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Abstract: We investigate theoretically the properties of phononic crystal plates with hollow pillars.
Such crystals can exhibit confined whispering gallery modes around the hollow parts of the pillars
whose localization can be increased by separating the pillar from the plate by a full cylinder. We
discuss the behaviors of these modes and their potential applications in guiding and filtering. Filling
the hollow parts with a fluid gives rise to new localized modes, which depend on the physical
properties and height of the fluid. Thus, these modes can be actively controlled for the purpose
of multichannel multiplexing. In particular, one can obtain localized modes associated with the
compressional vibrations of the fluid along its height. They can be used for the purpose of sensing
the acoustic properties of the fluid or their variations with temperature.

Keywords: phononic crystals; whispering gallery mode; fundamental liquid mode; waveguide;
active control

1. Introduction

In the past two decades, the development of phononic crystals (PnCs) [1–4], which consist of
periodic arrangement of inclusions embedded in a matrix, has brought novel properties for controlling
acoustic/elastic waves, such as waveguiding [5,6], filtering [7,8], sensing [9,10], and design of lens
for sound focusing [11–13]. Due to their periodic structure, PnCs can exhibit acoustic band gaps that
result from either Bragg scattering or local resonances. In particular, both types of gaps can be found
in phononic crystal plates constituted by a periodic array of pillars deposited on a thin plate, provided
the geometrical parameters are chosen appropriately [14–16]. Subsequently, these structures have
received increasing attention. For instance, Oudich et al. [17] studied a stubbed plate with one-layer
soft stub and two-layer composite stub and found a low resonant acoustic band gap. Assouar and
Oudich [18] reported that, by using double-sided stubbed phononic plates, locally resonant band
gaps could be enlarged. Coffy et al. [19] designed a strip consisting of periodic pillars deposited on a
tailed beam, enabling the generation of an ultra-wide band gap resulting from both Bragg scattering
and local resonance. Midtvedt et al. [20] considered a graphene membrane that is deposited on top
of a square lattice of cylindrical pillars to exhibit coupled localized modes with nonlinear dynamics.
Using Brillouin light scattering experiments, Graczykowski et al. [21] showed significant changes
in the hypersonic phonon propagation due to the presence of local resonances in phononic crystal
made of a square lattice of holes and pillars in/on silicon membrane. Very recently, Jin et al. [22]
explored confined whispering-gallery modes (WGMs) by considering hollow pillars on a thin plate.
The confined WGMs with high quality factors allow for manipulating the acoustic waves for guiding
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and filtering applications in both Bragg and low frequency band gaps. Additionally, hollow pillars on
a plate give rise to the possibility of filling the hollow parts with a liquid, which creates new modes for
the manipulation of acoustic waves, in particular allowing their active control by changing the height
of the fluid or its temperature. Jin et al. [23] and Popa et al. [24] reported that the acoustic properties of
PnCs and acoustic metamaterials could be actively tuned by piezoelectric structures. Wang et al. [25]
used nonlinear pre-deformation to tune the band gap with local resonant structures. With infiltrated
liquids in the hollow pillars, another actively controlled phononic crystal can be proposed since, for
instance, the mass density and acoustic velocity of the liquids change with temperature.

In this paper, we study the dispersion and transmission of localized modes in a phononic crystal
plate with hollow pillars. In the first part, we present the results for WGMs in the hollow pillar
structures along the symmetry directions of the first irreducible Brillouin zone. The second part is
devoted to the effects of filling the hollow parts with a liquid. This will affect the frequencies and
quality factors of the WGMs depending on the physical properties and height of the fluids, and this can
be used for an active control of these modes or the design of a multichannel wavelength multiplexer.
Besides that, the structure also supports very confined modes in the fluid, corresponding in particular
to the compressional modes along the height of the fluid. The localization of such modes in the
broad Bragg band gap allows for the design of a phononic sensor, which is sensitive to the acoustic
properties of the fluid, in particular to their variations in temperature. Section 2 contains the results and
discussions of our calculations for the hollow and liquid-filled pillars, respectively. Some conclusions
are drawn in Section 3.

2. Results and Discussion

2.1. Whispering-Gallery Modes

A PnC of a square lattice with a periodicity a in the (x, y) plane is considered that consists of a
periodic array of hollow pillars deposited on a thin plate (Figure 1a). A full cylinder separates the
hollow part from the plate in order to increase the confinement of the studied modes. The scheme in
Figure 1a shows the geometrical parameters, namely the lattice constant a, the thickness of the plate
e, the height of confinement l, the height of the hollow pillar h, its inner radius ri and outer radius r.
The entire structure is made of cubic silicon, with the elastic constants C11 = 166 GPa, C12 = 64 GPa,
C44 = 79.6 GPa, and the mass density being ρ = 2330 kg¨ m´3. The crystallographic axis [100] and [010]
have been chosen respectively parallel to the phononic crystal axis x and y. In the (x, y) plane, periodic
boundary conditions are applied on each side of the unit cell. Dispersion and transmission curves are
calculated by the finite element code COMSOL Multiphysics® (COMSOL Inc., Stockholm, Sweden)
and presented as a function of the reduced frequency wa/2πvt, where vt = Sqrt (0.5*(C11 ´ C12)/ρ) is
the transverse velocity of sound in silicon along the [110] direction in the (001) plane.

Crystals 2016, 6, 64 2 of 12 

 

waves for guiding and filtering applications in both Bragg and low frequency band gaps. 
Additionally, hollow pillars on a plate give rise to the possibility of filling the hollow parts with a 
liquid, which creates new modes for the manipulation of acoustic waves, in particular allowing their 
active control by changing the height of the fluid or its temperature. Jin et al. [23] and Popa et al. [24] 
reported that the acoustic properties of PnCs and acoustic metamaterials could be actively tuned by 
piezoelectric structures. Wang et al. [25] used nonlinear pre-deformation to tune the band gap with 
local resonant structures. With infiltrated liquids in the hollow pillars, another actively controlled 
phononic crystal can be proposed since, for instance, the mass density and acoustic velocity of the 
liquids change with temperature. 

In this paper, we study the dispersion and transmission of localized modes in a phononic 
crystal plate with hollow pillars. In the first part, we present the results for WGMs in the hollow 
pillar structures along the symmetry directions of the first irreducible Brillouin zone. The second 
part is devoted to the effects of filling the hollow parts with a liquid. This will affect the frequencies 
and quality factors of the WGMs depending on the physical properties and height of the fluids, and 
this can be used for an active control of these modes or the design of a multichannel wavelength 
multiplexer. Besides that, the structure also supports very confined modes in the fluid, 
corresponding in particular to the compressional modes along the height of the fluid. The 
localization of such modes in the broad Bragg band gap allows for the design of a phononic sensor, 
which is sensitive to the acoustic properties of the fluid, in particular to their variations in 
temperature. Section 2 contains the results and discussions of our calculations for the hollow and 
liquid-filled pillars, respectively. Some conclusions are drawn in Section 3. 

2. Results and Discussion 

2.1. Whispering-Gallery Modes 

A PnC of a square lattice with a periodicity a in the (x, y) plane is considered that consists of a 
periodic array of hollow pillars deposited on a thin plate (Figure 1a). A full cylinder separates the 
hollow part from the plate in order to increase the confinement of the studied modes. The scheme in 
Figure 1a shows the geometrical parameters, namely the lattice constant a, the thickness of the plate 
e, the height of confinement l, the height of the hollow pillar h, its inner radius ri and outer radius r. 
The entire structure is made of cubic silicon, with the elastic constants C11 = 166 GPa, C12 = 64 GPa,  
C44 = 79.6 GPa, and the mass density being ρ = 2330 kg·m−3. The crystallographic axis [100] and [010] 
have been chosen respectively parallel to the phononic crystal axis x and y. In the (x,y) plane, 
periodic boundary conditions are applied on each side of the unit cell. Dispersion and transmission 
curves are calculated by the finite element code COMSOL Multiphysics® (COMSOL Inc., Stockholm, 
Sweden) and presented as a function of the reduced frequency wa/2πvt, where vt = Sqrt (0.5*(C11 − C12)/ρ) 
is the transverse velocity of sound in silicon along the [110] direction in the (001) plane.  

 
Figure 1. (a) schematic view of the PnC unit cell in the square array consisting of hollow pillars 
deposited on a thin homogeneous plate with an additional cylinder of height l at the basis to improve 
the confinement of the modes in the hollow pillars. a is the lattice constant, e is the thickness of plate, 
h is the height of hollow pillar, ri and r are the inner and outer radius of the hollow pillar, 
respectively; (b) the irreducible first Brillouin zone of the square lattice. 

Figure 1. (a) schematic view of the PnC unit cell in the square array consisting of hollow pillars
deposited on a thin homogeneous plate with an additional cylinder of height l at the basis to improve
the confinement of the modes in the hollow pillars. a is the lattice constant, e is the thickness of plate,
h is the height of hollow pillar, ri and r are the inner and outer radius of the hollow pillar, respectively;
(b) the irreducible first Brillouin zone of the square lattice.
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With an appropriate choice of the geometrical parameters (r/a = 0.4, h/a = 0.45, e/a = 0.1), the native
PnC with full pillars deposited on a thin plate can exhibit two absolute band gaps, one at the Bragg
frequency regime and the other at low frequency regime [14]. By introducing an inner hole in the
pillar, two new branches of WGMs with quadrupolar shape occur in the dispersion curves that do not
appear in the native PnC; their fields are localized in the upper part of the pillars around the hollow.
The quality factor of the WGMs can be further increased by adding a full cylinder between the hollow
pillar and the plate, so that the elastic energy is better confined in the hollow pillar part [22]. This new
structure was first studied in [22]. In this section, we give some additional results with respect to the
conclusions of [22].

In Figure 2, we present more detailed properties of the WGMs. In the left panel, the black
dotted lines are dispersion curves calculated along the ΓX and ΓM directions of the first Brillouin
zone with geometric parameters ri/a = 0.145, r/a = 0.4, h/a = 0.45, e/a = 0.1, l/a = 0.2. With this set
of parameters, the Bragg and low frequency band gaps still appear along ΓX direction while only
a Bragg band gap remains along the ΓM direction. In the Bragg band gap, two branches of WGMs
occur, marked as branch ‘1’ and ‘2’. Two transmission spectra along each direction are associated
with two different incident waves, namely the fundamental anti-symmetric A0 Lamb (blue curve) and
the symmetric S0 (red curve) Lamb waves. Although some mode conversion can occur at the exit of
PnC, the transmitted wave keeps essentially its original character. Only WGM1 gives rise to a narrow
transmitted pass band in both the ΓX and ΓM directions, more significantly with anti-symmetric Lamb
wave excitation, marked as peak ‘A’ and ‘B’. In the right panel of Figure 2, we show the displacement
fields of the dominant Uz component (displacement along z-axis) for peak ‘A’ and ‘B’. The excitation
inside the PnC is symmetric with respect to an xz plane, perpendicular to the pillars and parallel to the
propagation direction. This is in accordance with the symmetry of the incident wave (either A0 or S0)
with respect to such a plane. In contrast, to obtain a transmission at the frequency of WGM2, it would
be necessary to have an incident wave which has an antisymmetric profile with respect to this plane,
which means ´/+ force in the unit cell along the y-direction. To explain the higher transmission of
WGM1 with the A0 rather than S0 incident wave, it should be noticed that the x and y components
of its displacement field are mainly localized in the upper part of the pillar, around the hollow part,
while the z component extends down to the bottom of the pillar and is therefore sensitive to a vertical
motion in the membrane. However, in some other frequency ranges such as [0.2; 0.4], the transmission
is much higher with S0 rather than A0 excitation.
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Figure 2. (Left panel): Dispersion curves of the confined hollow pillars on a thin silicon plate in the ΓX
and ΓM directions of the first irreducible Brillouin zone in the reduced frequency range [0; 0.75]. On
each side of the dispersion curves, we give the corresponding transmission spectra in blue and red
respectively for which the incident wave is either anti-symmetric A0 or symmetric S0. The Bragg and
low frequency band gaps are marked as red and blue rectangular hatched regions, respectively. The
geometric parameters are chosen as ri/a = 0.145, r/a = 0.4, h/a = 0.45, e/a = 0.1, l/a = 0.2; (Right panel): Uz
component of the displacement fields with the anti-symmetric A0 Lamb wave excitation at transmission
peak A along the ΓX direction and peak B along the ΓM direction; Uz component of the displacement
fields of WGM1 and WGM2 at Γ point.
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Figure 3 (left panel) presents the evolution of the two WGMs as a function of the inner radius
of the hollow pillar. Both WGM frequencies decrease when increasing the inner radius. Indeed, it is
noteworthy that a higher value of the average radius <r> = (r + ri) 2 of the shell around the hollow
increases the acoustic path along the perimeter 2π<r> of the cylinder. As a result, when ri/a = 0.145
(resp. 0.35), the WGM ‘1’ and ‘2’ fall in the middle of the Bragg (resp. low frequency) gap [22]. We also
calculate the corresponding quality factor for the WGM 1, Q = f /∆f, where f is the central frequency
of the pass band and ∆f is the full width at half maximum of the transmission peak. The right panel
of Figure 3 shows a significant increase in the quality factor when increasing the reduced height l/a
of the pillar basis. For l/a = 0.35, the quality factor is Q = 280, which is more than 10 times the value
obtained without the additional cylinder, paving the way to a high resolved narrow pass band device
for filtering applications [22].

Crystals 2016, 6, 64 4 of 12 

 

Figure 3 (left panel) presents the evolution of the two WGMs as a function of the inner radius of 
the hollow pillar. Both WGM frequencies decrease when increasing the inner radius. Indeed, it is 
noteworthy that a higher value of the average radius <r> = (r + ri) 2 of the shell around the hollow 
increases the acoustic path along the perimeter 2π<r> of the cylinder. As a result, when ri/a = 0.145 
(resp. 0.35), the WGM ‘1’ and ‘2’ fall in the middle of the Bragg (resp. low frequency) gap [22]. We 
also calculate the corresponding quality factor for the WGM 1, Q = f/Δf, where f is the central 
frequency of the pass band and Δf is the full width at half maximum of the transmission peak. The 
right panel of Figure 3 shows a significant increase in the quality factor when increasing the reduced 
height l/a of the pillar basis. For l/a = 0.35, the quality factor is Q = 280, which is more than 10 times 
the value obtained without the additional cylinder, paving the way to a high resolved narrow pass 
band device for filtering applications [22]. 

 
Figure 3. (Left panel): the frequency evolution of the WGM 1 and 2 as a function of the inner radius 
of the hollow pillar. The upper frequency range limited by two horizontal cyan lines is the Bragg 
band gap of background full PnCs (h/a = 0.45, r/a = 0.4, l/a = 0) and the lower one is the low frequency 
band gap. (Right panel): The quality factor of the WGM 1 grows when increasing the confinement 
height l/a, ri/a = 0.145. 

The WGMs with high quality factors are applied to different kinds of multiplexers, based on 
monochannel or multichannel waveguides or cavity. In Figure 4, we show a multichannel 
waveguide consisting of waveguide i with inner radius ri/a = 0.12 and waveguide j with inner radius 
rj/a = 0.11. The transmission peaks for waveguide i and j are located at reduced frequency 0.654 and 
0.678, respectively. In addition, an efficient subwavelength waveguide is also demonstrated, as the 
WGMs can be tuned in the low frequency band gap [22].  

 
Figure 4. The multichannel wavelength multiplexer: (Left panel): Transmission spectrum of the 
antisymmetric Lamb wave when the inner radius inside waveguides i and j are ri/a = 0.12 and  
rj/a = 0.11; (Right panel): Displacement field distributions at the frequency of the two narrow pass 
bands i and j. The geometric parameters of the multiplexer are h/a = 0.45, r/a = 0.4, l/a = 0.2. 

Figure 3. (Left panel): the frequency evolution of the WGM 1 and 2 as a function of the inner radius of
the hollow pillar. The upper frequency range limited by two horizontal cyan lines is the Bragg band
gap of background full PnCs (h/a = 0.45, r/a = 0.4, l/a = 0) and the lower one is the low frequency band
gap. (Right panel): The quality factor of the WGM 1 grows when increasing the confinement height
l/a, ri/a = 0.145.

The WGMs with high quality factors are applied to different kinds of multiplexers, based on
monochannel or multichannel waveguides or cavity. In Figure 4, we show a multichannel waveguide
consisting of waveguide i with inner radius ri/a = 0.12 and waveguide j with inner radius rj/a = 0.11. The
transmission peaks for waveguide i and j are located at reduced frequency 0.654 and 0.678, respectively.
In addition, an efficient subwavelength waveguide is also demonstrated, as the WGMs can be tuned in
the low frequency band gap [22].
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Figure 4. The multichannel wavelength multiplexer: (Left panel): Transmission spectrum of the
antisymmetric Lamb wave when the inner radius inside waveguides i and j are ri/a = 0.12 and rj/a = 0.11;
(Right panel): Displacement field distributions at the frequency of the two narrow pass bands i and j.
The geometric parameters of the multiplexer are h/a = 0.45, r/a = 0.4, l/a = 0.2.



Crystals 2016, 6, 64 5 of 12

2.2. Active Control of the WGMs and New Localized Modes by Filling the Hollows with a Liquid

The objective of this section is to discuss how the filling of the holes with a liquid can affect
or tune the WGMs, and, more interestingly, gives rise to the occurrence of new localized modes in
the band gap that are much sensitive to the presence of the fluid. The latter can be tuned with the
physical and geometrical properties of the fluid, in particular its height. To avoid capillary or surface
tension effects, it would be more adapted to work with holes of sub-millimeter size in the MHz regime.
However, it should be pointed out that the filling of a few tens of nm size holes in hypersonic PnC has
been performed by micro-fluid ejection technique and their phonon dispersion curves measured by
Brillouin light scattering experiments (see, for instance, References [26,27]).

In Figure 5, we show the dispersion curves of the phononic crystal when the holes are filled with
water for a few values of the inner radius ri. For water, the mass density is ρ = 998 kg¨ m´3 and speed
of sound is c = 1490 ms´1. Let us start with the inner radius ri/a = 0.17. The modes labeled 1 and 2 are
the quadrupolar WGMs discussed in the previous section. However, the filling of the holes with water
has the effect of giving rise to two new sets of localized modes in the band gap. One set, labeled Mc1

and Mc2, correspond to compressional vibrations inside the liquid column almost independently of the
solid; they will be discussed in detail in Section 2.3. The other set called Mliq is a doubly degenerate
new mode that is essentially associated to the presence of the liquid and appears in the band gap under
some conditions on the geometrical parameters. The strongest vibration of this mode occurs in the
liquid where the displacement field is one order of magnitude higher than in the solid part. When
decreasing the inner radius ri/a of the pillars from 0.17 to 0.11 (Figure 5), the WGM1,2, as well as Mliq,
see their frequency increasing and going outside the band gap, while the frequencies of Mc1 and Mc2

remain unchanged because they are dictated by the height of the fluid.
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Section 2.3.). In the upper-right panel of Figure 6, we present the evolution of those localized modes 
as a function of the height hw of water filling the pillar of total height h when the inner radius is  
ri/a = 0.19. The liquid compressional modes Mc1,2 are very sensitive to hw, whereas the Mliq decreases 
through the Bragg band gap when hw/h increases from 0.3 to 1. The latter mode can be then a good 
candidate to be tuned gradually by changing the height of water. The vibration of this mode is 
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Figure 5. Dispersion curves of the hollow pillars on a thin silicon plate in the ΓX direction with different
inner radii (left) ri/a = 0.11, (middle) ri/a = 0.14, (right) ri/a = 0.17. The other geometric parameters are
h/a = 0.45, r/a = 0.4, l/a = 0.2.

As a complementary view, we show, in the upper panel of Figure 6, how the localized modes,
namely WGM1,2, Mc1,2 and Mliq, behave when changing either the inner radius of the hollow pillars
or the height hw of the fluid filling the hollow part of the pillar of total height h. In the upper-left
panel, one can see, in accordance with Figure 5, that with an increasing inner radius, WGM1,2 and Mliq
decrease to lower frequencies, passing out of the Bragg band gap of the full PnC (h/a = 0.45, r/a = 0.4,
l/a = 0). On the other hand, Mc2 is practically insensitive to the inner radii, as the compressional mode
in the liquid is only related to the height of the liquid (see discussion in Section 2.3.). In the upper-right
panel of Figure 6, we present the evolution of those localized modes as a function of the height hw of
water filling the pillar of total height h when the inner radius is ri/a = 0.19. The liquid compressional
modes Mc1,2 are very sensitive to hw, whereas the Mliq decreases through the Bragg band gap when
hw/h increases from 0.3 to 1. The latter mode can be then a good candidate to be tuned gradually by
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changing the height of water. The vibration of this mode is presented in the lower panel of Figure 6,
both in the solid and liquid part. One can see that the elastic and acoustic fields are mainly oriented
along the diagonal direction of the square lattice. The vibration in the solid is mostly localized at the
top of the pillar although there are still some displacements left in the plate. In the liquid part, the
pressure field behaves like a dipolar motion, with ´max and +max along the same diagonal direction.
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(cyan dotted line), Mc2 (blue dotted line), Mliq (green dotted line) as a function of inner radius when
the hollow pillars are fully filled with water (hw/h = 1). The two horizontal pink dotted lines are the
limits of Bragg band gap of the full PnC; (Upper-right panel): evolution of WGM1 (black dotted
line), WGM2 (red dotted line), Mc1 (cyan dotted line), Mc2 (blue dotted line), Mliq (green dotted
line) as a function of the height of filling water hw/h when the inner radius is ri/a = 0.19. (Lower panel):
representation of the acoustic (pressure) and elastic (displacement) field of the mode Mliq respectively
in the fluid and solid part for hw/h = 1 (left) and hw/h = 0.5 (right) when ri/a = 0.19. The other geometric
parameters are h/a = 0.45, r/a = 0.4, l/a = 0.2.

Finally, let us notice that the quadrupolar WGM1,2 can also be tuned by the height of water but
with very small shifts. It should be noticed that WGM1,2 are essentially originating from the solid
pillars in the absence of the liquid. Even with filling the holes, their acoustic energy remains mostly
localized in the solid region surrounding the hollow part, although the vibration in the liquid becomes
not negligible. This penetration of the wave into the liquid should soften the mode and decrease
its frequency, although the effect remains small with water. In Section 2.4 (Figure 10), we shall see
that filling the holes with mercury, which has a much higher impedance than water, and therefore is
comparable to silicon, will affect the frequency of WGMs more strongly.

2.3. Compressional Modes along the Height of the Liquid

In this section, we discuss the modes called Mc in the previous section, which are associated to
vertical motion inside the fluid. Due to the high impedance mismatch between most of the liquids and
a hard solid, these modes are mainly localized inside the fluid. We give two illustrations about the
sensitivity of these modes to the physical properties of the liquid and the variation of its parameters as
a function of temperature.

First, it should be noticed that if the holes are filled with a liquid such as water that has a much
smaller impedance than silicon, the frequency of the compressional modes are given with a very good
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precision by the resonance frequencies of a tube of height hliq with rigid lateral boundaries, rigid bottom
boundary and a free upper boundary. The expressions of the frequencies are then fn = (2n + 1)c/4 hliq,
where n is the resonance number (0, 1, 2, 3, ...), and c is the speed of sound in the fluid; this means that
the height can accommodate stationary waves at λ/4, 3λ/4, . . .

In Figure 7, the hollow pillar filled with water has geometric parameters as h/a = 0.4, r/a = 0.39,
ri/a = 0.1, hw/h = 1, and l/a = 0.1. The first and the second compressional liquid frequencies are
f c1 = 0.197 and f c2 = 0.587, corresponding to a wavelength λc1/h = 4 and λc2/h = 4/3, respectively, as
shown clearly in the pressure distributions in the left panel. The set of geometric parameters are chosen
to move the WGMs to higher frequencies outside of the Bragg band gap. From the right panel, the first
compressional liquid mode is at the edge of the low frequency band gap while the second one is in the
middle of the Bragg band gap. We focus on the second compressional liquid mode, as the Bragg band
gap is broader and has more potential in the applications.
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detected by changing the physical properties of the filled liquid in the hollow pillar. Six kinds of 
liquids are employed to test the efficiency [9,10]. Figure 8 left panel presents the evolution of the Mc2 
induced transmission peaks as a function of the acoustic velocity. It is observed that the transmission 
peaks are very sensitive to the acoustic velocity of the infiltrated liquid, with high quality factors  
Q = f/Δf larger than 1000. Figure 8 (right panel) shows the relationship between the frequency of 
transmission peak and the corresponding acoustic velocity. In order to qualify the sensitivity, a 
common measurement is to calculate the slope of the lines in the right panel, named sensitivity S, as 
S = Δf/Δc, where Δf is the difference of the reduced frequencies of two infiltrated liquids and  
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Figure 7. (Left panel): 3D-schematic view of the pressure fields in water of the Mc1 (left-lower) and
Mc2 (left-upper) compressional modes; (Right panel): Dispersion curves of the PnC with geometric
parameters h/a = 0.4, r/a = 0.39, ri/a = 0.1, hw/h = 1, l/a = 0.1 along the ΓX direction.

In a first example, we consider a set of mixtures of water and 1-propanol at different molar ratio
x. We use the mass density and speed of sound at different molar ratio x as shown in Table 1 from
References [9,10].

Table 1. Density and speed of sound of a mixture of water and 1-propanol at different molar ratio x.

Molar Ratio x Density (kg¨ m´3) Speed of Sound (ms´1)

0 (water) 998 1490
0.021 990 1545
0.056 974 1588
0.230 908 1421
0.347 881 1367
0.596 841 1298

The Mc2 in the Bragg band gap is isolated, allowing a phononic sensor application to sense the
probed parameters on a sufficiently broad frequency range. The efficiency of the phononic sensor is
detected by changing the physical properties of the filled liquid in the hollow pillar. Six kinds of liquids
are employed to test the efficiency [9,10]. Figure 8 left panel presents the evolution of the Mc2 induced
transmission peaks as a function of the acoustic velocity. It is observed that the transmission peaks are
very sensitive to the acoustic velocity of the infiltrated liquid, with high quality factors Q = f /∆f larger
than 1000. Figure 8 (right panel) shows the relationship between the frequency of transmission peak
and the corresponding acoustic velocity. In order to qualify the sensitivity, a common measurement is
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to calculate the slope of the lines in the right panel, named sensitivity S, as S = ∆f/∆c, where ∆f is the
difference of the reduced frequencies of two infiltrated liquids and ∆c = (cliq

i ´ cliq
j)/vt is the difference

of the reduced velocities of two infiltrated liquids by dividing the transverse velocity of silicon vt to
have a dimensionless quantity. The average of S is 1.761, with a deviation 2.53% for the minimum and
0.87% for the maximum.
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Furthermore, it is well known that the mass density and acoustic velocity of water will change if 
we vary the temperature of the liquid. We take the mass density and the acoustic velocity of water at 
different temperatures as shown in Table 2 from reference [7]. The temperature affects the elastic 
constant of silicon one order of magnitude lower than for the liquid [28]. Thus, we assume that the 
temperature of the solid background of the PnC is kept fixed at the room temperature and the 
thermal property of the water in the hollow pillars is isolated from the solid background. The 
geometric parameters of the PnC are h/a = 0.4, r/a = 0.39, ri/a = 0.1, hw/h = 1, l/a = 0.1. By tuning the 
temperature of water from 0 °C to 70 °C, the frequency of the Mc2 increases with its corresponding 
quality factor decreasing, as shown in Figure 9. In the range of [0 °C; 50 °C], the frequency moves 
significantly in the step of 10 °C. Therefore, tuning the temperature of the infiltrated liquid is another 
way to actively control the Mc2 induced transmission peak.  
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Figure 8. (Left panel): Evolution of the second liquid compressional mode induced transmission peak
(lines, corresponding to the left y-axis) and quality factor (dots, corresponding to the right y-axis) as
a function of the acoustic velocity of filled liquid. The geometric parameters are h/a = 0.4, r/a = 0.39,
ri/a = 0.1, hliq/h = 1, l/a = 0.1. (Right panel): The frequency of transmission peak corresponds to the
acoustic velocity of different fluids.

Furthermore, it is well known that the mass density and acoustic velocity of water will change if
we vary the temperature of the liquid. We take the mass density and the acoustic velocity of water
at different temperatures as shown in Table 2 from reference [7]. The temperature affects the elastic
constant of silicon one order of magnitude lower than for the liquid [28]. Thus, we assume that the
temperature of the solid background of the PnC is kept fixed at the room temperature and the thermal
property of the water in the hollow pillars is isolated from the solid background. The geometric
parameters of the PnC are h/a = 0.4, r/a = 0.39, ri/a = 0.1, hw/h = 1, l/a = 0.1. By tuning the temperature
of water from 0 ˝C to 70 ˝C, the frequency of the Mc2 increases with its corresponding quality factor
decreasing, as shown in Figure 9. In the range of [0 ˝C; 50 ˝C], the frequency moves significantly in
the step of 10 ˝C. Therefore, tuning the temperature of the infiltrated liquid is another way to actively
control the Mc2 induced transmission peak.

Table 2. Mass density and acoustic velocity of water at various temperatures.

T (˝C) Mass Density (kg¨ m´3) Speed of Sound (ms´1)

0 999 1405
10 999 1447
20 998 1482
30 997 1497
40 992 1529
50 986 1547
60 983 1550
70 977 1554
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Figure 9. Varied frequencies (blue triangular dots) and corresponding quality factors (red circle
dots) of the second liquid compressional mode by tuning the temperature of water in the holes. The
geometric parameters are h/a = 0.4, r/a = 0.39, ri/a = 0.1, hw/h = 1, l/a = 0.1.

2.4. Influence of Filling the Holes with Mercury on Whispering Gallery Modes

The common liquids have very small impedance comparing to silicon. However, there is one
liquid in nature, namely mercury, whose impedance is even a bit higher than silicon. We also studied
the behavior of WGM1 as a function of the inner radius when the holes are filled with mercury of
different heights and compared the results with the case of water. Figure 10 presents that, at each inner
radius, the upper end of the vertical bar is the frequency of WGM1 when the inner hole is empty, and
the lower end is the frequency when the inner hole is entirely filled with liquid; the red dotted bars
are for mercury and, as a matter of comparison, the blue dotted bars are for water. For mercury, the
mass density is ρ = 13,600 kg¨ m´3 and speed of sound is c = 1490 ms´1. The upper frequency range
limited by two horizontal cyan lines is the Bragg band gap of background full PnCs (h/a = 0.45, r/a = 0.4,
l/a = 0), and the lower one is the low frequency band gap. The tunable frequency range of the WGM1
increases when the inner radius becomes larger, as the corresponding filling ratio ϕ = Ahole/Apillar
increases, where Ahole, Apillar are the area of inner hole and whole pillar, respectively. For a given inner
radius, the tunable frequency range for mercury is wider than that for water due to the fact that the
impedance Zm = ρc of mercury is much larger than the impedance of water, even larger than that of
silicon. In the Bragg band gap, mercury plays a more important role in actively controlling the WGM1.
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Figure 10. Varied range of WGM 1 frequency when the holes are respectively empty or fully filled with
the liquid: water (blue dotted lines) and mercury (red dotted lines), corresponding to different inner
radii. The other geometric parameters are h/a = 0.45, r/a = 0.4, l/a = 0.2. The upper frequency range
limited by two horizontal cyan lines is the Bragg band gap of background full PnCs (h/a = 0.45, r/a = 0.4,
l/a = 0) and the lower one is the low frequency band gap.
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Due to the fact that the property of the liquid is easier to control than that of the solid, we can
realize an active control of the PnC’s functionalities, such as waveguiding or sensing. In Figure 11, we
present the evolution of the WGM1 frequency and its corresponding quality factor by changing the
height of the fluid in the holes. To be specific, by increasing the height of mercury, the frequency of
WGM1 moves to lower values, plotted in blue triangle dots, especially in the range hm/h > 0.4. The red
dots show that the quality factor of WGM1 does not change too much within the range hm/h = [0; 0.6]
and increases from 140 at hm/h = 0.6 to 210 at hm/h = 1. The regime where the WGM1 changes
significantly with respect to hm is still located in the Bragg band gap, allowing for the realization of an
actively tuned multichannel wavelength multiplexer.

Crystals 2016, 6, 64 10 of 12 

 

Due to the fact that the property of the liquid is easier to control than that of the solid, we can 
realize an active control of the PnC’s functionalities, such as waveguiding or sensing. In Figure 11, 
we present the evolution of the WGM1 frequency and its corresponding quality factor by changing 
the height of the fluid in the holes. To be specific, by increasing the height of mercury, the frequency 
of WGM1 moves to lower values, plotted in blue triangle dots, especially in the range hm/h > 0.4.  
The red dots show that the quality factor of WGM1 does not change too much within the range  
hm/h = [0; 0.6] and increases from 140 at hm/h = 0.6 to 210 at hm/h = 1. The regime where the WGM1 
changes significantly with respect to hm is still located in the Bragg band gap, allowing for the 
realization of an actively tuned multichannel wavelength multiplexer.  

  
Figure 11. The evolutions of the WGM 1 frequency (blue triangle dots) and its corresponding quality 
factor (red circle dots) as a function of the filled mercury height. The geometric parameters are  
h/a = 0.45, r/a = 0.4, l/a = 0.2, ri/a = 0.11. 

To illustrate the latter application, we consider a 5 × 6 super cell with periodic conditions 
applied in the y-axis and Perfect Matched Layer applied in the direction of propagation x, as shown 
the inset of Figure 12 left panel. The PnC contains two separated waveguides c and d, which are 
constituted by two rows of the same hollow pillars filled with mercury at hmc/h = 0.4 and hmd/h = 0.9, 
respectively. The geometric parameters for the two waveguides are h/a = 0.45, r/a = 0.4, l/a = 0.2,  
ri/a = 0.11. The background full cylinders have parameters as h/a = 0.45, r/a = 0.4, l/a = 0. The 
transmission is detected by exciting the anti-symmetric Lamb wave in front of the PnC. In the left 
panel, two narrow pass bands c and d appear in the Bragg band gap at reduced frequency 0.66 and 
0.61, respectively. The higher height of mercury significantly shifts the transmission frequency to a lower 
value inside the band gap. The corresponding displacement field distributions in the solid silicon are 
presented in the right panel of Figure 12, showing a multichannel wavelength multiplexer behavior.  

 
Figure 12. The multichannel wavelength multiplexer. (Left panel): Transmission spectrum of the 
antisymmetric Lamb wave when the filled mercury heights inside waveguide c and d are hmc/h = 0.4 
and hmd/h = 0.9; (Right panel): Displacement field distributions at the frequency of the two narrow 
pass bands c and d. The geometric parameters of the multiplexer are h/a = 0.45, r/a = 0.4, l/a = 0.2,  
ri/a = 0.11. 

Figure 11. The evolutions of the WGM 1 frequency (blue triangle dots) and its corresponding quality
factor (red circle dots) as a function of the filled mercury height. The geometric parameters are
h/a = 0.45, r/a = 0.4, l/a = 0.2, ri/a = 0.11.

To illustrate the latter application, we consider a 5 ˆ 6 super cell with periodic conditions applied
in the y-axis and Perfect Matched Layer applied in the direction of propagation x, as shown the inset
of Figure 12 left panel. The PnC contains two separated waveguides c and d, which are constituted by
two rows of the same hollow pillars filled with mercury at hm

c/h = 0.4 and hm
d/h = 0.9, respectively.

The geometric parameters for the two waveguides are h/a = 0.45, r/a = 0.4, l/a = 0.2, ri/a = 0.11. The
background full cylinders have parameters as h/a = 0.45, r/a = 0.4, l/a = 0. The transmission is detected
by exciting the anti-symmetric Lamb wave in front of the PnC. In the left panel, two narrow pass bands
c and d appear in the Bragg band gap at reduced frequency 0.66 and 0.61, respectively. The higher
height of mercury significantly shifts the transmission frequency to a lower value inside the band gap.
The corresponding displacement field distributions in the solid silicon are presented in the right panel
of Figure 12, showing a multichannel wavelength multiplexer behavior.
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Figure 12. The multichannel wavelength multiplexer. (Left panel): Transmission spectrum of the
antisymmetric Lamb wave when the filled mercury heights inside waveguide c and d are hm

c/h = 0.4
and hm

d/h = 0.9; (Right panel): Displacement field distributions at the frequency of the two narrow
pass bands c and d. The geometric parameters of the multiplexer are h/a = 0.45, r/a = 0.4, l/a = 0.2,
ri/a = 0.11.
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3. Conclusions

We investigated the vibrational properties of hollow pillars filled with liquids deposited on a
thin homogeneous plate. Whispering Gallery Modes (WGMs) circulating around the upper boundary
of the hollow pillar give rise to new branches in the dispersion curves that do not appear in native
full PnC. We studied the dispersion and transmission excited by both anti-symmetric and symmetric
Lamb waves along the ΓX and ΓM directions and found that the WGM1 can be well excited by an
anti-symmetric Lamb wave and generate a narrow pass band. Then, we filled the inner holes with
liquids and figured out that the frequency of WGM1 decreases while the corresponding quality factor
increases with the height of liquid. We discussed a functionality to design an active multichannel
wavelength multiplexer by tuning the height of liquids in the waveguides. In addition, a simple
theoretical model is provided to explain the compressional liquid modes in the hollow pillars. These
modes are isolated in the broad Bragg band gap with high quality factors larger than 1000 and applied
to design a phononic sensor to sense a mixture of water and 1-propanol at different molar ratio x with
a high efficiency. By increasing the temperatures in the infiltrated liquid, the frequency of the second
compressional mode moves to higher frequencies, realizing an active control. Finally, we found that
the liquid-filling of the holes give rise to a new type of localized mode Mliq in the band gap with a
dipolar shape displacement field, which can be a good candidate for tuning as a function of the liquid
height. The phononic crystal plate with fluid filled in the hollow pillars can be a good candidate for
wireless communication and sensing applications with the possibility of active control.
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