of scalar input features. A weight is
assigned to each input, and a linear combination of all couples (input, weight) is processed.
The result of the linear combination is added to the bias, and introduced into the activation
function, which decides to what category belong the input features. Typically, if the input
features are (x0, x2, . . . , xn), the weights are (w1, w2, . . . , wn), the bias is b, and the function
is f , then the output is

y = f

(
n

∑
i=1

wixi + b

)
.
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Figure 1. Single layer perceptron.

A multilayer perceptron is an artificial neural network that can process all kinds of
data, including nonlinearly separable data. It is composed of an input layer, one or more
hidden layers, and one output layer. The input layer is composed of one or more nodes
where the initial input data is introduced. The hidden layers are also composed of one or
more nodes. Each node in a hidden layer receives inputs from all the nodes of the previous
layer. The information is processed and passed to the nodes of the next layer. At the end,
the output layer receives the final inputs and produces the final output. The output layer
is composed of a number of nodes, which represents the number of possible classes of
featured information (see Figure 2).

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer

Figure 2. Multilayer perceptron.

Multilayer perceptrons are used in various applications such as speech and image
recognition, banking, e-commerce, banking, and travel.

2.3. Overview of Artificial Neural Networks

Neural Networks are modern algorithms at the heart of machine learning, inspired by
the human brain. They mimic the functioning of biological neurons to analyze tasks and
propose solutions. A neural network is composed of a sequence of layers of nodes, namely,
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input layers, hidden layers, and output layers (see Figure 2). The data is introduced in
the input layers and is processed in the hidden layers using activation functions. Finally,
predictions are made by the output layers.

The nodes in two adjacent layers are connected, and the connections are guided by
weights. Moreover, each node has an associated bias. The weights and biases are adjusted
during the training phase of the neural network through feedforward and backpropagation.
These adjusted weights and biases enable each node to optimize its computations.

There are various types of neural networks such as Generative Adversarial Networks
(GANs), Convolutional Neural Networks (CNNs), Feedforward Neural Networks (FNNs),
and Recurrent Neural Networks (RNNs).

3. Elliptic Curves over Finite Prime Fields
In this section, we give an overview of the elliptic curves over a finite prime field.

3.1. The Arithmetic of the Elliptic Curves

Let p be a prime number, and Fp be the finite prime field with p elements. Let
a1, a2, a3, a4, a6 ∈ Fp. An elliptic curve E over Fp is the set of all elements (x, y) ∈ F2

p such
that the following Weierstrass equation is satisfied

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

For p > 3, the equation can be transformed into a short Weierstrass form

y2 = x3 + ax + b.

The requirement 4a3 + 27b2 ̸= 0 ensures that E is nonsingular. The solutions are often
denoted as points P = (x, y). The set of rational points of E, together with a specific point
O, called the point at infinity, is denoted E(Fp). The set E(Fp) has the structure of an
Abelian group with the addition law, where O is the neutral element. The addition law
uses the chord-tangent process. The following cases resume the addition law:

1. For all P ∈ E(Fp), P +O = O + P = P.
2. For all P = (x, y) ∈ E(Fp), −P = (x,−y) is the opposite point of P such that

P + (−P) = O.
3. For all P1 = (x1, y1) ∈ E(Fp) and P2 = (x2, y2) ∈ E(Fp) with P2 ̸= −P1, the sum of P1

and P2 is P3 = (x3, y3) with

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1,

where λ = y1−y2
x1−x2

.

4. For all P = (x, 0) ∈ E(Fp), the double of P is Q = 2P = O.
5. For all P = (x, y) ∈ E(Fp) with y ̸= 0, the double of P is Q = 2P = (x3, y3) with

x3 = λ2 − 2x,

y3 = λ(x − x3)− y,

where λ = 3x2+a
2y .

With the addition law, (E(Fp),+) is structured with a scalar multiplication so that, for
P = (x, y) ∈ E(Fp), and n ∈ N, the point nP is defined by
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nP = P + · · ·+ P︸ ︷︷ ︸
n times

.

The order of E(Fp) can be estimated by the theorem of Hasse:

(
√

p − 1)2 ≤ #E(Fp) ≤ (
√

p − 1)2.

If G ∈ E(Fp) with G ̸= O, then G generates a cyclic subgroup of E(Fp), denoted ⟨G⟩, by

⟨G⟩ = {G, 2G, . . . , nG},

where the integer n is the smallest divisor of #E(Fp) satisfying nG = O. Since n divides

#E(Fp), then h =
#E(Fp)

n is also an integer. It is called the cofactor of G.

3.2. Special Cryptographic Curves

Special curves are used to build some cryptographic systems to improve the efficiency
of operations for limited-resource devices. We list below some of them.

• Edwards curves [33]. These curves were introduced by Edwards in 2007. Shortly after,
Bernstein and Lange [34] transformed them with an equation of the form x2 + y2 =

1 + dx2y2 over a finite prime field Fp with p > 2 and d ∈ Fp\{0, 1}. Such curves have
a single arithmetic addition and are suitable for use against side-channel attacks.

• Montgomery curves [35]. In 1987, Montgomery introduced a new form for elliptic
curves. Montgomery’s curves are defined over a finite field Fp by the equation
By2 = x3 + Ax2 + x where A, B ∈ Fp. Montgomery’s curves are used to accelerate the
scalar multiplication via Montgomery’s ladder.

• Koblitz curves [36]. These curves are defined over a binary finite field F2n with the
equation y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1}. They are used to accelerate the
addition and the scalar multiplication.

• Binary elliptic curves. These are curves of the form y2 + xy = x3 + ax2 + b where
a, b ∈ F2n and b ̸= 0. Binary elliptic curves are not widely used, mainly because the
ECDLP in such curves seems less hard than the ECDLP in elliptic curves over finite
prime fields Fp with p > 2 (see [37] for more discussions).

4. Elliptic Curves Cryptography
In this section, we describe the main schemes in the ECC. Their security is based on the

hardness of the ECDLP. Let E be an elliptic curve over Fp, and G ∈ E(Fp) be a base point
of order n. Given a point P ∈ ⟨G⟩, find the integer k such that 0 ≤ k ≤ n − 1, and P = kG.

4.1. The Diffie–Hellman Elliptic Curve Key Agreement Algorithm (ECDH)

The Diffie–Hellman elliptic curve key exchange is designed to secretly and securely
communicate a key that can be used for various applications such as symmetric cryptosys-
tems. Assume that two entities, A and B, want to agree on a common key. The Elliptic
Curve Diffie–Hellman key agreement algorithm (ECDH) can be used in the following steps.

1. The entities A and B agree on a finite field Fp, an elliptic curve E over Fp, and a base
point G ∈ E(Fp) of large order.

2. The entity A selects a private random integer a, computes Pa = aG, and sends Pa to
the entity B.

3. The entity B selects a private random integer b, computes Pb = bG, and sends Pb to
the entity A.

4. The entity A computes Q = aPb.
5. The entity B computes Q = bPa.
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The shared key is Q = aPb = bPa = abG.

4.2. The ElGamal Elliptic Curve Cryptosystem (ECEG)

One of the most popular public key schemes is the ElGamal cryptosystem [6]. It is
based on the Diffie–Hellman key exchange. A version for elliptic curves can be described
as follows, where entity A wants to safely send a message to entity B.

1. The entities A and B agree on a finite field Fp, an elliptic curve E over Fp, and a base
point G ∈ E(Fp) of large order.

2. The entity B selects a private random integer b, computes Pb = bG, and sends Pb to
the entity A.

3. The entity A transforms the message to a point M ∈ E(Fp).
4. The entity A selects a private random integer a, computes Pa = aG, C = M + aPb,

and sends Pa and C to the entity B.
5. The entity B computes M = C − bPa.

The decryption is correct since

C − bPa = M + aPb − baG = M + abG − baG = M.

4.3. The Elliptic Curve Digital Signature Algorithm (ECDSA)

The ECDSA is a digital signature scheme based on elliptic curves, proposed in 2001
by Johnson, Menezes, and Vanstone [7]. It was standardized in the ANSI X9.62 [38], IEEE
1363-2000 [39], and ISO/IEC 15946-2 standards. It enables to sign a message so that the
recipient can check that the message is transmitted by the correct entity. To work with
ECDSA, two entities A and B first agree on a finite field Fp where p is a prime number,
on an elliptic curve E : y2 = x3 + ax + b over Fp, on a point P with a large order n. Then, A
selects a private key dA ∈ [1, n − 1], and B selects a private key dB ∈ [1, n − 1]. Moreover, A
computes its public key QA = dAP.

Assume that the entity A wants to send a message m to the entity B using ECDSA.
The signature generation algorithm is performed by A (see [40]) as presented in Algorithm 1.

Algorithm 1 Signature generation algorithm

Require: A hash function H, an elliptic curve E, a message m, a base point P ∈ E, the order
n of P, and the private key dA of A.

Ensure: The signature (r, s).
1: Compute z = H(m).
2: Choose a random integer k with 1 ≤ k ≤ n − 1 and gcd(k, n) = 1.
3: Compute (x1, y1) = kP in E.
4: Compute r ≡ x1 (mod n).
5: if r = 0 then
6: Restart from Step 2.
7: end if
8: Compute k2 ≡ k−1 (mod n).
9: Compute s ≡ k2(z + rdA) (mod n).

10: if s = 0 then
11: Restart from Step 2.
12: end if
13: Return the signature (r, s).

Next, the entity B can verify the signature of entity A using the verification algorithm
as presented in Algorithm 2.
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Algorithm 2 Signature verification algorithm

Require: The hash function H, the elliptic curve E, the base point P ∈ E, the order n of P,
the public key QA of A, and the signature (r, s).

Ensure: Acceptance or rejection of the signature.
1: if r ̸∈ [1, n − 1], or s ̸∈ [1, n − 1] then
2: Return Rejection
3: end if
4: Compute z = H(m).
5: Compute w ≡ s−1 (mod n).
6: Compute u1 ≡ zw (mod n).
7: Compute u2 ≡ rw (mod n).
8: Compute (x1, y1) = u1P + u2QA in E.
9: if r ≡ x1 (mod n) then

10: Return Acceptance.
11: else
12: Return Rejection.
13: end if

5. Security of ECC
In this section, we present the most powerful attacks on ECC systems. Most of the

attacks are designed to solve the elliptic curve discrete polynomial.

5.1. Pollard’s Rho Algorithm

Let n be the order of the subgroup ⟨P⟩, and Q ∈ ⟨P⟩ with Q = kP. Pollard’s rho
method tries to find a collision, that is, two couples of integers (a, b), (a′, b′) such that
(a, b) ̸= (a′, b′) and aP + bQ = a′P + b′q. Equivalently, this is (a − a′)P = (b′ − b)Q,
from which one deduces a − a′ ≡ k(b′ − b) (mod n). If gcd(b′ − b, n) = 1, then

k ≡ (a − a′)(b′ − b)−1 (mod n).

If the couples (a, b) and (a′, b′) are selected randomly in [1, n− 1], the expected running
time is O

(√
πn/2

)
, and the storage of the triples (a, b, aP + bq) requires O

(√
πn/2

)
cells,

which is infeasible if n is large. Nevertheless, some variants of Pollard’s rho method solve
the ECDLP with the same running time, but with much less storage. The following variant
is one of them. It proceeds as in Algorithm 3, where the following functions are used

f (Ri) =





P + Ri if Ri ∈ S1,

2Ri if Ri ∈ S2,

Q + Ri if Ri ∈ S3,

g(ai) =





1 + ai (mod n) if Ri ∈ S1,

2ai (mod n) if Ri ∈ S2,

ai (mod n) if Ri ∈ S3,

h(bi) =





bi (mod n) if Ri ∈ S1,

2bi (mod n) if Ri ∈ S2,

1 + bi (mod n) if Ri ∈ S3.
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Algorithm 3 Pollard’s rho algorithm for the ECDLP

Require: An elliptic curve E, a base point P ∈ E, the order n of P, a point Q ∈ ⟨P⟩.
Ensure: The integer k such that Q = kP.

1: Partition ⟨P⟩ in three sets of almost equal size, namely ⟨P⟩ = S1 ∪ S2 ∪ S3.
2: Choose two random integers a0, b0 ∈ [1, n − 1].
3: Compute R0 = a0P + b0Q.
4: Compute R1 = f (R0), a1 = g(a0), b1 = h(b0).
5: Compute R2 = f (R1), a2 = g(a1), b2 = h(b1).
6: Set i = 0
7: while Ri ̸= R2i do
8: Compute Ri+1 = f (Ri), ai+1 = g(ai), bi+1 = h(bi).
9: Compute R2(i+1) = f ( f (R2i)), a2(i+1) = g(g(a2i)), b2(i+1) = h(h(b2i)).

10: i = i + 1.
11: end while
12: if gcd(bi − b2i, n) = 1 then
13: Compute k ≡ (a2i − ai)(bi − b2i)

−1 (mod n).
14: else
15: Go to step 2.
16: end if
17: Return k.

Several variants have been proposed to improve Pollard’s rho method [41–43]. More-
over, there exists a parallelized variant of Pollard’s rho method (see [40], Section 4.1.2),

which can be applied to M processors, with running time O
(

1
M

√
πn
2

)
.

5.2. The Pohlig–Hellman Algorithm

The Pohlig–Hellman attack on the discrete logarithm problem was first presented
in [44]. It applies optimally when #E(Fp) is divisible only by small prime factors. It reduces
the problem of computing the ECDLP over subgroups of prime order.

Let n be the order of the group ⟨P⟩. Suppose that n = pn1
1 pn2

2 · · · pnr
r . Let Q ∈ ⟨P⟩ with

Q = kP. The goal of the Pohlig–Hellman method is to find k ∈ [0, n − 1] using the Chinese
Remainder Theorem by solving the system

k ≡ k1 (mod pn1
1 ),

k ≡ k2 (mod pn2
2 ),

...

k ≡ kr (mod pnr
r ),

for which the unique solution in [0, n − 1] is

k ≡
r

∑
i=1

ki Nixi (mod n), with Ni =
n

pni
i

, xi =
1
Ni

(mod pni
i ).

The values ki, i = 1, . . . , r, are computed recursively. Set

ki = z(i)0 + z(i)1 pi + z(i)2 p2
i + · · ·+ z(i)ni−1 pni−1

i ,

with z(i)j ∈ [0, pi − 1]. Also, set

P(i)
0 =

n
pi

P, Q(i)
0 =

n
pi

Q.



Cryptography 2025, 9, 3 10 of 21

Then, since piP
(i)
0 = O, and k = ki + mi p

ni
i for some integer mi, P(i)

0 satisfies

kP(i)
0 = kiP

(i)
0 + mi p

ni
i P(i)

0 = kiP
(i)
0 = z(i)0 P(i)

0 .

Then
Q(i)

0 =
n
pi

Q = k
n
pi

P = kP(i)
0 = z(i)0 P(i)

0 .

Hence, z(i)0 can be computed by solving the discrete logarithm Q(i)
0 = z(i)0 P(i)

0 in
〈

P(i)
0

〉
.

Using z(i)0 , we set

Q(i)
1 =

n
p2

i

(
Q − z(i)0 P

)
,

which satisfies
Q(i)

1 = z(i)1 P(i)
0 .

Again, z(i)1 can be computed by solving the discrete logarithm Q(i)
1 = z(i)1 P(i)

0 in
〈

P(i)
0

〉
.

This procedure is repeated recursively and leads to the computation of z(i)s by solving
the discrete logarithm Q(i)

s = z(i)s P(i)
0 in

〈
P(i)

0

〉
where

Q(i)
s =

n
ps+1

i

(
Q −

(
z(i)0 + z(i)1 p + · · ·+ z(i)s−1 ps−1

)
P
)

.

The Pohlig–Hellman method can be summarized in Algorithm 4.

Algorithm 4 Pohlig–Hellman algorithm for the ECDLP

Require: An elliptic curve E, a base point P ∈ E, the order n of P, a point Q ∈ ⟨P⟩.
Ensure: The integer k such that Q = kP.

1: Factor n as n = pn1
1 pn2

2 · · · pnr
r .

2: Set k = 0.
3: for i from 1 to r do
4: Set ki = 0.
5: Compute P0 = n

pi
P.

6: Compute R = n
pi

Q.
7: for j from 0 to ni − 1 do
8: Compute z such that R = zP0.
9: Compute ki = ki + zpj.

10: Compute R = n
pj+1

i

(Q − kiP).

11: end for
12: Compute Ni =

n
p

ni
i

.

13: Compute xi ≡ N−1
i (mod pni

i ).
14: Compute k ≡ k + ki Nixi (mod n).
15: end for
16: Return k.

The complexity of the Pohlig–Hellman method is expressed in the form
O
(
∑r

i=1 ni
(
log(n) +

√
pi
))

, but for most values of n, the complexity is of O
(√

q
)
, where q

is the largest prime factor of n. As a consequence, to maximize the resistance of solving the
ECDLP by the Pohlig–Hellman method, the order #E(Fp) should be a multiple of at most
one large prime number.

5.3. The Side-Channel Attacks

To test the security of a cryptosystem, several kinds of security are applied such as
provable security and side-channel security. While provable security seems more theoretical,
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side-channel security is devoted to practical implementations of cryptographic systems.
Attacks that scrutinize the implementation procedures are called side-channel attacks.
A naive and direct implementation of some public key systems such as RSA, DH, and ECC
can leak information about their private keys, which permits to recovery of the entire key.
A typical example is the modular exponentiation in RSA and DH, as well as the double
and add procedure for scalar multiplication of points on elliptic curves.

In 1996, Kocher [45] presented the power analysis, the first possible side-channel attack.
Since then, various types of side-channel attacks have been proposed for practical use.
Some are based on implementation issues such as single power analysis [45], differential
power analysis [46], fault attacks [47], and timing attacks [45].

If the addition of two points P and Q is naively implemented, then it is possible to
guess if it is computed for P ̸= Q or P = Q. Similarly, if the scalar multiplication kP is
simply implemented using the double and add method, then one can guess all the bits of
the binary decomposition of k. This is feasible by measuring the time taken to perform the
computation for any bit. When the bit is 1, one has to compute an addition on the elliptic
curve as in Steps 5–7 of Algorithm 5, while no addition is needed when the bit is 0. As a
consequence, performing a computation for a bit 1 is longer than performing a computation
for a bit 0.

Algorithm 5 Left to right double and add method

Require: An elliptic curve E, a point P ∈ E(Fp), an integer k.
Ensure: The point Q = kP ∈ E(Fp).

1: Decompose k = as−12s−1 + · · ·+ a12 + a0, ai ∈ {0, 1}, as−1 = 1.
2: Set Q = O.
3: for i from s − 1 down to 0 do
4: Compute Q = 2Q.
5: if ai = 1 then
6: Compute Q = Q + P.
7: end if
8: end for
9: Return Q.

Several algorithms for scalar multiplication have been proposed against timing at-
tacks [48]. They make the scalar multiplication regular and constant-time. A typical
example is the double and add always method, as presented in Algorithm 6.

A yet more regular and more resistant way to perform the scalar multiplication on
elliptic curves is the Montgomery ladder [35]. This algorithm was originally specified
for Montgomery’s elliptic curves and was later generalized to any elliptic curve with
Weierstrass form, independently by Brier and Joye in [49], and Izu and Takagi in [50].

Another known side channel attack is fault attack [47,51]. It consists in injecting a
fault during the arithmetic operations and exploiting the output to guess a part of or even
the whole private key. The basic idea is to inject a fault in the regular computation on the
original curve E to force it to be performed in a parallel computation on a weaker curve E′

where the ECDLP is easy to solve. To avoid fault attacks, several countermeasures have
been proposed. The basic countermeasure is to check whether the output is still a point of
E. Another countermeasure is to use a less sensitive scalar multiplication method, such as
Montgomery’s ladder method, as presented in Algorithm 7.
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Algorithm 6 Double and add always method

Require: An elliptic curve E, a point P ∈ E, an integer k.
Ensure: The point Q = kP ∈ E.

1: Decompose k = as−12s−1 + · · ·+ a12 + a0, ai ∈ {0, 1}, as−1 = 1.
2: Set Q = O.
3: for i from s − 1 down to 0 do
4: Compute Q = 2Q.
5: Compute R = Q + P.
6: if ai = 1 then
7: Set Q = R.
8: else
9: Set Q = Q.

10: end if
11: end for
12: Return Q.

Algorithm 7 Montgomery’s ladder

Require: An elliptic curve E, a point P ∈ E, an integer k.
Ensure: The point Q = kP ∈ E.

1: Decompose k = as−12s−1 + · · ·+ a12 + a0, ai ∈ {0, 1}, as−1 = 1.
2: Set Q0 = P.
3: Set Q1 = 2P.
4: for i from s − 2 down to 0 do
5: Compute Q1−ai = Q0 + Q1.
6: Compute Qai = 2Qai .
7: end for
8: Return Q0.

5.4. Shor’s Algorithm

In 1994, Shor [1,52] presented a quantum algorithm to factor large composite numbers,
and to solve the discrete logarithm problem in a finite field of prime order. Shor’s algorithm
was extended to solve the elliptic curve discrete logarithm problem by Proos and Zalka [53]
in 2003. It may be exploited by a large-scale quantum computer and would undermine
the security of the most popular public key systems such as RSA, DH, ElGamal, and ECC.
If E is an elliptic curve over Fp, then Shor’s algorithm can be efficiently used to solve the
elliptic curve discrete logarithm in a polynomial running time of Ω(log(#E(Fp))) (see [54],
Theorem 1.2). A detailed description of Shor’s algorithm for the ECDLP is proposed in [55].

5.5. Other Attacks

Several attacks have been presented to compute the ECDLP, some are less efficient
than Pollard’s rho method, and some are more efficient for specific types of elliptic curves.

• The baby-step–giant-step algorithm was invented by Shanks [56] in 1971. While its
running time is approximately the same as Pollard’s rho method, it requires approx-
imately

√
n space for values storage. The idea behind this method is to choose an

integer m >
√

n, to compute P′ = mP, to compute, and to store all values of aP (the
baby steps) and Q − aP′ (the giant steps) for a = 1, . . . , m and to compare the stored
lists. If one match is found, then aP = Q − bmP for some integers a and b. This gives
Q = (a + mb)P, and k ≡ a + mb (mod n).

• The MOV attack, due to Menezes, Okamoto, and Vanstone [57], is efficient when the
elliptic curve is supersingular, that is #E(Fp) = p + 1. It is based on Weil pairing
that maps two points in E(Fp) to an element in Fpk . The integer k is the embedding
degree associated with any elliptic curve E(Fp). It is the smallest integer k ≥ 2 such
that #E(Fp) divides pk − 1. If P1, P2, Q = rP1 are three given points in E(Fp) with
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an unknown r, and e is the Weil pairing, then one can compute a = (P1, P2) ∈ Fpk ,
and b = e(Q, P2) ∈ Fpk . Hence,

b = e(Q, P2) = e(rP1, P2) = e(P1, P2)
r = ar,

that is b = ar. This reduces to the discrete logarithm problem in Fpk . For supersingular
curves, k ≤ 6 is sufficiently small, and the discrete logarithm problem can be easily
solved over Fpk . If the elliptic curve is not supersingular, it is required that k ≥ 100.

• The elliptic curves such that #E(Fp) are called anomalous and are weak for the attacks
presented in [58–60]. In such curves, the ECDLP can be reduced to the discrete
logarithm problem in the additive field (Fp,+) which is easy to solve.

5.6. Robust Elliptic Curves for Cryptography

To avoid the attacks described before, it is crucial to choose robust elliptic curves for
use in cryptography. We list here a few criteria for this purpose.

• The size of #E(Fp), as well as the size of #⟨P⟩ should be large enough to resist the
attacks that have a running time or storage that depend on n = #⟨P⟩ such as Pollard’s
rho method, Pohlig–Hellman’s method, and baby-step–giant-step method.

• Both #E(Fp) and #⟨P⟩ should have a dominant large prime factor. This property
ensures that Pollard’s rho attack and Pohlig–Hellman’s attack will be ineffective.

• The curve E should not be anomalous, that is, the order #E(Fp) should not be equal
to p. When the curve is anomalous, the ECDLP in E can be reduced to the additive
discrete logarithm problem in Fp, which is trivial to solve [58–60].

• The curve E should not be supersingular, that is the order #E(Fp) should not be equal
to p + 1. This requirement follows the work of Menezes, Okamoto, and Vanstone [57],
and the work of Frey and Rück [61]. Both works show that, for an elliptic curve E
over Fp, the ECDLP can be transferred from E(Fp) to the Discrete Logarithm Problem
(DLP) in the multiplicative group F×

pk for some positive integer k. If k is small, typically

k < log2(p), then the DLP in Fk
p can be attacked by a standard method, such as the

baby-step–giant-step [56], Pollard’s method [62], Pohlig–Hellman’s method [44], or the
index calculus method [63]. To avoid a MOV attack, it is required to check that #E(Fp)

does not divide the integers pr − 1 for 1 ≤ r ≤ 100.

We notice that several tools are devoted to selecting safe elliptic curves. A typical
example is [64] where the security of almost all popular cryptographic elliptic curves
is discussed.

6. ECC and Machine Learning
In this section, we discuss the use of machine learning to enhance the security and

efficiency of ECC.

6.1. Speeding Up the Generation Phase

AI has significant potential for optimizing parameters in ECC, particularly through
techniques like GAN [65,66], GA, PSO, and compression techniques [67]. These AI-driven
methods enhance ECC’s efficiency by reducing computational overhead in the generation
phase, which is crucial for applications requiring both high security and real-time performance.

6.1.1. GANs and AI-Driven ECC Optimization

GANs are a machine learning framework with two neural networks, a generator and
a discriminator, trained simultaneously. The generator produces synthetic data resembling
a given dataset, while the discriminator assesses these samples against real data.
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In cryptography, GANs offer the advantage of generating secure, random encryption keys,
which enhances system resilience against attacks. Unlike traditional encryption, GANs
use floating-point numbers, enabling more complex encryption patterns beyond binary
sequences [68].

The authors in [27] analyze and compare the effectiveness of GA and PSO in optimizing
ECC parameters within a simulated e-commerce environment, emphasizing their potential
to improve cybersecurity. Meanwhile, the authors in [69] introduce an image encryption
method that combines ECC with GA to bolster data security and confidentiality.

GA utilizes principles of biological evolution to generate and refine a population of
candidate solutions, known as chromosomes, through processes like selection, crossover,
and mutation. By evaluating each candidate using a fitness function, GA effectively
navigates complex search spaces to converge on optimal ECC parameters, enhancing
security and efficiency. Similarly, PSO mimics social behaviors observed in nature, offering
simplicity in implementation and a tendency to avoid local optima. Together, these AI-
driven methods present innovative solutions to the challenges faced in ECC optimization.
The integration of GA into the process of generating keys for ECC enhances both the
security and efficiency of key pairs [70]. This approach begins with the initialization of
a population of candidate keys, represented as chromosomes, where each chromosome
corresponds to a point on the elliptic curve defined by specific parameters. The x and
y coordinates of these points are generated randomly within the curve’s constraints, as
presented in Algorithm 8, allowing for the creation of multiple potential keys [19,71].

Algorithm 8 GAN-Based ECC Key Generation Algorithm
Require: Elliptic curve parameters E(a, b, p), a base point G ∈ E, the order n of G, GAN
components: generator G and discriminator D.
Ensure: A valid ECC key pair (d, Q) where Q = d · G.

1: Initialize GAN parameters:
- Define the architectures for G and D.
- Set random initial weights for G and D.
- Define the loss functions for adversarial training.

2: Prepare a dataset of valid ECC keys:
- Generate random private keys d ∈ [1, n − 1].
- Compute corresponding public keys Q = d · G.

3: Train the GAN:
4: while GAN training not converged do
5: Train the discriminator D:

- Input: Real key pairs (d, Q) and generated key pairs (d̂, Q̂).
- Update D to classify real vs. fake key pairs.

6: Train the generator G:
- Generate synthetic private keys d̂ from random noise z.
- Update G to minimize D’s ability to distinguish real from fake keys.

7: end while
8: Generate ECC keys:
9: Generate a private key d̂ = G(z) from random noise z.

10: Compute the corresponding public key Q̂ = d̂ · G.
11: Validate the key pair:

- Ensure Q̂ ∈ E(a, b, p).
- If validation fails, restart from Step 1.

12: Output: Return all valid key pairs (d̂, Q̂).

The algorithm describes a method for generating ECC key pairs using GANs. GANs
consist of a generator, which creates synthetic private keys from random noise, and a
discriminator, which distinguishes real key pairs from generated ones. The GANs are
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trained on a dataset of valid ECC key pairs, where each private key is a randomly chosen
integer within the valid range, and the corresponding public key is computed using elliptic
curve point multiplication. During training, the generator aims to produce private keys
that closely resemble real ones, while the discriminator learns to classify key pairs as real
or synthetic. Once the GAN training converges, the generator is used to produce private
keys, and the associated public keys are computed using the ECC base point and curve
parameters. A validation step ensures that the generated public keys lie on the elliptic
curve, confirming the correctness of the key pairs. The algorithm outputs all valid key
pairs, ready for use in cryptographic applications.

6.1.2. Applying PSO to ECC Key Generation

PSO is a heuristic optimization algorithm developed by Kennedy and Eberhart in 1995,
inspired by the natural behaviors observed in bird flocks searching for food. This approach
can be effectively applied to enhance the process of generating secure key pairs in ECC.

Within the PSO framework, individual “particles” symbolize potential candidates
for elliptic curve parameters, such as curve coefficients or key pair values. Each particle
represents a point in the solution space and is initialized with random values for the
parameters. These particles are also assigned velocities that guide their movements within
the solution space.
The PSO algorithm follows these key steps to optimize ECC key generation:

1. Initialization: A swarm of particles is initialized with random ECC parameter config-
urations, each associated with a random velocity.

2. Fitness Evaluation: The fitness of each particle is computed based on specific criteria.
In the context of ECC, the fitness function evaluates the cryptographic strength,
randomness, and operational efficiency of the candidate parameters.

3. Updating Positions and Velocities: Particles update their velocities and positions
iteratively. The acceleration of each particle is influenced by two factors: its own
personal best position (where it achieved the highest fitness so far) and the global
best position (the best fitness among all particles in the swarm). These updates enable
particles to balance exploration and exploitation within the search space.

4. Refinement and Convergence: Over successive iterations, particles move closer to
the optimal solution, refining their positions based on both individual and collective
experience. The algorithm terminates when convergence is achieved or a predefined
number of iterations is completed.

By applying PSO to ECC, the algorithm identifies the global best position in the swarm,
representing the optimized ECC parameters. These parameters can then be used to generate
secure and robust key pairs.

Using PSO for key generation in ECC offers significant advantages over conventional
methods. The cooperative dynamics of particles enable the algorithm to efficiently navigate
the solution space, enhancing the randomness and robustness of the generated keys. Unlike
GA, PSO emphasizes collaboration rather than competition, leading to a more adaptive
and precise optimization process.

This approach ensures that the resulting ECC key pairs are not only highly secure but also
optimized for performance, making PSO a valuable tool in modern cryptographic systems.

6.1.3. Applying Compression to ECC Key Generation

AI-driven compression techniques offer a promising approach to enhancing the effi-
ciency and security of ECC key generation. This method leverages artificial intelligence
to analyze the input stream, identify repetitive patterns, and replace them with more effi-
cient, unused character sets [69]. Given ECC’s inherent advantage of requiring smaller key
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sizes for equivalent security compared with traditional cryptographic methods, AI-based
compression further refines this process in several key ways:
1. Key Size Reduction: ECC already benefits from compact key sizes, and AI-based com-

pression can further reduce the amount of data involved by eliminating redundancies
in the input stream. This results in more efficient key representation, allowing for
faster cryptographic operations while maintaining robust security.

2. Enhanced Computational Efficiency: By optimizing the input data and removing
unnecessary repetition, AI-driven compression reduces the computational workload
required during key generation. This is particularly beneficial for resource-constrained
environments, where reducing the number of operations can significantly enhance
system performance.

3. Improved Security Through Increased Randomness: The process of transforming
repetitive input patterns into less predictable forms introduces additional randomness
into the key generation process. This increases the cryptographic strength of the
generated keys, making them more resilient to attacks, such as brute force and other
forms of cryptanalysis.

4. Optimized Resource Utilization: In systems with limited computational and memory
resources, such as mobile devices and IoT environments, the ability to minimize data
processing during key generation is crucial. AI-based compression ensures that the
key generation process uses fewer resources, enabling faster, secure key production
even under constraints.

6.2. Enhancing the Security

ECC is integral to modern cryptographic systems, and with advancements in AI,
novel approaches have been applied for both enhancing and analyzing the security of ECC.
AI-based methods offer new possibilities for cryptanalysis, helping to identify vulnerabil-
ities and improve cryptographic processes. This section examines studies that apply AI
techniques in the cryptanalysis of ECC, highlighting key insights and gaps (see Table 1).

Table 1. Summary of research studies on ECC and their limitations.

Ref. Limitations

[72] Focuses on ECC cryptanalysis but does not extend its research to parameter
optimization or explore AI techniques beyond basic cryptanalysis.

[73]
Addresses the optimization of power consumption for mobile devices using
PSO and Simplified Swarm Optimization but fails to provide a comprehensive
comparison with GA for ECC optimization.

[67]

Explores PSO for ECC key generation but does not offer a thorough comparison
with other AI techniques like GA. The research is centered on key generation,
without considering the broader optimization of ECC parameters in other
contexts, such as large-scale cryptographic systems.

[74]

Investigates the use of DNA-based cryptography and Hyperelliptic Curve
Cryptography (HECC) for securing multicloud environments but does not
explore other AI techniques such as GA or PSO for ECC. The study also lacks
practical implementation details for use in real-world applications.

GANs can pose significant threats to ECC through various attack vectors. One method
involves key generation attacks, where GANs can be trained on known key pairs to learn
their distribution, enabling them to produce new keys that closely resemble valid ones,
potentially allowing an attacker to intercept or decrypt messages. Additionally, GANs can
generate adversarial examples that mimic legitimate keys during key exchange protocols,
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thereby misleading the system and facilitating unauthorized access. Through adversarial
training, GANs can simulate adversary behavior crafting plaintexts or ciphertexts that
exploit vulnerabilities in ECC implementations, such as chosen-plaintext and chosen-
ciphertext attacks. Moreover, they can perform model inversion attacks by analyzing
system outputs and reconstructing private keys or sensitive information from public data
shared during cryptographic operations. Lastly, GANs may exploit implementation flaws
by training on side-channel information, leading to targeted attacks that compromise ECC
security. These emerging threats necessitate a thorough understanding of the interactions
between GANs and ECC to enhance cryptographic resilience against such sophisticated
adversarial techniques [75,76].

6.3. Use of Machine Learning for ECC

To boost the effectiveness of the algorithms of the cryptographic systems based on
the elliptic curve cryptography, especially for the Internet of Things (IoT), and devices
with limited resources, machine learning is a practical tool to improve their efficiency and
security. Below, we summarize some of the tasks that machine learning can perform to
enhance the cryptographic systems in the field of ECC:

• Generate strong private keys and seeds for use in ECC systems.
• Select the most efficient and secure elliptic curves in various forms with large keys.
• Implement the most efficient elliptic curve algorithms [40] and operations to perform

the computation in an optimal time.
• Implement the most prominent, secure, and efficient key exchange protocols such

as ECDH.
• Implement the most prominent, secure, and efficient digital signature algorithms such

as ECDSA [7], or EdDSA [77], especially Ed25519. This will guarantee the integrity
and the authenticity of the shared keys. Moreover, it ensures the parties sign their
public keys, and allows a third party to verify the authenticity of the keys.

• Implement the most prominent, secure, and efficient public key cryptosystems based
on elliptic curves such as the Elliptic Curve Integrated Encryption Scheme (ECIES) [78].
This enables to encrypt of small data messages such as PINs, and phone or credit
card numbers. This also enables to transport of larger session keys for use in
symmetric cryptography.

• Implement and test the most powerful attacks on ECC systems in order to test their security.

7. Conclusions
We presented the theory of ECC, including its arithmetic, applications, security, and the

main attacks that can be launched to compromise systems based on ECC. We also intro-
duced the basic concepts of machine learning and explored how it can be used to enhance
the security and efficiency of the algorithms employed in ECC. The study demonstrated that
ECC can significantly benefit from machine learning technology, particularly in generating
optimal parameters that are resistant to common attacks against ECC.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
DLP Discrete Logarithm Problem
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie–Hellman
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
ECEG ElGamal Elliptic Curve Cryptosystem
ECIES Elliptic Curve Integrated Encryption Scheme
EdDSA Edwards Curve Digital Signature Algorithm
FNN Feedforward Neural Networks
GAN Generative Adversarial Network
GA Genetic Algorithm
HECC Hyperelliptic Curve Cryptography
LWE Learning With Error
ML Machine Learning
PSO Particle Swarm Optimization
RNN Recurrent Neural Networks
RSA Rivest, Shamir, Adelman
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