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Abstract: In this work, we performed a Mueller matrix imaging analysis of two commercial
optical components usually employed to generate and manipulate vector beams—a radial polarizer
and a liquid-crystal q-plate. These two elements generate vector beams by different polarization
mechanisms—polarizance and retardance, respectively. The quality of the vector beams relies on the
quality of the device that generates them. Therefore, it is of interest to apply the well-established
polarimetric imaging techniques to evaluate these optical components by identifying their spatial
homogeneity in diattenuation, polarizance, depolarization, and retardance, as well as the spatial
variation of the angles of polarizance and retardance vectors. For this purpose, we applied a
customized imaging Mueller matrix polarimeter based on liquid-crystal retarders and a polarization
camera. Experimental results were compared to the numerical simulations, considering the theoretical
Mueller matrix. This kind of polarimetric characterization could be very helpful to the manufacturers
and users of these devices.

Keywords: vector beams; polarimetric imaging; radial polarizers; q-plates; liquid-crystal retarders;
polarimetric camera

1. Introduction

Liquid crystals (LC) are employed in a myriad of photonic applications because of their
unique electro-optic properties. While display applications are certainly the most popular ones,
the development of LC-based photonic components, such as optical filters, switches, waveguides,
spatial light modulators, and retarders, are essential to perform manipulation of light [1]. LC retarders
are included in polarimetry systems, due to their variable optical retardance, upon application of a
voltage, avoiding mechanical rotation of the mounts. Besides achieving automatic polarization control
and reducing the instrumental error, its retardance value can be tuned as a function of wavelength,
thus, extending polarimetry to a broad wavelength range [2].

Mueller matrix (MM) polarimetric imaging is a very powerful technique that is widely used
nowadays in many different areas like astronomy [3], remote sensing [4], materials characterization [5]
or biomedical applications [6], including improvement of fundus images for ophthalmic diagnoses [7].
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MM polarimetry is deemed very useful to characterize optoelectronic polarization controlling devices.
For instance, MM imaging of liquid-crystal-on-silicon (LCOS) displays was used to identify retardance
inhomogeneities [8] or depolarization caused by flicker [9]. MM imaging was applied to evaluate
liquid-crystal variable retarders (LCR), where it proved very valuable to reveal non-ideal responses
that might significantly affect their performance in advanced optical instruments [10,11]. It was also
employed to test the performance as depolarizers of liquid-crystal (LC) cells for improving holographic
systems [12].

In this work, using MM imaging analysis, we examined two commercial polarization devices
employed to generate cylindrical vector beams (CVB)—a radial polarizer and two static q-plates.
Such two kind of devices are capable of generating CVBs in compact and efficient optical setups,
as opposed to other methods based on spatial light modulators, which, however, are more versatile [13].

CVBs are light beams with a spatially-variant state of polarization exhibiting axial symmetry,
which are prompting advances in areas such as microscopy, materials processing, metrology, and optical
classical and quantum communications [13–15]. Due to their inhomogeneous polarization pattern,
they were also studied to develop snapshot polarimeters [16] and to test the performance of real-time
Stokes polarimeters [17]. Radially and azimuthally polarized beams are the most common cases of
CVBs. Early examples of radial and azimuthal beams were obtained using the twisted nematic LC
cell reported in [18]. Further developments in photo-alignment techniques led to the current q-plate
technology [19].

Q-plates are spatially-varying waveplates, typically of half-wave retardance, whose optical
axis follows q times the azimuthal angle θ. They convert input linearly polarized light into a CVB,
whose order (m = 2q) is given by the device q-value [20]. Since they impart a helical phase exp(±i2qθ) on
input circularly polarized light, they are widely used to generate and manipulate vortex beams (light
beams with Orbital Angular Momentum, OAM), which is crucial in quantum communications [19].
Q-plates can be fabricated with LC materials [21], or by patterning subwavelength structures in
non-birefringent materials like silica glass [22] (so-called metamaterial q-plates or s-plates). In all cases,
the q-value is set on fabrication and cannot be changed. In polymer LC and in metamaterial q-plates,
the retardance at the operation wavelength is set on fabrication; they are static plates. Most commercial
q-plates are of this kind [23]. When fabricated with nematic LC and with transparent electrodes,
the q-plate retardance can be tuned by an applied voltage and the operation wavelength can cover
the VIS and NIR range [24]. Retardance tunability is very useful in order to manipulate vector
beams, since it controls the polarization conversion efficiency [19], which is maximum for half-wave
retardance. However, the capability of generating hybrid vector beams, from standard to more exotic
ones, using q-plates tuned at quarter-wave retardance is also shown [22,25].

Another simple method to generate CVBs is by using a radial polarizer and waveplate
combinations [26]. Actual radial polarizers are patterned devices consisting of angular sectors made of
linear polarizers, where the transmission axis is oriented in each sector, along the corresponding radial
direction. By illuminating it with either unpolarized light or with circularly polarized light, the output
beam is radially polarized. This radial polarization can then be converted into azimuthal polarization,
just by placing a polarization rotator composed of two half-wave plates (HWP). Other spatial
polarization patterns with axial symmetry can be generated by using combinations of HWPs and
quarter-wave plates (QWP) [26].

Radial polarizers and q-plates are usually analyzed in terms of Jones matrices because they
are assumed to operate with fully polarized light. Fabricated birefringent components are usually
tested using a quantitative birefringence measurement equipment that typically includes an optical
microscope. In this way, the retardance value distribution and the local optical axes variation can be
measured [22]. However, the MM approach provides additional general information about relevant
parameters like depolarization, diattenuation, polarizance, and retardance. In the specific case of
q-plates, it is necessary to determine the spatial orientation of its optical axis and the spatial homogeneity
of the retardance value. In the case of the radial polarizer, it is necessary to determine the spatial
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distribution of the transmission axis and the spatial homogeneity of the polarizance. The Lu-Chipman
decomposition of the measured MM [27] is applied to achieve these parameters. Therefore, in this
work we propose the MM polarimetric characterization as an additional tool for testing the quality of
these devices, which can be helpful to manufacturers and users.

This paper is organized as follows. After this Introduction, in Section 2 we summarize the
theoretical Mueller–Stokes formalism to describe CVBs and derive the MM of the radial polarizer and
the q-plate. Section 3 presents the experimental arrangement of our imaging polarimeter. We employed
a Liquid Crystal–Polarization State Generator (LC–PSG) whose calibration was reported in [28].
A polarization camera that simultaneously analyzes the four cardinal linear polarizations was used
as Polarization State Analyzer (PSA), together with a movable QWP. This arrangement lowered the
required number of measurements to only twelve PSG–PSA configurations. The imaging MM results
of the radial polarizer and the q-plates are given in Section 4. The experimental results are compared
to numerical simulations, and their physical interpretation is discussed. The polarization map of
the CVBs generated with each device upon illumination with circularly polarized light is shown.
The conclusions of this study are summarized in Section 5.

2. Materials and Methods

As mentioned, CVBs and the two devices (radial polarizer and q-plates) employed here for
their generation are usually treated within the Jones matrix formalism, since fully polarized light is
considered. However, since here we are applying am MM polarimeter, next we briefly review them
within the Mueller–Stokes formalism and provide the required framework for this MM analysis.

2.1. Vector Beams in the Stokes formalism

A fully polarized state of polarization can be described by the Stokes parameters ST =

(1, cos(2ε) cos(2Ψ), cos(2ε) sin(2Ψ), sin(2ε)) where T denotes the transposed matrix and ε and Ψ are
the ellipticity and azimuthal angles of the polarization ellipse, respectively [29]. Therefore, the Stokes
parameters of a vector beam (SVB) can be simply obtained by setting the dependence of Ψ on the
azimuthal coordinate (θ) as Ψ = `θ+ Ψ0, where ` is the topological charge of the CVB and Ψ0 is the
orientation of the polarization state at the azimuth origin θ = 0, i.e.,

SVB =


1

cos(2ε) cos(2`θ+ 2Ψ0)

cos(2ε) sin(2`θ+ 2Ψ0)

sin(2ε)

. (1)

Figure 1 illustrates some examples of order ` = 1, where the radial and the azimuthal vector
beams are typical cases, given respectively, by Ψ0 = 0 and Ψ0 = π/2, and ε = 0. Their corresponding
radial and azimuthal Stokes parameters are given by:

SRadial =


1

cos(2θ)
sin(2θ)

0

, SAzimuthal =


1

− sin(2θ)
cos(2θ)

0

. (2)

Let us note that ε is a constant angle that describes the ellipticity of the polarization state,
which remains constant in the transversal plane, whereas the orientation of the ellipse changes with θ,
as shown in Figure 1d. Depending on the ε and Ψ values in Equation (1), it is possible to generate
different vector beams. Although other types of CVBs exist, we restrict the analysis to these standard
CVBs, since they are directly generated with the radial polarizer and the q-plates.
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from CODIXX [30] and two static polymer LC q-plates from Thorlabs with q = 1 (model WPV10-633) 
and q = 1/2 (model WPV10L-633) [31]. We include analytical expressions of their Mueller matrices, 
which are not encountered in works on vector beams that most often use the Jones formalism. As 
shown in Figure 2, the most characteristic feature of these devices is the azimuthal orientation of the 
transmission axis (radial polarizer, Figure 2d) and of the optical axis (q-plates, Figure 2e,f). The q-
plate of q = 1/2 has a mark in its mount that indicates the zero-degree optical axis, which we have 
aligned in the x-axis orientation, as shown in Figure 2f. 

 
Figure 2. (a) Photograph of the radial polarizer under broadband linearly polarized light. 
Photographs of the q-plates with (b) q = 1 and (c) q = 1/2 placed between linear parallel polarizers and 
under broadband illumination. (d) Azimuthal orientation of the transmission axis of the radial 
polarizer. Azimuthal orientation of the optical axis of the q-plate with (e) q = 1 and (f) q = 1/2. The color 
code indicates the orientation angle of these axis. 

Figure 1. Different kinds of vector beams of order ` = 1. (a) Radial (b) Slanted (c) Azimuthal
(d) Arbitrary.

2.2. Mueller Matrix of an Ideal Radial Polarizer and an Ideal Q-Plate

Next, we describe the two kinds of optical devices considered in this work—a radial polarizer from
CODIXX [30] and two static polymer LC q-plates from Thorlabs with q = 1 (model WPV10-633) and
q = 1/2 (model WPV10L-633) [31]. We include analytical expressions of their Mueller matrices, which are
not encountered in works on vector beams that most often use the Jones formalism. As shown in
Figure 2, the most characteristic feature of these devices is the azimuthal orientation of the transmission
axis (radial polarizer, Figure 2d) and of the optical axis (q-plates, Figure 2e,f). The q-plate of q = 1/2 has
a mark in its mount that indicates the zero-degree optical axis, which we have aligned in the x-axis
orientation, as shown in Figure 2f.
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Figure 2. (a) Photograph of the radial polarizer under broadband linearly polarized light. Photographs
of the q-plates with (b) q = 1 and (c) q = 1/2 placed between linear parallel polarizers and under
broadband illumination. (d) Azimuthal orientation of the transmission axis of the radial polarizer.
Azimuthal orientation of the optical axis of the q-plate with (e) q = 1 and (f) q = 1/2. The color code
indicates the orientation angle of these axis.

The top row in Figure 2 shows a photograph of each device under broadband illumination with
linearly polarized light. In the case of the q-plates, a linear analyzer (parallel to the input polarization)
was placed before the camera in order to visualize the azimuthal variation. In the case of the radial
polarizer, the intensity azimuthal variation is directly observed when illuminating with linear polarizer
light. The diameter of the radial polarizer was 2 cm, while the q-plates diameter was one inch. Figure 2a
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clearly reveals the segmented nature of the CODIXX polarizer, with 12 segments of fixed transmission
axis orientation. On the contrary, we can see in Figure 2b,c that these q-plates are continuous devices
(their optical axis linearly follows the azimuthal angle as qθ). These photographs display the expected
four-lobe and two-lobe intensity pattern of q-plates with q = 1 (Figure 2b) and q = 1/2 (Figure 2c).
Note also their birefringence colors, which can be used to estimate the device retardance [32]. The radial
polarizer (Figure 2a) does not exhibit such colors because it is effective in a wide spectral range that
covers the full visible spectrum.

2.2.1. Radial Polarizer

The radial polarizer (Figure 2a) produces a light beam with a radial transverse spatial distribution
of the polarization state [14,26]. The ideal MM describing it reads:

MRP =
1
2


1 cos(2`θ) sin(2`θ) 0

cos(2`θ) cos2(2`θ) sin(2`θ) cos(2`θ) 0
sin(2`θ) sin(2`θ) cos(2`θ) sin2(2`θ) 0

0 0 0 0

. (3)

This is the Mueller matrix for a linear polarizer [29], where now the angle of the transmission
axis is θTA = `θ. The standard radial polarizer has ` = 1. Note that for input non-polarized light
ST

in = (1, 0, 0, 0) and for input circularly polarized light ST
in = (1, 0, 0,±1) the output Stokes parameters

Sout = MRP · Sin correspond to the radial beam of order ` = 1 in Equation (2).

2.2.2. Q-Plates

Radially polarized light can also be generated by a q-plate [19]. As mentioned, it consists of a
spatially variable linear retarder with a phase-shift (linear retardance) and optical axis orientation
(θOA = qθ + α0) that rotates a fraction q of the azimuthal angle θ, and α0 is the offset angle,
i.e., the orientation angle of the optical axis at θ = 0. Figure 2e,f illustrate the case of q = 1 and q = 1/2,
where the optical axis at given angles is depicted as brown ellipses and the colored background
indicates the continuous distribution of the optical axis. For q = 1, the optical axis rotates through
[0− 2π], whereas for q = 1/2 it only rotates π radians.

The MM for the ideal q-plate is:

Mq(φ) =


1 0 0 0
0 cos2(2qθ) + cos(φ) sin2(2qθ) (1− cos(φ)) sin(2qθ) cos(2qθ) − sin(φ) sin(2qθ)
0 (1− cos(φ)) sin(2qθ) cos(2qθ) sin2(2qθ) + cos(φ) cos2(2qθ) sin(φ) cos(2qθ)
0 sin(φ) sin(2qθ) − sin(φ) cos(2qθ) cos(φ)

. (4)

where we consider with α0 = 0 for simplicity. The MM in Equation (4) was equivalent to that of a linear
retarder with retardance and variant orientation θOA = qθ [29]. In the standard case of a half-wave
(HW) q-plate with φ = π, the MM is given by:

Mq(φ = π) =


1 0 0 0
0 cos(4qθ) sin(4qθ) 0
0 sin(4qθ) − cos(4qθ) 0
0 0 0 −1

. (5)

Now, if the input beam is horizontally or vertically linearly polarized, ST
in = (1,±1, 0, 0), the output

Stokes parameters, Sout = Mq(φ = π) · Sin respectively correspond to the radial and to the azimuthal
vector beams in Equation (2) for the q-plate with q = 1/2.



Crystals 2020, 10, 1155 6 of 17

These devices, however, can also be operated at detuned retardance. In this work, we use a
retardance of φ = 3π/2 and the device can be regarded as a spatially-variable QWP [33]. The MM for
such QW q-plate reads:

Mq(φ =
3
2
π) =


1 0 0 0
0 cos2(2qθ) sin(2qθ) cos(2qθ) sin(2qθ)
0 sin(2qθ) cos(2qθ) sin2(2qθ) − cos(2qθ)
0 − sin(2qθ) cos(2qθ) 0

. (6)

In this case, the linearly polarized vector beam is obtained when the device is illuminated with
input circular polarization [22]. For instance, by applying Equation (6) on input right-handed circular
polarization ST

in = (1, 0, 0, 1) one obtains an output that corresponds to the slanted vector beam in
Figure 1b. Note that in this QW q-plate situation, the generated vector beam is of order ` = q, in contrast
to the standard case with the HW q-plate that provides CVBs of ` = 2q [33].

2.3. Mueller Matrix Decomposition

In this work, we applied the Lu-Chipman decomposition [27] to the measured MM in order to
obtain the polarization parameters of interest. This decomposition is summarized here and the details
of the calculation are provided in Appendix A.

The Lu-Chipman decomposition describes an MM as the product of three matrices:

M = M∆ ·MR ·MD. (7)

which provides the diattenuation MD, retardance MR, and depolarization M∆ properties of the sample.
This equation is written explicitly as:

M = m00

 1
→

0
T

→

P∆ m∆

 ·
 1

→

0
T

→

0 mR

 ·
 1

→

D
T

→

D mD

. (8)

where
→

D is the diattenuation vector,
→

P∆ is the polarizance vector of the depolarizer part, m∆, mR and

mD are the 3 × 3 submatrices of M∆, MR, MD, and
→

0
T
= [0 0 0].

Note that the multiplication of these matrices is not commutative, therefore, the result depends on
the order of how they are multiplied [27,34], and other approaches could be applied, as the reverse
product decomposition [35], among others. In this work, we choose the Lu-Chipman decomposition,
Equations (7) and (8), as it is the most commonly used approach in polarimetric applications and
we observed that it properly describes the physical response of the studied components. Although
our samples are ideally either a pure polarizing element (radial polarizer) or a pure retarder element
(q-plates), we consider this general decomposition to avoid any apriorism.

We note that the decomposition must follow two different calculations, depending on whether the
diattenuation matrix MD is singular or not. Appendix A describes the full procedure and the equations
used for the polarimetric parameters. As a result of this decomposition, the next sections include
imaging results of the measured diattenuation (D), polarizance (P), depolarization (∆), and retardance
(R) parameters, as well as the spatial map that describes the orientation of the transmission axis (for the
radial polarizer) and of the principal axis (for the q-plates).

3. Experimental Arrangement of the Mueller Matrix Polarimeter

In this section, we describe the optical system of our imaging MM polarimeter shown in
Figure 3. As light source, we use the 488 nm line of an air-cooled Ar-Kr laser (CVI/Melles Griot,
Mod. 35-LTL-835-240, Albuquerque, NY, US). A spatial filter, consisting of a 20×microscope objective
(Newport, M-20×, North Logan, UT, US) and a pinhole aperture (Newport, 900PH15, North Logan, UT,
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US) of 15 µm diameter cleans up the light beam, which is then collimated by a lens L1 (f 1 = 75 mm).
The LC-PSG is built by a linear polarizer (Thorlabs, LPVISE200A) with its transmission axis (TA) in
the vertical direction, followed by two liquid–crystal variable retarders (LCR) from ArcOptix [36],
oriented at 45◦ and 90◦, respectively, and a QWP (Thorlabs, AQWP05M600, Newton, NJ, US) with its
fast axis (FA) at −45◦. The two commercial LCRs employed were calibrated at 488 nm wavelength and
their retardance curve as a function of voltage, φ1(V) and φ2(V) were obtained. These curves and the
driving voltage values of LCR1 and LCR2 that were required to generate the six standard states of
polarization—horizontal (H), vertical (V), ±45◦ linear polarizations, and right- (RCP) and left-handed
(LCP) circular polarizations, are given in [28]. The polarization state analyzer (PSA) consists of a
second QWP (Thorlabs, WPQ05M488, Newton, NJ, US) with its FA vertically oriented and a Kiralux™
Polarization Camera (Thorlabs, CS505MUP, Newton, NJ, US). This camera has a monochrome CMOS
Sensor of 5 megapixels with a wire grid polarizer array that consists of a repeating pattern of polarizers
with their transmission axes at 0◦, 45◦, −45◦, and 90◦. Therefore, QWP2 is only placed in the PSA when
the circular polarization states need to be analyzed. The sample is placed between the LC-PSG and the
PSA, and the sample plane is imaged on the camera by a second lens L2 (f 2 = 150 mm).

Crystals 2020, 10, x FOR PEER REVIEW 7 of 18 

 

include imaging results of the measured diattenuation (D), polarizance (P), depolarization (Δ), and 
retardance (R) parameters, as well as the spatial map that describes the orientation of the transmission 
axis (for the radial polarizer) and of the principal axis (for the q-plates). 

3. Experimental Arrangement of the Mueller Matrix Polarimeter 

In this section, we describe the optical system of our imaging MM polarimeter shown in Figure 
3. As light source, we use the 488 nm line of an air-cooled Ar-Kr laser (CVI/Melles Griot, Mod. 35-
LTL-835-240, NY, US). A spatial filter, consisting of a 20× microscope objective (Newport, M-20×, 
North Logan, US) and a pinhole aperture (Newport, 900PH15, North Logan, US) of 15 μm diameter 
cleans up the light beam, which is then collimated by a lens L1 (f1 = 75 mm). The LC-PSG is built by a 
linear polarizer (Thorlabs, LPVISE200A) with its transmission axis (TA) in the vertical direction, 
followed by two liquid–crystal variable retarders (LCR) from ArcOptix [36], oriented at 45° and 90°, 
respectively, and a QWP (Thorlabs, AQWP05M600, NJ, US) with its fast axis (FA) at −45°. The two 
commercial LCRs employed were calibrated at 488 nm wavelength and their retardance curve as a 
function of voltage, φ1(V ) and φ2(V )  were obtained. These curves and the driving voltage values of 
LCR1 and LCR2 that were required to generate the six standard states of polarization—horizontal 
(H), vertical (V), ±45° linear polarizations, and right- (RCP) and left-handed (LCP) circular 
polarizations, are given in [28]. The polarization state analyzer (PSA) consists of a second QWP 
(Thorlabs, WPQ05M488, NJ, US) with its FA vertically oriented and a Kiralux™ Polarization Camera 
(Thorlabs, CS505MUP, NJ, US). This camera has a monochrome CMOS Sensor of 5 megapixels with 
a wire grid polarizer array that consists of a repeating pattern of polarizers with their transmission 
axes at 0°, 45°, −45°, and 90°. Therefore, QWP2 is only placed in the PSA when the circular 
polarization states need to be analyzed. The sample is placed between the LC-PSG and the PSA, and 
the sample plane is imaged on the camera by a second lens L2 (f2 = 150 mm). 

 
Figure 3. Schematic representation of the Mueller matrix polarimeter (L: lens, LP: linear polarizer, 
LCR: liquid-crystal retarder, QWP: quarter-wave plate). 

To obtain the experimental MM, a set of six standard polarization states is generated by the LC–
PSG and analyzed by the PSA. Let us remark that our polarization camera analyzes in a single shot 
the four linear states of polarization (H, V, +45°, and −45°), thus, lowering the number of actual 
measurements to only 12 different PSG–PSA configurations. The LC–PSG system in reverse order 
followed by a digital camera could also perform as an LC–PSA, but it would require measuring 36 
configurations [28]. Certainly, most convenient would be using a commercial imaging MM 
polarimeter [37], but these instruments are usually quite expensive. Thus, the MM polarimeter 
system developed in this work is a good alternative since it performs measurements with good 
accuracy at an affordable cost. The elements of the imaging MM are calculated according to [38], 
where we first verified the correct calibration of our polarimeter, by measuring the MM of air, which 
is an identity matrix, and other known elements such as linear polarizers and waveplates, with 
relative errors less than 7% for the MM coefficient measurements. Performing the same experimental 
procedure, we obtain the MM image of the radial polarizer and the q-plates. In the calibration of the 
polarimeter, we detected an interference pattern produced by the interaction of the coherent source 
with the LCRs [39], in addition to the possible multiple reflected beams between the optical 

Figure 3. Schematic representation of the Mueller matrix polarimeter (L: lens, LP: linear polarizer,
LCR: liquid-crystal retarder, QWP: quarter-wave plate).

To obtain the experimental MM, a set of six standard polarization states is generated by the LC–PSG
and analyzed by the PSA. Let us remark that our polarization camera analyzes in a single shot the four
linear states of polarization (H, V, +45◦, and −45◦), thus, lowering the number of actual measurements
to only 12 different PSG–PSA configurations. The LC–PSG system in reverse order followed by a
digital camera could also perform as an LC–PSA, but it would require measuring 36 configurations [28].
Certainly, most convenient would be using a commercial imaging MM polarimeter [37], but these
instruments are usually quite expensive. Thus, the MM polarimeter system developed in this work is a
good alternative since it performs measurements with good accuracy at an affordable cost. The elements
of the imaging MM are calculated according to [38], where we first verified the correct calibration of
our polarimeter, by measuring the MM of air, which is an identity matrix, and other known elements
such as linear polarizers and waveplates, with relative errors less than 7% for the MM coefficient
measurements. Performing the same experimental procedure, we obtain the MM image of the radial
polarizer and the q-plates. In the calibration of the polarimeter, we detected an interference pattern
produced by the interaction of the coherent source with the LCRs [39], in addition to the possible
multiple reflected beams between the optical components. Therefore, a digital Notch filter is applied
to the intensity images captured by the camera, to eliminate this periodic noise [40].

In the next section, we discuss the MM imaging results obtained for these devices. Such analysis
relies, notwithstanding, on the accuracy of the imaging polarimetry system. Note that our system
in Figure 3 is devoid of moving or rotating elements, with the exception of QWP2, which must be
placed when analyzing the circular polarizations. This could be avoided by placing a third LCR with
addressable voltage in front of the polarization camera. Therefore, the placing and removing of QWP2
might cause image errors, such as the beam wander effect [41]. Other possible experimental errors can
be due to slight misalignment of the optical components, laser speckle, and noise in the camera itself.
Nevertheless, the results shown in the following section reveal a good accuracy of our polarimeter.
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4. Results and Discussion

4.1. Imaging Mueller Matrix Results of the Radial Polarizer

First, we show the experimental and numerical MM images of the radial polarizer and the main
optical properties of the device obtained from its analysis. Figure 4 illustrates the normalized MM of
the segmented radial polarizer. Figure 4a represents the numerical ideal MM obtained from Equation
(3). Our simulation considers the segmentation of the CODIXX polarizer. That is, the numerical
calculation of the MM in Equation (3) considers 12 angular sectors, where the transmission axis rotates
with the azimuthal coordinate but keeps a fixed orientation within each sector. Of course, the physical
border between segments cannot be accounted for in these simulations and will only appear in the
experimental results. Note the following symmetries of the MM elements as corresponding to a linear
polarizer: m01 = m10, m02 = m20, m03 = m30, m12 = m21, and m11 = 1−m22. Note that the three first

equalities lead to
→

D =
→

P , and these optical components present the same diattenuation response
independently, if they are measured in the backward or forward direction [42].
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experimental measure.

The experimental MM is shown in Figure 4b. It holds very good agreement with the numerical
one. A certain amount of noise is apparent in the elements of the last row and column of the MM
in Figure 4b. Element m03 presents the maximum absolute error averaged in the whole area (0.11).
The absolute error is 0.22 when averaged over 60 × 60 pixels in the blue region in m03. Note that the
borders between the segments of the radial polarizer are clearly observed in the images of the bottom
row of Figure 4b, particularly in element m33. This means that our polarimetric system is very sensitive
in detecting details in the sample. These results are comparable to those reported for a radial polarizer
patched with eight sectors [43].

From the elements of the first row and column of the MM of Figure 4, the diattenuation (D) and
polarizance (P) parameters are directly calculated and plotted pixel-by-pixel, using Equation (A2).
Let us recall that elements m01 and m02 in the experimental images in Figure 4b are not identical
to elements m10 and m20. Hence, we cannot expect parameters D and P to take exactly the same
value in our experimental results, as it occurs in the ideal numerical calculation. The diattenuation
parameter describes the intensity transmittance capability to the polarized light [29]; therefore, a similar
experimental D value would be expected on the entire surface. The experimental diattenuation image
of the radial polarizer illustrated in Figure 5(b1) allows to visualize the segmentation of this device,
as well as the slight variation between segments. For instance, segment #3 presents the greatest
diattenuation value with D = 0.957 while segment #11 shows the least one with D = 0.831. Although it
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is possible to observe a different shade of red between the segments, the average value on the whole
surface is D = 0.909, with a standard deviation of ±0.018. Hence, the radial polarizer presents a good
homogeneity on its surface for this parameter.
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The polarizance parameter shows the degree of polarization in transmitted light when unpolarized
light strikes the sample, i.e., it provides the capability of a sample to polarize an unpolarized beam [29].
Figure 5(a2) corresponds to the numerical polarizance for an ideal polarizer, where each pixel is P = 1
and compares with Figure 5(b2) that shows the experimental polarizance for the radial polarizer.
The average polarizance on the whole surface and its standard deviation is P = 0.944± 0.013. Thus,
the capability to polarize light is almost uniform on the whole device.

Since the diattenuation MM of the radial polarizer is singular, the MM decomposition must follow
the procedure described in Appendix A, and the depolarization parameter (∆) is calculated by Equation
(A6). The ideal depolarization image should be ∆ = 0, as in Figure 5(a3), since it is a polarizing device.
The experimental depolarization image is shown in Figure 5(b3). The average experimental value
and its standard deviation is ∆ = 0.056 ± 0.013, which indicates that the surface of this device can be
considered homogeneous. Only at the borders between the segments, the value is significantly higher
and are clearly visible, with an average value of ∆ = 0.15 ± 0.04 on the border between segments #2
and #3. This can be attributed to the spatial averages conducted at the edges of the segments due to
the CCD pixel size.

The retardance (R) parameter is obtained from Equation (A5). The experimental average retardance
value and standard deviation in Figure 5(b4) is R = 0.07π± 0.01π. This value is consistent, within the
experimental error, with the expected null retardance of a perfect polarizer (Figure 5(a4)). The MM
decomposition also allows us to determine the orientation of the transmission axis (θTA) of a
polarizing element, using Equation (A7). The simulation and the experimental results are compared in
Figure 5(a5,b5). The angular values lie in the range [0− 2π]. The experimental angle values for each
segment of the radial polarizer bear an excellent agreement with the expected values.

4.2. Imaging Mueller Matrix Results of the q-Plate

Let us describe the polarimetric response of the q-plates of q = 1 and q = 1/2. Previous calibrations
indicate that they have a retardance value very close to φ = 3π/2 at 488 nm [33]. The numerical
MM of the q-plates of q = 1 and q = 1/2 are obtained by using Equation (6); they are shown in
Figure 6a,c, respectively. In this case, the symmetry conditions of their MM elements are m12 = m21,
m13 = −m31, m23 = −m32, and m11 = 1 −m22. Except for m00, the first row and column of the MM
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image are null, i.e.,
→

D =
→

P =
→

0 , as corresponds to pure retarder systems. Following the previous
experimental procedure, the experimental MM are obtained for both q-plates of q = 1 and q = 1/2,
which are shown in Figure 6b,d, respectively. The experimental MM are consistent with the numerical
ones and the symmetry conditions hold very well. The maximum average absolute error, attributable
to the experimental noise is 0.14 and occurs in element m33. The number of lobes in the Mueller matrix
elements depends on the order of the q-plate. For instance, element for m11 the q-plate with q = 1 has
four lobes, while for q = 1/2 it only has two lobes.
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Diattenuation and polarizance are calculated directly from the MM using Equation (A2), but to
know the rest of optical properties, it is necessary to apply the decomposition that is explained in
Appendix A. Their diattenuation MM are not singular, therefore to determine the depolarization and
retardance parameters, we applied Equations (A11) and (A12b), respectively. The numerical results for
both q-plates are similar. Therefore, we only compare the numerical and experimental polarimetric
parameters for the q-plate with q = 1 in Figure 7. The experimental results for the q-plate with q = 1/2
are shown in Figure 8.
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Figure 8. Experimental polarimetric parameters of the q-plate with q = 1/2. (a) Diattenuation,
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As expected, the diattenuation (D), polarizance (P), and depolarization (∆) values of an ideal
q-plate are null, as shown in Figure 7(a1–a3), respectively. The non-null experimental values of
parameters D, P, and ∆ for the q-plate with q = 1 (Figure 7(b1–b3)), and q = 1/2 (Figure 8a–c), agree well
within the margins of the experimental error of the experimental system.

The average value and standard deviation of each parameter for the q-plate with q = 1,
in Figure 7(b1–b3), were calculated with the aim of analyzing the homogeneity of this device, giving the
following results: D = 0.108± 0.007, P = 0.139± 0.007, and ∆ = 0.043± 0.006. Since the values of the
standard deviation are small, this means that this q-plate has uniformity over its entire surface.

The analysis of the retardance (R) parameter is essential for the q-plates due to the retarder nature of
these devices. Figure 7(a4) corresponds to the numerical result for q-plate with q = 1. The experimental
retardance image, shown in Figure 7(b4), yields a mean value of R = 1.45π with a standard deviation
of ±0.05π, which indicates that this device is homogeneous. This result is in good agreement with the
previous spectral characterization of this q-plate [33], which indicated a phase-shift of φ = 3π/2 for
the wavelength of 475 nm, very close to the 488 nm wavelength used in the measurements in Figure 7.

The characteristic null intensity at the center of the beam caused by the vortex generated by the
q-plate was hardly visible at the center of the images of P, D, ∆, and R because the camera was placed
at the position where it captured the image of the device. By slightly moving the camera, the vortex
null intensity becomes visible as a spot in the center.

The retardance vector was calculated from Equation (A13) and the direction of the device optical
axis (θOA) was given by Equation (A14). The distribution of θOA for the q-plate of q = 1 goes
continuously from 0 to 2π radians, with good agreement between the numerical (Figure 7(a5)) and the
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experimental (Figure 7(b5)) results. The experimental images for the q-plate with q = 1/2 of parameters
D, P, and ∆ are illustrated in Figure 8a–c, respectively. Their mean value and standard deviation were:
D = 0.106± 0.004, P = 0.136± 0.005, and ∆ = 0.119± 0.005. The retardance image for the q-plate of
q = 1/2 is shown in Figure 8d. The average value was R = 1.555πwith a standard deviation of ±0.005π,
which indicated a good homogeneity. On the other hand, the rotation of the optical axis reached
only up to θOA = π upon performing the cycle of θ ∈ [0, 2π), as shown in Figure 8e. While the axis
orientation of the q-plate of q = 1 is indistinct due to its radial symmetry, for q = 1/2, it is necessary to
know the offset angle, i.e., the orientation where the optical axis is aligned at zero-degree. Knowing
the offset angle is crucial because it determines the spatial polarization pattern that exits the device for
a given input polarization and retardance [20].

4.3. Polarization Map of the CVBs Generated by the Radial Polarizer and the q-Plates

Finally, let us show the performance of these three optical components in generating CVBs.
As mentioned in the Introduction, CVBs are finding many applications in areas like microscopy,
laser microfabrication, and optical communications [13,14]. In all these applications, it is very
convenient to obtain a clear visualization of the polarization pattern in order to verify how accurately
the vector beam was generated. A polarization map plots the polarization ellipse of light at every pixel
of the image. The MM imaging polarimetric results obtained in the previous section provides the
values of the output Stokes parameters necessary to draw the polarization maps.

Figure 9 shows the experimental polarization maps of CVBs generated with the three devices
used in this work. In the three cases we consider illumination with right circularly polarized light of
wavelength 488 nm. From the experimental output Stokes parameters (SVB) the polarization map of
each vector beam was retrieved and the results are shown in Figure 9. The images show the calculated
polarization ellipses drawn on the captured intensity image. The radial polarizer produces a radial
beam of order ` = 1, which is shown in Figure 9a. On the other hand, the q-plates generate a slanted
beam of order ` = q, where Figure 9b,c correspond to the q-plate of q = 1 and q = 1/2, respectively.
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Figure 9. Experimental polarization map of the CVBs generated by (a) the radial polarizer and
the q-plate with (b) q = 1 and (c) q = 1

2 , when the input beam is RCP light. The background color
corresponds to the values of the Stokes parameter S0. The drawn polarization ellipses are obtained
from the experimental Stokes parameters.

As discussed in [33], for input RCP on QW-q-plates, the output beam is a coherent superposition
of RCP and LCP with a relative phase shift of −π/2 and a helical phase only in the LCP component.
Hence, the interference yields a local linear polarization that rotates with the azimuth as qθ. Such local
linearly polarized states and their orientation with the azimuth are observed in the polarization map of
Figure 9b,c. Note how these linear states rotate a value θ in panel (b) and half-θ in panel (c). Therefore,
the output is a slanted pseudo-vector beam (hybrid vector beam) of order ` = q. Therefore, the
experimental polarization map of the CVBs show the good performance of both kind of devices.
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5. Conclusions

We apply an imaging polarimetry-based approach to verify the homogeneity of a segmented
radial polarizer and two continuous liquid-crystal q-plate retarders through the decomposition of their
Mueller matrices and the calculation of the diattenuation, polarizance, depolarization, and retardance
parameters. The space-variant orientation of the transmission axis of the radial polarizer and the
optical axis of the q-plates were also obtained. It is important to know the quality of these commercial
polarizing elements that generate vector beams. Our polarimetry system employs a polarization state
generator based on liquid-crystal variable retarders and a polarimetric camera with a movable QWP as
a polarization state analyzer. Although our experimental setup was not the most optimal due to the
use of this movable QWP, the numerical and the experimental results were consistent. The results
provided the interest of polarimetric methods to characterize vector beams generator systems with easy
means, which could be implemented for real-time systems. In particular, it could be useful for testing
new q-plate designs, like modal q-plates and meta q-plates, featuring arbitrary space-variant optical
axes [44–46] and space-variant retardance [45]. Note that this type of studies would be useful for the
quality control of these elements, obtaining larger standard deviations in the presence of manufacturing
errors or surface scratches.
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Appendix A

This Appendix provides a summary of the Lu-Chipman decomposition [27]. Let us consider M as
the measured MM. It can be written as M = M∆ ·MR ·MD. First, M is written as

M =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

 = m00

 1
→

D
T

→

P m

, (A1)

where
→

D = (1/m00)[m01 m02 m03]
T and

→

P = (1/m00)[m10 m20 m30]
T are the diattenuation and

polarizance vectors, respectively, and m is the normalized 3 × 3 submatrix. The diattenuation
(D) and polarizance (P) parameters are respectively given by

D =

∣∣∣∣∣→D∣∣∣∣∣ = 1
m00

√
m2

10 + m2
20 + m2

30, and P =

∣∣∣∣∣→P ∣∣∣∣∣ = 1
m00

√
m2

01 + m2
02 + m2

03. (A2)

D characterizes the dependence of the sample transmission on the incident light polarization and P
describes the sample capability to polarize unpolarized incident light.

Then, the diattenuation matrix MD is determined as:

MD = m00

 1
→

D
T

→

D mD

 (A3)
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where mD =
√

1−D2I +
(
1−
√

1−D2
)
DDT, I is the 3 × 3 identity matrix, and

_
D =

→

D/D is the

unitary vector along
→

D. Once the diattenuation matrix MD is calculated, the procedure to calculate
the depolarization and retarder parameters depends on the singularity of MD. In our case of study,
the diattenuation matrix of the radial polarizer is a singular matrix, and it is a non-singular matrix
when dealing with the q-plate. Therefore, two different approaches must be followed in each case.

Appendix A.1. Case of a Singular Diattenuation Matrix

When MD is a singular matrix, the decomposition of M given by [27]

M = m00

 1
→

D
T

→

P
→

P
→

D
T

 =
 1

→

0
T

→

0 PI

 ·MR ·m00

 1
→

D
T

→

D
→

D
→

D
T

 (A4)

The retarder and depolarizer matrices are not unique, therefore, the retarder matrix MR is chosen
following the criterion given in [24]. The retardance parameter is then calculated as

R =

∣∣∣∣∣→R∣∣∣∣∣, with
→

R =

_
P ×

→

D∣∣∣∣∣_P ×→D∣∣∣∣∣arccos
(_
P ·
→

D
)
, (A5)

→

R being the retardance vector, which includes the combined effect of linear and circular birefringence

of the sample. Here,
_
P =

→

P/
∣∣∣∣∣→P ∣∣∣∣∣ is the unit vector along

→

P .

The depolarization parameter is defined as [27]

∆ = 1−
∣∣∣∣∣→P ∣∣∣∣∣. (A6)

Finally, the orientation of the polarizer transmission axis (θTA) with respect to the horizontal axis

is obtained from the elements of the diattenuation vector
→

D as [27]

θTA =
1
2

arctan
(

m02

m01

)
. (A7)

Appendix A.2. Case of a Non-Singular Diattenuation Matrix

On the other hand, when the diattenuation matrix MD is not a singular matrix (as is the case for
the q-plates) its inverse matrix can be calculated as [29]

M−1
D =

1
a2

 1 −
→

D
T

−
→

D I

+ 1
a2(a + 1)

 0
→

0
T

→

0
→

D
→

D
T

, (A8)

where a =
√

1−D2. Then, matrices M∆ and MR can be calculated from matrix M′ = MM−1
D = M∆MR,

which can be expanded to read as:

M′ = M∆MR =

 1
→

0
T

→

P∆ m∆

 ·
 1

→

0
T

→

0 mR

 =
 1

→

0
T

→

P∆ m∆mR

, (A9)

where
→

P∆ = (
→

P −m ·
→

D)/(1−D2) denotes the polarizance vector of the depolarizer, and m∆ and mR

are 3 × 3 sub-matrices of M∆ and MR.
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Let us consider m′ = m∆mR and let λ1,λ2,λ3 be the eigenvalues of m′(m′)T. Then, m∆ m∆ is
defined by

m∆ = ±
[
m′(m′)T +

(√
λ1λ2 +

√
λ2λ3 +

√
λ1λ3

)
I
]−1[(√

λ1 +
√
λ2 +

√
λ3

)
m′(m′)T +

√
λ1λ2λ3I

]
, (A10)

the sign being positive if det(m′) > 0 and negative if det(m′) < 0. Knowing
→

P∆ and m∆ determines
M∆, and the depolarization parameter ∆ is then defined through its diagonal elements as

∆ = 1−
1
3

∣∣∣tr(M∆) − 1
∣∣∣, 0 ≤ ∆ ≤ 1. (A11)

Finally, the retarder matrix MR. is obtained from Equation (A9) as MR = M−1
∆ M′, and the

retardance parameter (R) is calculated by

R = arccos
( 1

2
tr(MR) − 1

)
, 0 ≤ R ≤ π. (A12a)

R = 2π− arccos
(1

2
tr(MR) − 1

)
, π ≤ R ≤ 2π. (A12b)

The retardance vector
→

R is found from the elements MRij of the matrix MR as [29]

→

R =


R1

R2

R3

 = R
2 sin R


MR23 −MR32

MR31 −MR13

MR12 −MR21

, (A13)

and the orientation of the retarder optical axis (θOA) is calculated as

θOA =
1
2

arctan
(

R2

R1

)
. (A14)
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