
crystals

Article

Quasicrystal Tilings in Three Dimensions and
Their Empires

Dugan Hammock * , Fang Fang and Klee Irwin

Quantum Gravity Research, Los Angeles, CA 90290, USA; Fang@quantumgravityresearch.org (F.F.);
Klee@quantumgravityresearch.org (K.I.)
* Correspondence: dugan@quantumgravityresearch.org; Tel.: +1-310-574-6938

Received: 20 August 2018; Accepted: 19 September 2018; Published: 20 September 2018

Abstract: The projection method for constructing quasiperiodic tilings from a higher dimensional
lattice provides a useful context for computing a quasicrystal’s vertex configurations, frequencies,
and empires (forced tiles). We review the projection method within the framework of the dual
relationship between the Delaunay and Voronoi cell complexes of the lattice being projected.
We describe a new method for calculating empires (forced tiles) which also borrows from the
dualisation formalism and which generalizes to tilings generated projections of non-cubic lattices.
These techniques were used to compute the vertex configurations, frequencies and empires of
icosahedral quasicrystals obtained as a projections of the D6 and Z6 lattices to R3 and we present our
analyses. We discuss the implications of this new generalization.
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1. Introduction

Quasicrystals, since their discovery [1], had been an active area of research in mathematics,
physics, chemistry and mineralogy. They have intriguing and complex structure which lies between
disorder and periodicity and which exhibits several physical properties [2]. The mathematics describing
aperiodic tilings come from a variety of methodologies [3–5] which give ideal geometries that model
quasicrystalline structure on a global (infinite) scale.

Physically, quasicrystals are formed in materials via the local growth patterns of atoms as they
anneal and coalesce. The atomic configurations are dictated by the geometry of the neighboring
chemical bonds and the growth patterns are determined by how these configurations join together.
A quasicrystal growing from a local configuration can benefit (have less defects) if there is a lower
variability in possible growth patterns, that is, if more of the structure surrounding the site is
forced [6,7]. Mathematically, the question regarding what portions of a quasicrystal are forced by an
initial configuration is called the empire problem [8].

Previous research on the subject has been carried out by several authors using different approaches.
One method is specific to the decorated Penrose tilings and uses Ammann bars in order to derive
forced tiles [9,10]. Another method uses the multigrid formalism and introduces linear constraints
imposed by tiles on the shift parameter to calculate empires [11]. Most recently, a method investigated
by Fang et al. [12], is set in the context of the projection method and involves modifying [13] the
cut-window in order to form a smaller empire window which serves as the acceptance domain for the
empire of a specified patch of tiles. The latter construction is the more general of the three methods
and has been used successfully to compute empires for several tilings generated as projections of cubic
lattices ZN → En [12].

In this paper, we present a new way of calculating empires which generalizes to quasiperiodic
tilings derived as projections of non-cubic lattices. This method is also set within the framework of the
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cut-and-project formalism and relies on the dualisation of a lattice’s Voronoi and Delaunay complexes
as prescribed by the Klotz construction [5].

In Section 2 we provide an overview of the projection method in the context of the dualisation
formalism and introduce the cut-window along with its regions and sectors which serve as acceptance
domains for vertices, tiles, and vertex configurations, respectively. In Section 3 we describe how sectors
are used to compute vertex frequencies and present calculated results of the frequencies and sectors
for each of the 36 vertex configurations of an icosahedral tiling, T (D6), defined a projection of the D6

lattice to E3 [14–16]. In Section 4 we introduce our new method for computing empires and present
empires calculated for vertex configurations of T (D6) as well as a tiling of Ammann [17] defined as a
projection Z6 → E3.

2. Projection Method

In this section we summarize the projection method for generating quasiperiodic tilings. We first
outline the selection process for vertices and introduce the cut-window. We demonstrate why more
information is needed when determining tiles for projections of non-cubic lattices. Finally, we describe
the projection method within the framework of the dualisation formalism between a lattice’s Voronoi
and Delaunay cell complexes [3,14,15] .

2.1. Overview of Projection Method

The projection method for constructing quasicrystals is characterized by a lattice Λ ⊂ EN along
with projections π‖ and π⊥ onto orthogonal subspaces E‖ and E⊥. A convex volume W in the
perpendicular space E⊥ called the cut-window acts as an acceptance domain for determining which
points λ ∈ Λ are selected to have their projections λ‖ included in the tiling T of E‖. For cubic
lattices (Λ = ZN) the cut-window is sufficient for determining which tiles fill the tiling space E‖.
But when projecting non-cubic lattices, the proper selection of tiles is more nuanced and requires
that the cut-window be subdivided into regions which act as acceptance domains for individual tiles
types. These regions can be further subdivided into sectors which serve as acceptance domains for
specific vertex configurations; computing the relative sector volumes gives the vertex frequencies.
Furthermore, similar constructions involving the regions of the cut-window can be used to compute
empires in a concise and novel way.

Let Λ be a regular point lattice in an N-dimensional Euclidean space, EN , which is defined as the
integer combinations of some finite set of lattice root vectors vi:

Λ = {a1v1 + · · ·+ akvk : ai ∈ Z, vi ∈ EN}. (1)

It is assumed [5] that the vectors vi span all of EN , and that the convex hull of the lattice itself
is the entire space, conv(Λ) = EN . Also, we assume that the lattice is a discrete point set, meaning
that it has no accumulation points in EN . Let E‖ be an n-dimensional affine subspace of EN in which a
space-filling tiling T will be constructed. For the purpose of creating an aperiodic tiling in E‖, it is
necessary for E‖ to lie at irrational angles to the vectors which generate the lattice. Let E⊥ be the
orthogonal complement to E‖ and let π‖ and π⊥ denote the projections onto E‖ and E⊥, respectively.

The projection method dictates that a lattice point λ ∈ Λ will be included in the tiling T precisely
when the tiling subspace E‖ intersects non-trivially with the Voronoi cell V(λ) containing λ [5]:

λ ∈ T ⇔ V(λ) ∩E‖ 6= ∅, (2)

where the Voronoi cell of a lattice point V(λ) is the convex region in EN defined relative to the lattice by:

V(λ) = {x ∈ EN : |x− λ| ≤ |x− λ′|, ∀λ′ ∈ Λ}. (3)
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See Figure 1 for an example of the selection process defined by Equation (2) for a quasicrystal
tiling, denoted T (A2), defined as a projection of the triangular A2 lattice to R1. This selection criteria
determines which vertices λ are included in the tiling T . The next step is to understand how the
selected vertices are connected by edges, faces, . . . , and k-polytopes. The polytopes of T are selected
from the polytopes of the Delaunay complex of the lattice. The polytopes which become the proper
space-filling tiles t covering E‖ are n-dimensional polytopes of the lattice’s Delaunay complex which
project to n-dimensional polytopes in E‖. In order for such a polytope t = conv{λ1, . . . , λk} to be
included in the tiling T , it is certainly necessary that each of its vertices be included in T as well
(i.e., V(λi) ∩E‖ 6= ∅). This condition is necessary, and for cubic lattices it suffices to yield an accurate
selection of tiles. But when projecting from a non-cubic lattice, these criteria are insufficient and in
some cases can lead to an inconsistent selection of tiles (e.g., tiles that overlap or otherwise intersect).
See Figure 2 for a scenario (in the case of a projection A2 → E1) where following this rule alone leads
to overlapping tiles in E‖.
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Figure 1. Step-by-step illustration of the cut-and-project process for the triangular lattice Λ = A2 (a)
projecting onto a 1-dimensional tiling space E‖ (b). The Voronoi cells for the lattice are all regular
hexagons (c) and it is only those vertices with Voronoi cells that intersect E‖ which are selected (d).
These vertices are then projected onto E‖ and define the vertices of the tiling of E‖ (e). The lattice edges
(dashed lines) connecting the selected lattice points are projected to E‖ to form the (1-dimensional) tiles
which fill E‖ (f).

Before giving the condition for properly selecting which edges to project to E‖ for inclusion
in the tiling T , we first take a moment to talk about the polytopes which comprise the Voronoi
cells themselves. This has investigated in detail by previous authors [5,18], so here we provide
only an overview. The Voronoi cells are convex polytopes which tessellate and fill the space EN .
These polytopes have boundary facets which are themselves convex polytopes (of co-dimension 1),
and which themselves have boundaries (of co-dimension 2), and so on.

Let V denote the Voronoi complex defined (relative to the lattice) as the set of all the Voronoi cells
V(λ) along with all of their boundary polytopes:

V := {P ⊂ V(λ) : P is a boundary of V(λ) for some λ ∈ Λ}. (4)

It should be noted that the Voronoi cells themselves, being volumetric N-cells in EN, are also
considered as ‘boundaries’ and are included in V . The Voronoi cells are situated in face-to-face relation so
the set V is a proper honeycomb in EN and exhibits properties similar to that of a simplicial complex [5]:

If P1 ∈ V and P2 is a boundary of P1, then P2 ∈ V . (5)

If P2, P2 ∈ V and (P1 ∩ P2) 6= ∅, then (P1 ∩ P2) is also a boundary in V . (6)
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Figure 2. A cut and projection A2 → E1, where E‖ has a shallow enough slope that overlapping edges
can arise when one is deciding which edges to select as tiles. (a) The space E‖ intersects the Voronoi
cells of lattices points λi for i = {1, 2, 3, 4, 6}. It is not clear, however, which edges should be selected

as tiles in E‖. For instance (b) the edge from λ
‖
1 to λ

‖
3 clashes with the vertex λ

‖
2 and similarly (c) the

edge connecting λ
‖
2 to λ

‖
4 conflicts with the vertex λ

‖
3 . The solution lies with the boundary facets of the

Voronoi cells. Each lattice edge {λa, λb} is dual to the facet that forms the common boundary between
V(λa) and V(λb). It is only when E‖ intersects with the boundary facet V(λa) ∩V(λb) that the edge

{λ‖a , λ
‖
b} is selected for the tiling. The boundary facets which intersect E‖ (d) and the edges to which

they are dual (e) are the correct choice of edges which project to E‖ without overlapping (f) .

The dual to the Voronoi complex is the Delaunay complex V∗ which also exhibits properties (5)
and (6). The Delaunay complex V∗ has as its vertices precisely the lattice points Λ. The n-cells tn of
V∗ are the polytopes from which the tiles of T are selected and projected to En

‖ . The regularity of the

lattice ensures that the Voronoi domains form a regular tessellation of EN , and the polytopes of V are
translated copies of the set of polytopes which comprise the (generic) Voronoi polytope at the origin,
V = V(~0). So the polytopes of V can be categorized by computing the cell decomposition of the single
polytope: V. Similarly, the polytopes of V∗ can be seen as translated copies of just those polytopes that
are dual to the polytopes of V, which are precisely the polytopes of the Delaunay complex that are
adjacent to the origin. The dual correspondence between V and V∗ is given as follows:

P ∈ V , P∗ := conv{λ ∈ Λ : V(λ) contains P as a boundary}, (7)

Q ∈ V∗, Q∗ :=
⋂

λ∈Q
V(λ). (8)

Individual lattice points (0-polytopes), t0 = {λ}, are dual to their respective Voronoi
N-cells {λ}∗ = V(λ). An edge (1-polytope) inscribed between neighboring lattice points, t1 =

conv{λ1, λ2}, is dual to the (N − 1)-facet which their Voronoi domains both share at their intersection
conv{λ1, λ2}∗ = V(λ1) ∩ V(λ2). In general, a k-polytope tk = conv{λ1, . . . , λl} ∈ V∗ will be
dual to the polytope that lies at the common intersection of all the lattice points’ Voronoi domains,
t∗ =

⋂
i V(λi). In all cases, a polytope and its dual are always orthogonal to each other, t ⊥ t∗, and their

dimensions are always complementary in EN , dim(t) + dim(t∗) = N.
It is in this context of this dualisation formalism that we give the criteria for selecting which

polytopes are included in the tiling. The tiles t of T are selected among the n-dimensional polytopes
of V∗. An n-polytope t ∈ V∗ is selected for the tiling if its dual polytope t∗ intersects non-trivially
with the tiling space E‖. Also, we are interested in only those polytopes which have non-degenerate
projections to E‖ [18]. It is in this regard that we give the definition for the tiling T :

T = { t ∈ V∗ : dim(t) = n = dim(t‖), t∗ ∩E‖ 6= ∅ }. (9)
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2.2. Lattice Points and the Cut-Window

For a regular lattice, the Voronoi cells are identical up to translation, satisfying V(λ) = (V + λ).
The condition V(λ) ∩ E‖ 6= ∅ is equivalent to there being some point x ∈ (V + λ) where x ∈ E‖,
or rather, (x− λ) ∈ V. Taking the projection under π⊥, we have (x⊥ − λ⊥) ∈ V⊥, but x⊥ =~0 (since
x ∈ E‖) which gives −λ⊥ ∈ V⊥, or simply: λ⊥ ∈ −V⊥. The regularity of the lattice comes into play
again, giving the symmetry V = −V, so the final condition is just λ⊥ ∈ V⊥. The projected image
V⊥ ⊂ E‖ is called the cut-window, denoted byW , and it plays a central role in both the construction
and analysis of the tilings generated via the projection method.

Determining if a lattice point λ is to be included in the tiling, λ‖ ∈ T , reduces to finding out if
that lattice point’s orthogonal projection λ⊥ falls within the fixed convex volume in E⊥ given by the
cut-windowW = V⊥:

λ‖ ∈ T ⇔ λ⊥ ∈ W . (10)

In Figure 3, the cut-window is depicted for a quasicrystal tiling T (A2) projection A2 → R1 in
which the Voronoi domains are hexagons and the cut-window is an interval in E⊥ defined by the total
width of a hexagon’s projection to E‖.

ǁ

┴

Figure 3. A tiling T (A2) defined as a projection A2 → E1 of the triangular lattice to the line.
The cut-window W = V⊥ is an interval in E⊥ (thick red line) and dictates which lattice points λ

are selected for the tiling T : if a lattice points falls within the cut-window λ⊥ ∈ W then it is included
in the tiling λ ∈ T .

2.3. Tiles and Regions of the Cut-Window

The regularity of lattice allows us to characterize all tiles t ∈ V∗ using a finite set of tile types, t̃,
which are just those tiles of V∗ which are adjacent to the origin. Each tile t ⊂ EN can be expressed
as a translation of one of the tile types: for any λ ∈ t, t = t̃ + λ where t̃ = (t− λ) is a tile containing
the origin. The dual to a tile can then be expressed as a translation of the dual of some tile type:
t∗ = (t̃ + λ)∗ = (t̃∗ + λ). For t ∈ T to be included in a tiling, it is necessary that t∗ intersects
non-trivially with E‖, which can be written as (t̃∗ + λ) ∩ E‖ 6= ∅. Supposing ~x ∈ (t̃∗ + λ) ∩ E‖,
we take the projection to E⊥ and find ~x⊥ ∈ (t̃∗ + λ)⊥ which gives~0 ∈ (t̃∗⊥ + λ⊥) or simply: λ⊥ ∈ −t̃∗⊥.

The volumes r = (−t̃∗⊥) ⊂ W are called regions of the cut-window. The regions are in direct
correspondence to the tile types and each region serves as an acceptance domain for its respective tile
type (see Figure 4) in the following way: for a region r = −t̃∗⊥, if a lattice point λ has a projection λ⊥
that lands within r, λ⊥ ∈ r, then the tile t = (t̃ + λ) will be a valid tile in T .

It should be noted that it is only those regions r = −t̃∗⊥ which are proper (N − n)-dimensional
volumes inW that are useful in selecting the proper (space-filling) tiles of E‖. If a region is degenerate,
that is if dim(t̃∗⊥) < (N− n) inside E⊥, then dim(t̃‖) < n inside E‖ and t = (t + λ) cannot be included
in T as dim(t‖) < n meaning t‖ cannot be a space-filling tile of E‖. In this regard, we may redefine the
tiling in the following way:

T = { t = (t̃ + λ) : λ⊥ ∈ r where r = −t̃∗⊥}. (11)
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ǁ
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ǁ
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Figure 4. (a–c) Three of the six tile types t̃ (colored arrows) are shown for the T (A2) along with their
corresponding regions r = −t̃∗⊥ ⊂ W (thick red lines). Any lattice point λ which falls into a region,
λ⊥ ∈ r, will be adjacent to a tile t which is a translated copy t = (t̃ + λ) of the tile type t̃ corresponding
to r. (d) The selected tiles are shown along with the whole cut-window.

It should be noted that the cut-window regions may be quite different than the tiles to which
they correspond. In the case of the tiling T (D6) (Figure 5) defined by a certain projection of the lattice
Λ = D6 to R3, the Voronoi cell is a 6-dimensional polytope that has as its 3-dimensional boundaries
960 pyramids (with rhombus bases) and 160 rhombohedrons (parallelepipeds) [18], (see Figure 6).
The duals to these pyramids and rhombohedrons are 1120 regular tetrahedrons in E6 whose vertices
are lattice points λ ∈ D6. The tetrahedrons are distorted in the projection to E‖ (their images are no
longer regular) and 240 of them are degenerate in the projection to E⊥ leaving 880 non-degenerate
regions ofW corresponding to 880 non-degenerate tiles types for T (D6).

Figure 5. Various tilings T (D6) generated as projections D6 → E3 with randomly chosen shift vectors.

(a) (b)

(c) (d)

Figure 6. Tiles and corresponding cut-window regions for the tiling T (D6). Four tiles are shown (left)
alongside their corresponding regions (right) in the cut-window. The tiles T (D6) are all tetrahedrons
while their corresponding regions are pyramids with a rhombic base (a–c) or parallelepipeds (d).
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2.4. Vertex Configurations and Sectors ofW

For a lattice point λ ∈ T , its vertex configuration C(λ) is defined to be the set of tiles that are
adjacent to it:

C(λ) := { t ∈ T : λ ∈ t }. (12)

Because each tile t = (t̃ + λ) corresponds to a region r = −t̃∗⊥, the vertex configuration for a
lattice point C(λ) can be derived by taking the tiles associated with those regions of the cut-window
which contain λ⊥:

C(λ) := { (t̃ + λ) ∈ T : λ⊥ ∈ r, r = −t̃∗⊥ }. (13)

The mutual intersection of all the regions which contain λ⊥ defines a certain sector, s, a volume
inside the cut-window which corresponds to the vertex configuration C(λ) associated with λ.

s(λ) :=
⋂

λ⊥∈r
r. (14)

Any other lattice point λ′ whose projection λ′⊥ falls within the same sector s(λ) will have an identical
vertex configuration to λ, since by definition λ and λ′ are adjacent to the same types of tiles. See Figure 7
for an example vertex configuration and corresponding sector for the T (A2) tiling.

ǁ

┴

Figure 7. A vertex configuration C̃ (the combination of blue and green tile types) and its corresponding
sector s ⊂ E⊥ (red) for the T (A2) tiling. Two tile types t̃ (blue arrow) and t̃′ (green arrow) together
make up the vertex configuration C̃ = {t̃, t̃′}. Their corresponding regions in the cut-window, r = −t∗⊥
(thick blue) and r′ = −t′∗⊥ (thick green) overlap in W and their intersection s = r ∩ r′ is the sector
which corresponds to the configuration defined by the two tile types. A lattice point λ which falls into
this sector, λ⊥ ∈ s, will have a translated copy of C̃ as its vertex configuration, C(λ) = C̃+ λ.

For the tiling T (D6) there are 880 pyramids and rhombohedrons which serve as the regions of
the cut-window. Their intersections go on to form 4230 sectors, corresponding to the different vertex
configurations of the tiling. There are 36 vertex configurations, and each one comes in 120 different
orientations up to icosahedral symmetry in E‖ (except for one configuration which exhibits only
distinct 30 orientations). This accounts for all of the 4230 sectors (35× 120 + 1× 30 = 4230), and when
the sectors are grouped according to these 36 vertex configurations, the sectors are seen to exhibit the
same icosahedral symmetry within the cut-windowW ⊂ E⊥ (see Figure 8).
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Figure 8. Sectors corresponding to twelve of the 36 vertex types of the tiling T (D6) (projection D6 → E3)
are shown. Each vertex configuration comes in 120 orientations (respecting the H3 symmetry present
in E‖) and so each configuration corresponds to 120 individual sectors inW . Each group of 120 sectors,
in turn, exhibits the same H3 symmetry in the cut-windowW ⊂ E⊥.

3. Frequencies of Vertex Configurations

The cut-window W is divided up into non-overlapping sectors s which correspond to all the
possible vertex configurations (in all possible orientations) that are found in the tiling T . The volume
of a given sector, vol(s), as measured relative to the volume of the cut-window W as a whole,
(vol(s)/vol(W)), gives the probability that a lattice point falling in the cut-window (λ⊥ ∈ W) will
have the region’s corresponding arrangement of tiles as its vertex configuration. It is in this context
that we define the frequency, F (C), of a vertex configuration as this ratio of volumes:

F (C(λ)) :=
vol(s(λ))
vol(W)

. (15)

Frequency analysis for vertex configurations have computed in the past for several quasicrystals
including the Penrose tiling [19], the Danzer tiling [20], and others [18,21]. For this paper, we have
calculated the vertex configurations and their corresponding sectors, empires, and frequencies for
the tiling T (D6) (see Table 1). The same analysis has been carried out by Kramer et al. [18] for T (D6)

(which they notate as T ∗(2F)) and in Table 2 we provide a comparison of our results with their data
and give the correspondence between the two lists.
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Table 1. The 36 vertex configurations C for the tiling T (D6) are shown along with their corresponding
cut-window sectors s(C), their empires E(C), and their frequencies F (C).

C S(C) E(C) F (C) C S(C) E(C) F (C)

−38 + 17
√

5 −360 + 161
√

5

843− 377
√

5 −521 + 233
√

5

233
√

5− 521 161− 72
√

5

322− 144
√

5 233
√

5− 521

161− 72
√

5 843− 377
√

5

161− 72
√

5 47− 21
√

5

305
√

5− 682 161− 72
√

5

17
√

5− 38 123− 55
√

5

47− 21
√

5 17
√

5− 38

17
√

5− 38 17
√

5− 38

9− 4
√

5 17
√

5− 38

89
√

5− 199 322− 144
√

5

34
√

5− 76 233
√

5− 521

161− 72
√

5 17
√

5− 38
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Table 1. Cont.

C S(C) E(C) F (C) C S(C) E(C) F (C)

161− 72
√

5 161− 72
√

5

18− 8
√

5 −2 +
√

5

−38 + 17
√

5 9− 4
√

5

−11 + 5
√

5 9− 4
√

5

Table 2. Comparison of data computed for the T (D6) by authors and by Kramer et at. [18]. Here,
τ = (1 +

√
5)/2 is the Golden Ratio and the ambiguity between types 16.1 and 23.1 is notated.

C S(C) F (C) F (C) (Kramer et al.) Type (Kramer et al.)

−38 + 17
√

5 1
τ9 24.1

−360 + 161
√

5 1+τ2

τ13 14.1

843− 377
√

5 2
τ14 13.1

−521 + 233
√

5 2
τ13 17.1

−521 + 233
√

5 2
τ13 12.1

161− 72
√

5 1
τ12 20.1

322− 144
√

5 2
τ12 18.1

−521 + 233
√

5 2
τ13 21.1

161− 72
√

5 1
τ12 16.1 (or 23.1)
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Table 2. Cont.

C S(C) F (C) F (C) (Kramer et al.) Type (Kramer et al.)

843− 377
√

5 2
τ14 19.1

161− 72
√

5 1
τ12 15.1

47− 21
√

5 2
τ8 11.4

−682 + 305
√

5 1
τ15 22.1

161− 72
√

5 1
τ15 23.1 (or 16.1)

−38 + 17
√

5 1
τ9 11.1

123− 55
√

5 2
τ10 9.1

47− 21
√

5 2
τ8 9.3

−38 + 17
√

5 1
τ9 2.2

−38 + 17
√

5 1
τ9 10.4

−38 + 17
√

5 1
τ9 1.2

9− 4
√

5 1
τ6 11.3

−38 + 17
√

5 1
τ9 2.1

−199 + 89
√

5 2
τ11 9.2
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Table 2. Cont.

C S(C) F (C) F (C) (Kramer et al.) Type (Kramer et al.)

322− 144
√

5 2
τ12 5.1

−76 + 34
√

5 2
τ9 10.1

−521 + 233
√

5 2
τ13 3.1

161− 72
√

5 1
τ12 1.1

−38 + 17
√

5 1
τ9 11.2

161− 72
√

5 1
τ12 4.1

161− 72
√

5 1
τ12 10.2

18− 8
√

5 2
τ6 11.5

−2 +
√

5 1
τ3 6.1

−38 + 17
√

5 1
τ9 10.3

9− 4
√

5 1
τ6 7.1

11− 5
√

5 2
τ5 7.2

9− 4
√

5 1
τ6 8.1

4. Empires

The empire problem for aperiodic tilings poses a very different question than the calculations of
the tilings themselves or the frequency of their vertex configurations. The empire problem asks, for an
initial patch of tiles p ⊂ T , what other tiles are forced into place by the tiles of p? Put another way, of all
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the possible tilings T ′ that contain p, which tiles do they all have in common? These are called the
forced tiles or empire, E(p), of the patch p:

E(p) := {t ∈ T : t ∈ T ′ for all T ′ ⊃ p} =
⋂

p⊂T ′
T ′. (16)

In the context of the projection method, the other tilings T ′ are generated by a translational shift
of the tiling space E‖ away from the origin by some shift vector ~γ ∈ EN . We let E′‖ = E‖ + ~γ be the
translated copy of E‖. Since translations of E‖ in a direction parallel to itself yields the same subspace,
we only are concerned with the ‘vertical’ component of the shift vector, as so we take ~γ ∈ E⊥ ⊂ EN .
The process for generating the on E′‖ is the same as before: for the (N− n)-dimensional polytopes of V
which intersect E′‖, take their duals and project them onto E′‖ to form the tiling T ′ of E′‖. In this way,
we define new tiling T~γ for a given shift vector ~γ:

T~γ := { t ∈ V∗ : dim(t) = n = dim(t‖), t∗ ∩ (E‖ + ~γ) 6= ∅ }. (17)

In terms of the lattice points λ ∈ Λ and the sectors s ⊂ W , we can rewrite T~γ in a manner very
similar to Equation (11) in the following way:

T~γ := { t = (t̃ + λ) : (λ⊥ − ~γ⊥) ∈ r, where r = −t̃∗⊥}. (18)

Computing an empire E(p) for some arbitrary finite patch of tiles p ⊂ T~γ for some shift vector
~γ ∈ E⊥ amounts to computing the shift-window, Γ(p) ⊂ E⊥, which is the space of all the possible shift
vectors ~γ′ for which T~γ contains the patch p:

Γ(p) := {~γ ∈ E⊥ : p ⊂ T~γ}. (19)

In the case that the patch p consists of a single tile p = {t}, the space Γ({t}) is inferred by the tile’s
corresponding cut-window sector s ⊂ W as follows: for any vertex of the tile, λ ∈ t, the translation
t̃ = (t− λ) is a tile adjacent to the origin and its dual projects to one of the sectors in the cut-window
s = −t̃∗⊥. For the tile t to remain a valid tile in a T~γ, it is necessary that (λ− ~γ)⊥ ∈ s, so in terms of
~γ we have: ~γ⊥ ∈ (λ⊥ − s) = (λ⊥ − (−t̃∗⊥)) = (λ⊥ + (t∗ − λ)⊥)) = (λ⊥ + t∗⊥ − λ⊥) = t∗⊥. In other
words, for a tile t to be included in a tiling T~γ, it is necessary that ~γ⊥ ∈ t∗⊥. This allows us to express
T~γ concisely as:

T~γ = { t : ~γ⊥ ∈ t∗⊥ }. (20)

So the shift-window for an individual tile is given by the orthogonal projection of that tile’s dual:

Γ({t}) = t∗⊥. (21)

Now for a patch of tiles, p = {t1, . . . , tk}, the shift-window Γ(p) is the mutual intersection of all
the orthogonal components of the tiles’ duals:

Γ(p = {t1, . . . , tk}) =
k⋂

i=1

(t∗i )⊥. (22)

For any other tile t, we have t ∈ T~γ ⇔ ~γ ∈ t∗⊥. For t to be in the empire E(p), it is necessary that
t ∈ T~γ whenever ~γ ∈ Γ(p), which equates to ~γ ∈ t∗⊥ whenever ~γ ∈ Γ(p), in other words, Γ(p) ⊂ t∗⊥.
The empire E(p) is therefore given by:

E(p) = {t : Γ(p) ⊂ t∗⊥}. (23)

It is a direct consequence of Equation (20) that an empire E(p) is a subset of any tiling T~γ for
which ~γ ∈ Γ(p). In practice, to compute the empire E(p) of some patch p, it is sufficient to start
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with the tiles computed for an initial tiling T~γ and then check each tile t ∈ T~γ for the condition
t∗⊥ ⊃ Γ(p). The shift-window Γ(p) is the convex polytope which is the intersection of finitely many
convex polytopes, and so can be expressed as the convex hull of some set of finitely many vertices
Γ(p) = conv{ω1, . . . , ωk} ⊂ E⊥. Determining if Γ(p) ⊂ t∗⊥ amounts to checking only those vertices
{ωi} for point-wise inclusion within the volume t∗⊥.

E(p) = {t : {ωi} ⊂ t∗⊥}, where Γ(p) = conv{ω1, . . . , ωk} ⊂ E⊥. (24)

See Figure 9 for examples of empires computed for two vertex configurations for a tiling of
Ammann, a projection from the lattice Λ = Z6 to E3. In Table 1, the empires are shown for each of the
36 vertex configurations of the tiling T (D6).

The methodology for computing empires as described by Fang et al. [12] involves a modification of
the cut-window to form a smaller empire window which serves as an acceptance domain for the empire: if
all the vertices of a tile fall within the empire window, then the tile is included in the empire. The empire
window approach is based on the condition that a tile is included in a tiling T~γ whenever its projection
(t−~γ)⊥ falls inside the cut-window. As we have seen, this condition is not true in general (Figure 2),
and computing empires for projections of non-cubic lattices requires the dualisation formalism and
methodology as described above.

(a)

(b)

Figure 9. Vertex configurations and their empires for the Ammann tiling (projection Z6 → E3). The tiles
of this quasicrystal are all rhombohedrons, and the vertex configurations are analogous to those of the
Penrose tiling. The empires (shown in three orientations to the right the vertex configurations) vary in
both structure and density.

5. Conclusions

In this paper we have reviewed the projection method and how it relates to the dualisation
formalism of the Voronoi and Delaunay complexes of the lattice being projected. We have shown
how empires can be computed within the context of the projection and dualisation methods. Using a
projection of D6 to R3 as an example, we produced the quasicrystal and conducted analysis of the
vertex configurations, their distribution in the perpendicular space, and their relative frequencies.

More importantly, we have generalized the calculation of empires for quasicrystals projected
from arbitrary higher dimensional lattices. We calculated empires for a 3-dimensional tiling of
Ammann (a projection of the cubic lattice Z6 → E3) using a previous method [12]. We then argue that
the previous method would not be able to calculate the empires for quasicrystals that are projected
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from non-cubic lattice, therefore it has to be generalized by considering the dual relationships of
the Voronoi and Delaunay complexes. Using this generalized method, we calculated the empires
for the 3-dimensional quasicrystal that is projected from D6. This generalization is significant for
understanding not only the distributions and frequencies of vertex configurations, but also for deriving
the structure of their empires through the projection method.

Author Contributions: D.H. studied the dualisation approach to the projection method while conducting
analysis on the tiling T (D6) and discovered the new method for computing empires as discussed in this paper. F.F.
supervised and guided the writing and editing of this paper. K.I. is the leader and founder of our organization
and it is his vision that guides our research into quasicrystals and the mathematics which describe them.
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