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Abstract: The synthesis and properties of new chalcone ligand 4I-L ((2E)-1-[4-(1H-imidazol-1
-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one) and tetracoordinate Co(II) complex [Co(4I-L)2Cl2],
(1a), are reported in this article. Upon recrystallization of 1a, the single crystals of
[Co(4I-L)4Cl2]·2DMF·3Et2O (1b) were obtained and crystal structure was determined using X-ray
diffraction. The non-covalent interactions in 1b were thoroughly analyzed and special attention
was dedicated to interactions formed by the peripheral iodine substituents. The density functional
theory (DFT), atoms in molecule (AIM) and noncovalent interaction (NCI) methods and electronic
localization function (ELF) calculations were used to investigate halogen bond formed between the
iodine functional groups and co-crystallized molecules of diethyl ether.

Keywords: dichloride cobalt complex; chalcone; halogen bonding; Hirshfeld surfaces

1. Introduction

In molecular crystals, the building blocks, molecules, are held together by various directional and
non-directional non-covalent intermolecular interactions. Some of these interactions have been widely
explored, such as hydrogen bonding, cation/anion···π or π ···π interactions [1–5], but non-conventional
interactions such as tetrel [6], pnictogen [7], chalcogen [8] and halogen bonding [9,10] have been
less extensively studied [11,12]. All the above-mentioned interactions can be used to control the
supramolecular architectures [13] of the coordination compounds and thus to influence their, e.g.,
mechanical [14], optical [15], catalytic [16], photochemical [17], luminescent [18] and magnetic
properties [19]. In our recent research we devoted a lot of attention to prominence of non-covalent
interactions in properties of magnetically bistable materials. We studied magnetic exchange interactions
mediated by hydrogen bonding [20],π ···π interactions [21] or their combination [22]. We also discovered
a new type of magnetic exchange pathway engaging Co···π interactions [23] and revealed possible
influence of hydrogen bonding on occurrence of spin-crossover phenomenon [24]. In this report we
focused our attention on interplay between halogen bonding and structure of mononuclear Co(II)
coordination compounds, despite being aware of unpredictable competitiveness of hydrogen and
halogen bonding [25]. These have a great potential to behave as molecular nanomagnets, so-called
Single Ion Magnets (SIMs), due to large magnetic anisotropy exhibited by their central atoms in
various symmetries of the ligand fields [26]. An inevitable condition for preparation of SIMs exhibiting
high blocking temperatures in a zero-external magnetic field is the axial type of magnetic anisotropy

Crystals 2020, 10, 354; doi:10.3390/cryst10050354 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0001-8262-4666
https://orcid.org/0000-0003-3231-7849
http://www.mdpi.com/2073-4352/10/5/354?type=check_update&version=1
http://dx.doi.org/10.3390/cryst10050354
http://www.mdpi.com/journal/crystals


Crystals 2020, 10, 354 2 of 14

possessed by their metal centers. This can be achieved by careful choice of coordination number and
polyhedral symmetry. It is well established that, for Co(II) compounds, very interesting results can be
achieved for tetracoordinate coordination compounds exhibiting large distortion from ideal tetrahedral
geometry [27]. To achieve significant distortions of coordination geometry, one can assume two viable
strategies: (a) use of polydentate and sufficiently rigid ligands, (b) use of monodentate bulky ligands.
Both strategies exploit steric hindrance of the ligands, which in (a) may be further supported by
predefined bite angles of the chelating ligands [28]. In this work we explored approach (b) by using bulky
monodentate ligands derived from chalcones of 4′-(imidazol-1-yl)acetophenone containing peripheral
groups allowing formation of non-covalent interactions such as hydrogen or halogen bonding [29,30].
Such interactions can either induce or stabilize distortions of molecular shapes [31] or coordination
polyhedrons [32,33]. Here, we report on the first results obtained using the above-mentioned approach.
We used ligand 4I-L ((2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one) prepared
by the aldol condensation [34] in reaction with CoCl2 to obtain tetracoordinate complex [Co(4I-L)2Cl2]
in the powder form, (1a). Following recrystallization of 1a led to isolation of hexacoordinate complex
[Co(4I-L)4Cl2]·2DMF·3Et2O (1b), (Et2O stands for diethylether), the crystal structure of which was
determined using single-crystal X-ray diffraction. The crystal structure of 1b contains rather weak
non-covalent interactions, which were analyzed by calculating Hirshfeld surfaces and special attention
was given to interactions provided by the peripheral iodine substituents. The O···I halogen bond
formed by co-crystallized molecule of Et2O was thoroughly studied by modern theoretical calculations,
because reports on O···I halogen bonding involving Et2O [35] or similar alkoxy compounds [36–41]
are rare. Similarly, the crystal structures with short O···Cl (e.g., [42,43]) and O···Br (e.g., [44,45])
non-covalent interactions formed between halogen atoms and Et2O molecules can be found in the
Cambridge Structural Database (CSD version 2.0.4, [46]), but to the best of our knowledge, reports
applying advanced theoretical calculations for better understanding the nature of this certain type of
halogen bond are missing.

2. Experimental

2.1. Materials

CoCl2·6H2O was purchased from Precious Metals Online, while other chemicals
4-iodobenzaldehyde, 4′-(imidazol-1-yl)acetophenone, NaOH, solvents (MeOH, diethyl ether (Et2O),
EtOH, dimethylformamide (DMF) and dichloromethane (DCM)) and deuterated solvents for NMR
experiments (DMSO-d6) were supplied by VWR International (Stříbrná Skalice, Czech Republic),
Sigma-Aldrich (Prague, Czech Republic), Lach-Ner (Neratovice, Czech Republic) and Litolab
(Chudobín, Czech Republic).

2.2. General Methods

Elemental analysis was performed by Flash 2000 CHNS Elemental Analyzer (Thermo Scientific,
Waltham, MA, USA). Electrospray ionization mass spectrometry (ESI-MS; methanol solutions) was
carried out with LCQ Fleet ion trap spectrometer (Thermo Scientific, Waltham, MA, USA; QualBrowser
software, version 2.0.7) in both positive (ESI +) and negative (ESI-) ionization modes. 1H and 13C NMR
spectroscopy, and 1H-13C gsHMQC and 1H-13C gsHMBC two dimensional correlation experiments
were performed using DMSO-d6 (HA1) solution at 300 K using Varian spectrometer (Palo Alto, CA,
USA) at 400.00 MHz (for 1H NMR) and 101.00 MHz (for 13C NMR); gs = gradient selected, HMQC =

heteronuclear multiple quantum coherence, HMBC = heteronuclear multiple bond coherence. 1H and
13C NMR spectra were calibrated against the residual DMF 1H NMR (8.03, 2.92 and 2.75 ppm) and
13C NMR (163.2, 34.9 and 29.8 ppm) signals. The splitting of proton resonances in the reported 1H
spectra is defined as s = singlet, d = doublet, dd = doublet of doublets, sep = septet, m = multiplet and
bs = broad signal.
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A Jasco FT/IR-4700 spectrometer (Jasco, Easton, MD, USA) was used for the collection of the
infrared (IR) spectra of the studied ligand and complexes in the range of 400–4000 cm−1 by using the
attenuated total reflection (ATR) technique on a diamond plate. UV-VIS spectroscopy was performed
using a Perkin-Elmer (Waltham, MA, USA) Lambda 35 spectrometer at 11,000–40,000 cm−1.

2.3. Crystal Structure Determination

Data collection and cell refinement of 1b were made by Stoe StadiVari (Stoe & Cie GmbH,
Darmstadt, Germany) diffractometer using Pilatus3R 300K detector and microfocused X-ray source
Incoatec IµS 2.0 HB (Ag Kα radiation). The structure was solved using SHELXT [47] program and
refined by the full matrix least-squares procedure with Olex2.refine [48] in OLEX2 (version 1.3) [49].
The multi-scan absorption corrections were applied using the program Stoe LANA software [50].
The molecular structures and packing diagram were drawn with MERCURY [51]. Crystal Data
for C90H96Cl2CoI4N10O9 (M = 2099.19 g/mol): triclinic, space group P1 (no. 2), a = 8.5546(2) Å,
b = 15.2289(3) Å, c = 18.6054(4) Å, α = 110.729(2)◦, β = 90.916(2)◦, γ = 102.814(2)◦, V = 2198.59(9) Å3,
Z = 1, T = 100(1) K, µ(AgKα) = 0.915 mm−1, Dcalc = 1.585 g/cm3, 61909 reflections measured (2.110◦

≤ 2Θ ≤ 19.501◦), 7765 unique (Rint = 0.0160) which were used in all calculations. The final R1 was
0.0405 (I > 2σ(I)) and wR2 was 0.1180 (all data). The highest peak: +1.03 (0.84 Å from I1), the deepest
hole −0.98 (0.90 Å from I1). Crystal structure refinement: All non-hydrogen atoms were refined
anisotropically. The hydrogen atoms were placed into the calculated positions and they were included
into the riding-model approximation with Uiso = 1.2Ueq(C) or 1.5 Ueq (CH3) and d(C−H) = 0.95–0.98 Å.
Non-routine aspects of the refinement: one of the Et2O molecules is disordered over two positions
with the oxygen atom lying on an inversion center.

2.4. Theoretical Calculations

The ORCA 4.2.1 computational package was employed for the presented calculations [52]. All the
computations were based on the molecular fragments derived from the X-ray data, where only
the positions of the hydrogen atoms were optimized using Density Functional Theory (DFT) with
ωB97X-D3BJ functional [53] comprising the atom-pairwise dispersion correction (D3BJ) [54,55] with
Sapporo-TZP-2012 basis set for all atoms [56]. The calculations exploited the resolution of identity
approximation with the auxiliary basis created by the AutoAux generation procedure [57] and the
chain-of-spheres approximation to exact exchange (RIJCOSX) [58,59]. The integration grids were
increased by setting Grid5 and Gridx5, and the convergence criteria were set to tight SCF (self-consistent
field) in all calculations. Then, the interaction energies (Eint) were calculated also taking into the account
the basis set superposition error (BSSE). The further analysis was done with Multiwfn program [60,61].
The calculation of Hirshfeld [62] and shape index [63] surfaces were performed using the program
Crystal Explorer 3.1 [64].

2.5. Synthesis of (2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one (4I-L)

A methanolic sodium hydroxide solution (40%; 1.2 mL) was added dropwise to a mixture of
4-iodobenzaldehyde (2 mmol, 0.464 g), 4′-(imidazol-1-yl)acetophenone (2 mmol, 0.370 g) and methanol
(5 mL) over a period of 30–40 minutes with continuous stirring at room temperature until completion of
the reaction (as indicated by TLC). The precipitates were filtered and washed with cold methanol–water
mixture (1:10). Finally, the product was recrystallized from methanol [33].

Yellowish solid. Yield: 90%. 1H NMR (400 MHz, DMSO-d6, 298 K, ppm) δ 8.42 (s, 1H, C2-H),
8.26 (d, J = 8.7 Hz, 2H, C17-H, C21-H), 7.99 (d, J = 15.7 Hz, 1H, C14-H), 7.88–7.80 (m, 5H, C5-H,
C7-H, C11-H, C18-H, C20-H), 7.72–7.64 (m, 3H, C8-H, C10-H, C15-H), 7.12 (s, 1H, C4-H). 13C NMR
(101 MHz, DMSO-d6, 298 K, ppm) δ 188.24 (C12), 143.51 (C15-H), 140.77 (C6), 138.20 (C18-H, C20-H),
136.22 (C2-H), 135.88 (C9), 134.69 (C16), 131.21 (C8-H, C10-H), 130.98 (C17-H, C21-H), 130.85 (C4-H),
123.05 (C14-H), 120.30 (C7-H, C11-H), 118.24 (C5-H), 98.14 (C19-H). ESI+MS (MeOH, m/z,): 401.17
(calc. 401.22; 100%; {4I-L+H}+), 423.05 (calc. 401.20; 32%; {4I-L+Na}+). IR (ATR, ν, cm−1): 408w, 463w,
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507w, 538w, 594w, 652w, 677w, 727w, 812s, 830m, 960w, 981w, 1031w, 1060w, 1118w, 1165m, 1215m,
1289m, 1337w, 1428w, 1492w, 1512m, 1588s, 1652s, 2150w, 3118w.

2.6. Complex [Co(4I-L)2(Cl)2] (1a)

The solution of CoCl2·6H2O (0.5 mmol, 0.119 g) in 5 mL of methanol was heated up to 50 ◦C and
then 2 molar equiv. of 4I-L were added (2 mmol, 0.400 g). The solution was allowed to cool down and
then the reaction mixture was stirred at ambient temperature for 2 hours. The obtained blue precipitate
was collected by filtration and washed with water (2 × 0.5 mL) and Et2O (2 × 1 mL). The blue solid
product was dried in desiccator under reduced pressure (overnight). Compound 1b was prepared by
recrystallization of 1a from DMF/CH3OH solvent mixture by slow diffusion of Et2O in closed flask.
Only small amounts of light blue crystals of 1b was isolated and, therefore, no technique other than
single-crystal diffraction was used for characterization of this compound.

Yield: 84%. Anal. Calcd. for CoC36H26Cl2N4I2O2 (1a): C, 46.48; H, 2.82; N, 6.02%; found: C, 46.41;
H, 2.72; N, 5.86%. ESI+MS (MeOH, m/z,): 401,14 (calc. 401.22; 30%; {4I-L+H}+), 567.09 (calc. 567.06;
100%; {[Co(4I-L)(Cl)2]+2H2O+H}+), 894.02 (calc. 893.91; 66%; {[Co(4I-L)(Cl)2]+2H2O+H}+). IR (ATR, v,
cm−1): 402w, 448w, 490w, 522w, 605w, 647w, 735w, 811s, 962w, 1002w, 1062w, 1119w, 1182w, 1213w,
1318m, 1395w, 1479w, 1519m, 1602s, 1657s, 2159w, 3131w.

3. Results and Discussion

3.1. Synthesis and Basic Characterizations

The chalcone ligand 4I-L was prepared by aldol condensation of 4′-(imidazol-1-yl)acetophenone
with the 4-iodobenzaldehyd as is shown in Scheme 1. The purity and structure of 4I-L were confirmed
by NMR spectroscopy and elemental analysis. The 1H NMR (see ESI, Figure S1), 13C NMR (see ESI,
Figure S2), spectra of 4I-L in DMSO-d6 showed shifts characteristic for the aromatic functional groups
(the list of all observed peaks can be found in the experimental chapter). The representative peak
confirming the presence of the olefinic moiety resulting from aldol condensation (C14-H) was observed
in 1H NMR spectra approximately at 7.99 ppm. In the 13C NMR spectra corresponding peak of
C14-H was observed approximately at 123.05 ppm. The C-H groups were assigned by 1H-13C HMQC
correlation experiments (Figure 1 left), while quaternary carbon atoms were assigned by 1H-13C HMBC
correlation experiments.
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carried out with LCQ Fleet ion trap spectrometer (Thermo Scientific, Waltham, MA, USA; 
QualBrowser software, version 2.0.7) in both positive (ESI +) and negative (ESI-) ionization modes. 

Scheme 1. Preparation of ligand 4I-L with given atom numbering scheme.

The complex 1a was prepared by reaction between CoCl2·6H2O and 4I-L (molar ratio 1:2) in
methanolic solution as a blue precipitate. The elemental composition (CHN analysis) corresponds
rather well with formula [Co(4I-L)2Cl2], and this assumption was further supported by the results of
ESI+ mass spectroscopy, which revealed occurrence of peaks with suitable m/z isotopic distribution
attributable to the {[Co(4I-L)2(Cl)}+ species (see ESI, Figure S3). The FTIR spectra showed valence
vibration of the chalcone ketone group (ν(C=O)) at ca. 1600 cm−1. The UV-VIS spectroscopy of 1a
measured in the solid state showed absorption bands centered at ca. 600 nm (Figure 1 right), which can
be attributed to spin allowed d-d transitions characteristic for the tetracoordinate Co(II) complexes [65].
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The spectral band was fitted to three Gaussian primitives having peak maxima at 518 nm, 578 nm
and 631 nm (Figure 1 right). The individual bands originate from 4A2→

4T1(P) transition in ideal Td

symmetry [66], although the 4T1(P) term splits into three individual terms (4A2(P), 4B1(P) and 4B2(P))
in lower symmetry (expected symmetry of coordination polyhedron of 1a is C2v). Thus, it may be
concluded that compound 1a is tetracoordinate Co(II) complex with the formula [Co(4I-L)2Cl2].
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Figure 1. Left—HMCQ NMR spectrum of the ligand 4I-L; DMSO-d6 solutions. See Scheme 1 for the
structural formula and atom numbering scheme. Right—UV-VIS absorption spectrum measured for 1a
in the solid state (black line) and methanolic solution (violet line) in the range of 400–800 nm. Fit to
four Gaussian primitives shown as dashed lines with peak maxima listed in the legend.

Complex 1a is only negligibly soluble in water, methanol, ethanol or acetone, but it is well soluble
in DMF or DMSO. The UV-VIS spectrum measured for CH3OH solution of 1a revealed no strong
absorption bands in the range of 400–800 nm (Figure 1 right). Interestingly, upon recrystallization of 1a
from CH3OH/DMF solvent mixture, followed by slow diffusion of Et2O, the small amount of light blue
crystals precipitated. The selected single crystal was subjected to the X-ray diffraction analysis, which
revealed that the prepared complex 1b is hexacoordinate (vide infra).

3.2. Crystal Structure

Compound 1b crystallizes in the triclinic crystal system with the space group P1. The Co atom
lies on a crystallographic inversion center (1h) and thus the asymmetric unit consists of the half of
the complex molecule [Co(4I-L)4Cl2], one DMF molecule and one and half Et2O molecules, which
altogether gives formula of [Co(4I-L)4Cl2]·2DMF·3Et2O. The complex molecule is hexacoordinate
and it consists of four 4I-L and two chlorido ligands coordinated to Co(II) center. The 4I-L ligands
adopt E-configuration and coordinate the Co(II) atom by nitrogen donor atoms from the imidazolyl
moieties forming equatorial plane with rather dissimilar Co−N bond lengths (d(Co−N) = 2.121(3) and
2.162(3) Å). The axial coordination sites are occupied by two chlorido ligands with rather long Co−Cl
bonds (d(Co−Cl) = 2.4880(9) Å). The overall geometry of the coordination polyhedron can be described
best as an axially elongated octahedron (Figure 2).
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(N) and red (O). Hydrogen atoms are omitted for clarity. Selected bond lengths (in Å) and angles (deg.):
d(Co1−N1) = 2.121(3), d(Co1−N2) = 2.162(3), d(Co1−Cl1) = 2.4880(9), N1−Co1−N1i = N2−Co1−N2i

= Cl1−Co1−Cl1i = 180.0, N1−Co1−N2 = 88.15(12), N1−Co1−Cl1 = 92.26(9), N1−Co1−Cl1i 87.74(9),
N2−Co1−Cl1i = 90.14(9), N2−Co1−Cl1 = 89.86(9). Symmetry code: (i) =1 -x, 1 -y, 1 -z.

The complex molecules are stabilized in the structure by plethora of weak intermolecular contacts
and therefore analysis of the Hirschfeld surface was performed to identify them (Figures S4 and S5,
the parameters of hydrogen bonds are listed in Table S1). The complex molecules are organized in
supramolecular chains by bifurcated C−H···Cl hydrogen bonding between the aromatic C−H groups
located on 1-phenyl-imidazolyl fragment of the 4I-L ligand from adjacent complex molecule (d(C···Cl)
= 3.466(5) and 3.673(5), Å Figure 3a). The chlorido ligand also acts as an acceptor of another C−H···Cl
hydrogen bond involving C−H group from the DMF molecule (d(C···Cl) = 3.807(4) Å). Interestingly,
the DMF molecule is further stabilized in the crystal structure by set of three rather strong C−H···O
hydrogen bonds between three C−H groups from the 4I-L ligand and oxygen atom of the DMF
molecule (d(C···O) = 3.324(6), 3.388(5) and 3.394(5) Å, Figure 3b).

One of the chalcone ligands forms offset π-π stacking interactions with the adjacent counterpart
related by operation of inversion. The shortest C···C distances are rather short (d(C···C) = 3.290(5)
and 3.357(5) Å, Figure 4a). These interactions can be visualized best by calculating Hirshfeld surface
followed by highlighting areas corresponding to C···C interactions (Figure 4c). Furthermore, by
inspecting the shape-index surfaces we were able to confirm these interactions because of appearance
of neighboring red and blue triangular map areas (red circles), which are characteristic for occurrence
of π-π stacking [67,68].Both types of the supramolecular dimers, (a) and (b), are extended to chain
substructures due to the inversion symmetry. The keto oxygen atoms are involved in the weak C−H···O
hydrogen bonds, where one of the keto groups forms a pair of bifurcated hydrogen bonds with the
C−H groups of the benzyl-imidazolyl moiety (d(C···O) = 3.193(5) and 3.420(4) Å, Figure 4a). The second
keto group forms only weak C−H···O non-covalent contacts.
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3.673(5) Å. (b) Bifurcated C−H···O hydrogen bonding of the DMF molecule: d(C5···O4) = 3.324(6) Å, 
d(C10···O4) = 3.388(5) Å, d(C13···O4) = 3.394(5) Å. A perspective view on the I···O halogen bonding (c) 
and C−H···I non-covalent interaction (d). Donor-acceptor distances of displayed interactions:  
d(I2···O3) =3.264(4) Å, d(C16···I2) = 3.918(4) Å, d(I1···I2) = 4.1676(5) Å. Hydrogen atoms (except for those 
involved in hydrogen bonding) were omitted for clarity. The non-covalent interactions were depicted 
as black dashed lines. 

3.2. Crystal Structure 

Compound 1b crystallizes in the triclinic crystal system with the space group P  . The Co atom 
lies on a crystallographic inversion center (1h) and thus the asymmetric unit consists of the half of 
the complex molecule [Co(4I-L)4Cl2], one DMF molecule and one and half Et2O molecules, which 
altogether gives formula of [Co(4I-L)4Cl2]·2DMF·3Et2O. The complex molecule is hexacoordinate and 
it consists of four 4I-L and two chlorido ligands coordinated to Co(II) center. The 4I-L ligands adopt 
E-configuration and coordinate the Co(II) atom by nitrogen donor atoms from the imidazolyl 
moieties forming equatorial plane with rather dissimilar Co−N bond lengths (d(Co−N) = 2.121(3) and 
2.162(3) Å). The axial coordination sites are occupied by two chlorido ligands with rather long Co−Cl 
bonds (d(Co−Cl) = 2.4880(9) Å). The overall geometry of the coordination polyhedron can be 
described best as an axially elongated octahedron (Figure 2). 

Figure 3. A perspective view on the non-covalent interactions in 1b. (a) Supramolecular chain formed
by C−H···Cl hydrogen bonding: d(C2···Cl1) = 3.466(5) Å, d(C35···Cl1) = 3.807(4) Å, d(C43···Cl1) = 3.673(5)
Å. (b) Bifurcated C−H···O hydrogen bonding of the DMF molecule: d(C5···O4) = 3.324(6) Å, d(C10···O4)
= 3.388(5) Å, d(C13···O4) = 3.394(5) Å. A perspective view on the I···O halogen bonding (c) and C−H···I
non-covalent interaction (d). Donor-acceptor distances of displayed interactions: d(I2···O3) =3.264(4) Å,
d(C16···I2) = 3.918(4) Å, d(I1···I2) = 4.1676(5) Å. Hydrogen atoms (except for those involved in hydrogen
bonding) were omitted for clarity. The non-covalent interactions were depicted as black dashed lines.

Two symmetry-independent iodine substituents on the 4I-L ligands form different types of the
non-covalent interactions. One of them forms I···O type of the interaction, since it is capped by
co-crystallized Et2O molecule at rather short distance: d(I···O) = 3.264(4) Å (Figure 3c). The other one
forms two weak contacts with two neighboring functional groups on the 4I-L ligand: one with the
above-mentioned iodine substituent (d(I···I) = 4.1676(5) Å) and the second one with the neighboring
C-H group (d(C···I) = 3.918(5) Å, Figure 3d).
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Figure 4. (a) A perspective view onπ-π stacking interactions and bifurcated C−H···O hydrogen bonding
involving chalcone keto group. Donor-acceptor distances of displayed interactions: d(C20···C28) =

3.357(5) Å, d(C25···C26) = 3.290(5) Å, d(C3···O2) = 3.421(6) Å, d(C8···O2) = 3.193(5) Å. The non-covalent
interactions were depicted as black dashed lines. Hydrogen atoms (except for those involved in
hydrogen bonding) were omitted for clarity. The drawing of molecular structure of 1b with the atom
labels of the carbon atoms involved in short C···C contacts (b). Calculated Hirshfeld surfaces (dnorm)
with highlighted areas of the C···C interactions (colored maps in red circles, c) and shape-index surface
with highlighted areas involved in π-π stacking interactions (red circles, d).

3.3. Theoretical Studies

The DFT theory was employed together with ORCA program to evaluate the interaction energies
for selected non-covalent contacts affecting the crystal packing with range-separated functional
ωB97X-D3BJ. First, the I···O type of the interaction between 4I-L ligand and co-crystallized Et2O
molecule was dealt with (Figure 3c). Thus, for the molecular fragment {(4I-L)···(Et2O)} shown in
Figure 5, the computed interaction energy is Eint = −4.401 kcal/mol. Next, the I···I type of the interaction
(Figure 3d) between two 4I-L ligands {(4I-L)···(4I-L)} from different complex moieties was inspected and
the calculation resulted in Eint = −2.212 kcal/mol (Figure 5). Moreover, these interactions were analyzed
with the noncovalent interaction (NCI) method [69] with the help of Multiwfn software. This method
is based on the analysis of the electron density (ρ) by defining the reduced density gradient (RDG)
function which helps to identify the weak intra/inter molecular interactions and the nature of these
interactions, thus attractive vs repulsive, is analyzed by the sign of eigenvalue λ2 of the electron
density Hessian matrix. These interactions were successfully visualized with VMD program [70] as
sign (λ2)ρ values in Figure 5. It is evident that in {(4I-L)···(4I-L)} molecular fragment (Figure 5 top) two
types of weak interactions are present, the hydrogen bond C−H···I and halogen bond I···I, whereas
the second fragment {(4I-L)···(Et2O)}, (Figure 5 bottom), is dominated by O···I halogen bond. Indeed,
the topological analysis based on the atoms in molecules (AIM) method [71] implemented in Multiwfn
program identified the bond critical points (BCP) of the type (3,−1) as depicted in Figure 6 together
with the bond paths, which follow the maximal gradient path connecting two BCPs. Next, the NCI
sign(λ2)ρ values were calculated in selected BCPs as −0.00529 for I···I, −0.0103 for C-H···I and −0.0102
for O···I contacts.
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Thus, we can conclude that all these interactions are attractive and sort them by the increasing
strength as I···I < C-H···I ≈ O···I, which agrees with the DFT calculated energies. It well known that
halogen bonds are characteristic by formation of so-called σ-holes on heavy halogen atoms, which
can interact with an electron pair of the electron donor atom. To better understand and visualize this
phenomenon, Multiwfn package was used to calculate Electron Localization Function (ELF). The ELF
was introduced by Becke and Edgecombe [72] and its application to the study of electronic structure
is discussed by Lu and Chen [73]. Thus, the colored mapped figures were calculated as shown in
Figure 7 to elucidate the distribution of electron density by ELF. Indeed, in both cases of I···I (Figure 7
left) and O···I (Figure 7 right) halogen bonds, the presence of σ-holes on I atoms is evident and the
complementary donor electron pair of I or O atoms is present too. The detailed view of ELF along the
particular AIM calculated bond paths (Figure 7) is also depicted in Figure S6.
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4. Conclusions

In this article, we reported on the synthesis of the chalcone ligand (2E)-1-[4-(1H-imidazol-
1-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one (4I-L), which was further used for synthesis of
tetracoordinate complex [Co(4I-L)Cl2], (1a), which after recrystallization transformed into
hexacoordinate complex [Co(4I-L)4Cl2]·2DMF·3Et2O, (1b). Ligand and complex 1a were thoroughly
characterized by spectroscopic techniques and for 1b, the crystal structure was determined by X-ray
diffraction analysis. It was revealed that 1b is hexacoordinate Co(II) complex with chlorido ligands in the
axial positions. The crystal structure of 1b is stabilized by a plethora of weak non-covalent interactions,
mainly by C−H···O, C−H···Cl and π−π stacking of aromatic rings. Furthermore, the peripheral iodine
substituents on the 4I-L ligands form I···O, C−H···I and I···I non-covalent interactions. These were
theoretically studied by the DFT, NCI, AIM and ELF calculations and all confirmed formation of
halogen bond of significant strength in the case of the I···O contact. The weak nature of the C−H···I
hydrogen bonding and I···I interaction was confirmed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/5/354/s1,
Figure S1: 1H NMR spectrum of ligand 4I-L in DMSO-d6, Figure S2: 13C NMR spectrum of ligand 4I-L in DMSO-d6,
Figure S3: ESI-MS mass spectrum of complex 1a in methanol, Figure S4: 2D fingerprint plots generated for the
complex molecule [Co(4I-L)4Cl2], Figure S5: Hirshfeld surface calculated for the complex molecule [Co(4I-L)4Cl2],
Figure S6:The calculated Electron localization function (ELF) along calculated bond paths for the molecular
fragments {(4I-L)···(4I-L)} (top) and {(4I-L)···(Et2O)} (bottom) showing halogen bonds of the types I···I and O···I.
The dotted line locates the BCP (3,-1, Table S1: summary of hydrogen bonding parameters.
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