
crystals

Article

Boundary Conditions for Simulations of Fluid Flow and
Temperature Field during Ammonothermal Crystal Growth—A
Machine-Learning Assisted Study of Autoclave Wall
Temperature Distribution

Saskia Schimmel 1,2,* , Daisuke Tomida 1, Makoto Saito 3,4, Quanxi Bao 3,5, Toru Ishiguro 3, Yoshio Honda 1,
Shigefusa Chichibu 1,3 and Hiroshi Amano 1

����������
�������

Citation: Schimmel, S.; Tomida, D.;

Saito, M.; Bao, Q.; Ishiguro, T.; Honda,

Y.; Chichibu, S.; Amano, H. Boundary

Conditions for Simulations of Fluid

Flow and Temperature Field during

Ammonothermal Crystal Growth—A

Machine-Learning Assisted Study of

Autoclave Wall Temperature

Distribution. Crystals 2021, 11, 254.

https://doi.org/10.3390/

cryst11030254

Academic Editor: Evgeniy

N. Mokhov

Received: 12 February 2021

Accepted: 1 March 2021

Published: 4 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan;
tomida@imass.nagoya-u.ac.jp (D.T.); honda@nagoya-u.jp (Y.H.); amano@nuee.nagoya-u.ac.jp (H.A.)

2 International Research Fellow of Japan Society for the Promotion of Science, Nagoya University,
Nagoya 464-8601, Japan

3 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
toru.ishiguro.b5@tohoku.ac.jp (T.I.); chichibu@tohoku.ac.jp (S.C.)

4 Mitsubishi Chemical Corporation, Ushiku, Ibaraki 300-1295, Japan; saito.makoto.mw@m-chemical.co.jp
5 The Japan Steel Works, Ltd., Muroran, Hokkaido 051-8505, Japan; Quanxi_bao@jsw.co.jp
* Correspondence: sas.schimmel@imass.nagoya-u.ac.jp

Abstract: Thermal boundary conditions for numerical simulations of ammonothermal GaN crystal
growth are investigated. A global heat transfer model that includes the furnace and its surroundings
is presented, in which fluid flow and thermal field are treated as conjugate in order to fully account
for convective heat transfer. The effects of laminar and turbulent flow are analyzed, as well as those
of typically simultaneously present solids inside the autoclave (nutrient, baffle, and multiple seeds).
This model uses heater powers as a boundary condition. Machine learning is applied to efficiently
determine the power boundary conditions needed to obtain set temperatures at specified locations.
Typical thermal losses are analyzed regarding their effects on the temperature distribution inside the
autoclave and within the autoclave walls. This is of relevance because autoclave wall temperatures
are a convenient choice for setting boundary conditions for simulations of reduced domain size.
Based on the determined outer wall temperature distribution, a simplified model containing only
the autoclave is also presented. The results are compared to those observed using heater-long fixed
temperatures as boundary condition. Significant deviations are found especially in the upper zone of
the autoclave due to the important role of heat losses through the autoclave head.

Keywords: ammonothermal; solvothermal; hydrothermal; natural convection in enclosures; compu-
tational fluid dynamics; conjugate heat transfer; machine learning; GaN; crystal growth; supercriti-
cal fluid

1. Introduction

Solvothermal crystallization processes are widely used for growth of bulk crystals as
well as particle syntheses. Solvothermal syntheses typically utilize fluids near or some-
times even far above their critical parameters in order to make use of enhanced solvent
properties, such as a combination of high diffusivity and low viscosity that facilitates mass
transport [1].

A variety of solvents are used, with water being the most abundant example. However,
nonaqueous solvents are increasingly being researched. Specifically, supercritical ammonia
has emerged as the solvent of choice for the synthesis of various nitride materials [2], with
the method termed ammonothermal in analogy to the term hydrothermal for syntheses that
use supercritical water as a solvent. While nitrides represent a group of materials of which
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many materials are yet to be discovered experimentally [3], the most intensively researched
nitride material grown by the ammonothermal method is bulk GaN.

Due to its high electric field strength and high electron mobility, GaN is an outstanding
material for power electronic devices [4,5] and enables new applications that cannot be
realized with conventional Si-based power electronics [4]. In particular, GaN devices
allow for very low specific on-resistance, hence, significant improvements in the energy-
efficiency of power conversion devices can be expected from GaN [4]. This is of increasing
importance due to recent, sustainability-driven developments, such as the trend towards
mass-adoption of electric vehicles and the increasing use of renewable energy sources [4].
For high power applications, it is desirable to use vertical device architectures (i.e., with the
current flow through the substrate) because such devices can handle much higher current
densities and operate at higher voltages than lateral devices [6]. Vertical GaN-on-GaN
devices require GaN substrates with low dislocation density [6]. For the above reasons,
making high-quality bulk GaN available at a competitive price will have a large impact on
power electronics for a sustainable society.

The ammonothermal method is an exceptionally promising and well-scalable method
for growth of high-quality GaN and has already made impressive progress. Single crystals
of nearly 4 inch size achieved by an ammonoacidic method has recently been demon-
strated [7]. Moreover, scalability towards growth of many crystals within one run has
been shown for 2 inch size crystals using an ammonobasic method [8]. Besides their
potential for mass production, ammonothermal methods yield access to single crystals
of exceptionally high structural quality, for instance in terms of dislocation densities and
radius of curvature [9], which is particularly important for applications in vertical power
electronic devices. Methods for controlling impurity concentrations based on corrosion
protection [10], in-autoclave synthesis of mineralizers [11] or the use of getters [12] have
also been developed.

Despite all these achievements, scale-up still requires a large amount of trial-and-error
based optimization of growth conditions. Numerical simulations are one way to guide
scale-up as well as to advance the understanding of underlying processes. Several groups
have studied ammonothermal growth by numerical simulations [13–16]; however, there are
several factors of uncertainty regarding the accuracy of such simulations. Validation data
are scarce due to the difficulty of experimental access at process conditions around 400 to
650 ◦C and 100 to 300 MPa. This work aims to shine light at one such factor of uncertainty,
namely the temperature distribution in the walls of an ammonothermal autoclave. In
most of the literature, outer wall temperatures are assumed to be constant within the
length of one heater (or similar wall sections) and this assumption is used to define
boundary conditions [13,16,17]. It is worth noting that for another solvothermal method,
the hydrothermal growth of quartz, the temperature distribution at the inner autoclave wall
has been reported to be far from uniform within the actively heated sections of the wall [18].
There is one previous study of an ammonothermal setup including the furnace and using
heater power as a boundary condition [14]. However, this study neglected convective
contributions to heat transfer in the first (2D) model that was used to determine wall
temperature distribution [14], so the question arises whether the influence of convection on
wall temperatures is negligible. Erlekampf et al. [14] do present validation data; however,
the investigated temperature configuration must be expected to minimize the influence
of convective heat transfer, given that for some reason the top of the autoclave is held at
a higher temperature than the bottom. Note that regardless of the mineralizer used, the
opposite temperature distribution is commonly used in the growth phase of bulk crystal
growth experiments in order to favor convective mass transport (see for instance [19] for an
overview of the method and typical configurations). In spite of the buoyancy-suppressing
configuration, Erlekampf et al. observe a deviation between simulation and validation
data of about 15 K near the bottom of the autoclave, which they ascribe to neglecting the
influence of convective heat transfer in the calculation that included the furnace and that
was used to determine thermal boundary conditions to the 3D flow simulation. The nearly
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constant temperature in radial direction in both their validation and simulation data [14]
also points towards a low contribution of buoyancy which could be just due to the inverted
temperature zone settings. In summary, further investigation is needed for the growth
phase, and it may be necessary to couple heat transfer and flow simulations even for
studying global heat transfer in the entire growth furnace. In addition, Erlekampf et al. [14]
(as the only authors who have studied the global thermal field in an ammonothermal
growth furnace) have presented information neither on the global thermal field inside the
furnace nor on the temperature distribution within the autoclave walls. The present study
also fills this gap.

While acknowledging that both fixed, section-wise constant temperature boundary
conditions and the use of separate models for wall temperature distribution and fluid flow
(i.e., the two approaches seen in literature) greatly simplify calculations, this work aims to
clarify whether those simplifications can be expected to yield sufficiently accurate results.
Note that buoyancy-driven convection can be significantly affected also by deviations from
perfectly adiabatic or perfectly conducting, not actively heated enclosure walls [20]. Such
effects have just recently been investigated for water in cuboid enclosures by Ferialdi et al.
who employed both numerical methods and experimental validation by flow visualization,
indicating that such effects remain an active field even of fundamental research [20]. As
Ferialdi et al. point out, the effective heat exchange taking place through not actively heated
walls may very well be of practical relevance, in particular if meaningful comparison of
numerical and experimental results is targeted [20].

2. Materials and Methods

Including the furnace in simulation poses the challenge that the heat sources are
spatially separated from the controlled temperatures. In the case of ammonothermal
autoclaves, precise temperature control is very important and therefore, thermocouples for
control of the furnace are typically placed directly at the outer autoclave wall, with special
measures taken to ensure proper thermal contact [10]. Initial simulations conducted in this
study have shown that neither the temperature distribution in the autoclave walls nor in
the heating elements of the furnace are homogeneous. Therefore, it is thought to be most
accurate to use the power that is supplied to the heating elements as boundary conditions.

2.1. Simulations of Temperature Distribution and Fluid Flow

Numerical models of an ammonothermal setup were set up using the commercial
software Phoenics (Concentration, Heat and Momentum Limited (CHAM)), which uses
the SIMPLEST (SIMPLE ShorTened) algorithm. Simulations were conducted effectively in
2D. Although there is a literature work suggesting that 3D simulations may be necessary
for accurately modeling heat and mass transfer in ammonothermal systems [14], 2D
simulations were deemed appropriate for the purpose of this study. Since the focus of this
study is on boundary conditions at the outer autoclave wall and their effect on temperature
and flow field inside the autoclave, short-term fluctuations due to three-dimensional flow
are not expected to have a major effect on the results of this study. Similarly, also the
effects of non-axisymmetric solids, namely the seeds, are not expected to be negligible for a
detailed study of internal fluid flow. However, the global effects of their lack of symmetry
are thought to be rather small. In particular, neither short-term fluctuations in fluid flow
nor the cuboid shape of the seeds are expected to affect the main goal of this study, which is
to identify suitable types of boundary conditions at the outer autoclave wall or at the active
part of the heaters. On the other hand, a large amount of computational time is saved by
using 2D simulations, given the large domain size that is necessary for studying the heat
transfer in the furnace and its surroundings.

Note that for the finite-volume numerical solution method employed in Phoenics CFD
software, a nonzero volume is required also for a 2D simulation. Therefore, a nonzero
third dimension is required, although the choice of this dimension (in which only one
mesh cell exists) is of no fundamental significance. It is, however, important to note
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that absolute quantities related to the volume or surface area of objects depend on this
third dimension. For this reason, heater powers needed to maintain certain temperatures
in the here presented simulations cannot directly be compared to experimentally used
heater powers. The third dimension was set to 1 mm; therefore, the simulation domain
represents a 1 mm thick slice through half of the experimental setup (approximating the
experimental setup as axially symmetric). Accordingly, the powers required to keep the
simulation domain at a given temperature are small compared to the heater output required
to maintain the same temperatures in the complete volume of an experimental setup.

The geometry was based on ammonoacidic literature assuming retrograde solubil-
ity [21,22] for the placement of seeds and nutrient. Three types of simulation cases were
used in this study. They will be termed A, B, and C. Cases of type A include the entire
setup including the furnace and its surrounding. The geometry of type A cases is depicted
in Figure 1a,b. The locations of control temperature measurement (corresponding to ther-
mocouple locations in experimental work) were 310 mm and 130 mm above the bottom
domain boundary of the type A cases. The lateral position of the control temperature
measurement locations was 32 mm, which is 3 mm inwards from the surface of the outer
autoclave wall and ensures evaluation of stable autoclave wall temperatures that are not
significantly affected by short-term fluctuations in convective flow of the surrounding air
inside the furnace. Fluid flow was considered both inside the autoclave and in air-filled
spaces of the furnace, i.e., in both the blue and red regions in Figure 1a. Dimensions and
materials of the autoclave and furnace are given in Figure 1b. Note that these dimensions
also apply to cases of types B and C, of which the simulation domain and geometry is
shown in Figure 1c. Vice versa, the materials and dimensions of the solids inside the
autoclave that are indicated in Figure 1c also apply to type A cases if interior solids were
present therein. The vertical length of each seed was 20 mm, and the lateral width was
3 mm (of which 1.5 mm were inside the simulation domain). The center of the seeds was
positioned 75 mm, 45 mm, and 15 mm above the bottom inner wall, respectively. The
ring-shaped baffle had an inner radius of 6.6 mm and an outer radius of 10 mm, resulting
in and open space ratio (OSR) of 30.25%. The thickness of the baffle was 1 mm. The center
of the baffle was located 135 mm above the bottom inner wall. The radius of the nutrient
was 10 mm, and the height of the nutrient was 150 mm. The center of the nutrient was
placed 215 mm above the bottom inner wall.
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respectively. To account for the temperature dependency of density as a driving force for 
buoyancy, Boussinesq approximation was used to model natural convection. This implies 
assuming that density variations are negligibly small everywhere except in the gravita-
tional term, and that density is a linear function of temperature T1. In this case, density 
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Figure 1. Geometry and materials used in simulation of temperature distribution and fluid flow.
(a) Domain of type A cases, with fluid regions indicated by color (blue: Air, red: Supercritical NH3).
The distance between bottom domain boundary and bottom of the furnace is 15 mm, (b) Close-up of
geometry showing the solid materials. The red areas correspond to the two heaters. (c) Simulation
domain, geometry, and materials for cases of type B and C, containing only the autoclave and its
interior. X, Y, and Z represent the positive directions of the cartesian coordinate system used to
describe the geometry in the simulation. Gravity acts in the negative Z direction.
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In order to investigate how different fixed-temperature boundary conditions at the
outer autoclave wall can yield similarly accurate results at lower computational cost, a
simplified model containing only the autoclave was set up. Depending on the fixed-
temperature boundary condition used, this simplified model will be termed type B and C,
respectively. Type B represents cases with heater-long fixed temperatures and otherwise
adiabatic walls whereas type C uses the temperature distribution determined for the
outer autoclave wall by an analogous type A simulation. (A complete list of conducted
simulation cases and the motivation for the choice of conditions will be given in Table 4
and the corresponding text section.)

An overview of the materials used is given in Table 1. The numbers in brackets are
used in subsequent tables as well as Figure 1 to refer to the materials.

Table 1. Overview of materials used in simulation of temperature distribution and fluid flow.

Material Description

Air (1) At 20 ◦C, 1 atm, treated as incompressible

NH3 (2) At 426.6 ◦C, 100 MPa, treated as incompressible

Steel (3) At 27 ◦C, C = 1%

Ni-Cr superalloy (4) At 600 ◦C

Active part of resistive heater (5) At 600 ◦C

Ni-Cr superalloy (6) At 538 ◦C

Insulation (7)

Baffle (8)

GaN (bulk) (9) Wurtzite GaN

The materials properties used are given in Table 2 for fluids and Table 3 for solids,
respectively. To account for the temperature dependency of density as a driving force
for buoyancy, Boussinesq approximation was used to model natural convection. This
implies assuming that density variations are negligibly small everywhere except in the
gravitational term, and that density is a linear function of temperature T1. In this case,
density variations do not appear explicitly in the momentum equations. Density variations
are thus described as a function of temperature T1 as follows (Equation (1)) [23]:

ρ− ρre f = −ρre f αv

(
T1 − Tre f

)
. (1)

Table 2. Material properties of fluids in simulation of temperature distribution and fluid flow. Data for air (at ambient
temperature) were taken from Phoenics inbuilt database, data for supercritical ammonia at 426.9 ◦C (the upper end of the
temperature range for which data are available) were obtained from NIST database [24].

Gas/Fluid ρ/(kg/m3) ν/(m2/s) cp/(J/(kg·K)) k/(W/(m·K) α/(1/K) β/(m2/N)

Air (1) 1.189 1.544 × 10−5 1005.0 0.02580 3.410 × 10−3 0.0

NH3,sc (2) 233.950 1.570 × 10−7 4216.5 0.16224 2.631 × 10−3 0.0

Table 3. Material properties of solids in simulation of temperature distribution and fluid flow.

Solid ρ/(kg/m3) cp/(J/(kg·K)) k/(W/(m·K) (1/E)/(m2/N) ε/(1)

Steel (3) 7800.0 473.00 43.00 0.50 × 10−11 0.2

Ni-Cr superalloy (4) 8260.0 533.00 20.60 6.00 × 10−6 0.8

Active part of resistive heater (5) 7150.0 750.00 20.00 5.88 × 10−6 1.0

Ni-Cr superalloy (6) 8249.0 452.00 18.90 5.30 × 10−6 0.8
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Table 3. Cont.

Solid ρ/(kg/m3) cp/(J/(kg·K)) k/(W/(m·K) (1/E)/(m2/N) ε/(1)

Insulation (7) 12.0 840.00 0.04 1.00 × 10−9 0.2

Baffle (8) 10,220.0 251.00 138.00 3.03 × 10−6 1.0

GaN (bulk) (9) 6150.0 518.41 100.13 3.39 × 10−6 1.0

The reference density ρre f is a constant density chosen as the density of air at ambient
conditions. αv represents the volumetric thermal expansion coefficient. Multiplying the
term ρ− ρre f with gravity g yields the buoyancy force.

The energy equation was formulated in terms of temperature (Equation (2)) [23]:

Mt−1

(
cp,e f f Tt−1 − cp,e f f Tt

)
/dt

+m+

(
cp,e f f ,+Tt,+ − cp,e f f Tt

)
+ m−

(
cp,e f f ,−Tt,− − cp,e f f Tt

)
−(A+k+/dX+)(Tt − T+)− (A−k−/dX−)(Tt − T−) = 0.

(2)

Therein, the subscripts (+/−) refer to the neighbor cells in positive/negative direction.
Subscript t refers to the current time-step whereas subscript t−1 refers to the previous
time-step. Thus, for instance, Mt−1 is the mass of fluid in the cell described by Equation (2),
at the previous time-step. The mass in-flow rate is denoted as m. A represents the cell-face
area and dX the distance between cell centers. The thermal conductivity is denoted as k.
Conservation of mass is implied. The energy source term cp,e f f is an effective specific heat
capacity and defined as cp,e f f = (H − Habs)/Tabs. Therein, H refers to the enthalpy, Habs
is the enthalpy of the material at absolute zero, and Tabs is the temperature on an absolute
scale (i.e., in Kelvin).

Radiative heat transfer was implemented using Immersol model [25] because a signifi-
cant contribution of radiation to the heat transfer from heaters to autoclave is expectable at
growth temperatures. Immersol model uses the grey-medium approximation (i.e., neglects
wavelength dependence). It is valid independently of the mean free path of radiation,
i.e., for optically-thin and optically-thick gaps filled with transparent medium but also
in-between those limits [23].

The radiosity Je, i.e., the sum of all radiation fluxes traversing the volume (regardless
of direction and wavelength) is defined by Equation (3):

Je = σT4
3 . (3)

In Equation (2), σ is the Stefan–Boltzmann constant and T3 is the radiosity temperature
in Kelvin, which is a separate variable in Phoenics. At the boundaries of transparent
medium and solids, as well as within solids, the radiosity temperature is equal to the first
phase temperature T1. The radiant flux at such boundaries, however, depends not only on
the gradient of T3 in the medium near the wall but also on the emissivity of the wall. The
differential equation for T3 is as follows (Equation (4)):

∇(λ3∇T3) +
.

QT3 = 0. (4)

Therein, λ3 represents the thermal conductivity pertaining to the radiosity temperature
T3 described by Equation (5):

λ3 = 4σT3
3 /
{

0.75
(
ε′1 + s′1

)
+ 1/Wgap

}
. (5)

Therein, ε′1 is the emissivity per unit length and s′1 is the scattering coefficient per
unit length, both referring to the phase in the space that is transparent to radiation. Wgap
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represents the gap between nearby solid walls. The source term
.

QT3 is related to the first
phase temperature T1 and the radiosity temperature T3 by Equation (6):

.
QT3 = −4ε′1σ

(
T4

3 − T4
1

)
. (6)

An in-depth description and rationalization of Immersol model can be found in [25].
Thermal losses were implemented through heat conduction, through natural con-

vection and through radiation to the ambient. Air exchange was allowed at the top and
side walls of the domain (domain walls at Y = + 300 mm and Z = + 800 mm in Figure 1a).
Only natural convection was considered. However, note that thermal losses to the air
surrounding the furnace would be higher if forced convection was considered in addition
(this may be relevant in practice in some laboratories if there are high air turnovers, for
example as a result of lab safety measures).

The fluid was treated as a clear fluid. Note, however, that transparency changes
under ammonothermal process conditions have been reported for visible light for the
GaN-NH4Cl-NH3-system [26] and that it is unknown whether the fluid remains clear to
infrared radiation under process conditions.

Both laminar and turbulent flow were considered, as it seems not fully clarified what to
expect inside the autoclave. For estimating dimensionless numbers, a flow speed maximum
of 0.2 m/s as reported by Erlekampf et al. [14] was considered. Furthermore, one tenth
of the maximum flow speed was also considered to account for regions of slower flow
as well as uncertainty due to a lack of experimental data. Flow velocities in the order of
0.01 m/s occur in simulation results in literature (e.g., Chen et al. up to 0.06 m/s in the
center gap of the baffle [27]). The definition by Lin and Akins is applied for determining the
characteristic length for the calculation of dimensionless numbers, as they have proposed
an approach specifically geared towards natural convection in enclosures [28]. For the
considered fluid density of 233.95 kg/m3 and using linear extrapolation of NIST [24] data
on viscosity to 550 ◦C (i.e., a dynamic viscosity of about 4.01 × 10−5 Pa·s), the Reynolds
number R is about 2.02 × 103 for 0.02 m/s to 2.02 × 104 for 0.2 m/s. Therefore, a transition
from laminar to turbulent flow is expected to occur depending on the location inside the
cavity. Prantl and Rayleigh numbers are about 1.04 and 2.51 × 109, respectively, which
strongly suggests turbulent flow (for the given Prantl number, a transition to turbulent
flow can be expected at Rayleigh numbers around 2.5 × 104 [29]). However, there are
doubts as to how precisely extrapolated viscosity of pure ammonia matches the viscosity
of the actual, solute-containing fluid [30]. A higher viscosity, as suspected based on
in-situ x-ray monitoring of the diffusion of Ga-containing solutes [30], could push the
Reynolds and Rayleigh numbers back to the laminar range, especially for small autoclave
diameters. It may be worth noting that a significant increase of viscosity due to mineralizer
addition is assumed for hydrothermal using KOH mineralizer [31]. Masuda et al. identify
this increase of viscosity due to mineralizer addition as the most significant deviation
from pure solvent properties [31]. Though not verified by measurements under process
conditions, this assumption is based on a viscosity increase of up to five times at 44 wt% at
room temperature [31]. Masuda et al. expect the results of their study be applicable also to
ammonothermal growth of GaN [31]. In conclusion, both the experimental ammonothermal
observation in [30] as well as the knowledge on mineralizer-containing hydrothermal
solutions at ambient conditions support suspecting a non-negligibly increased viscosity.
However, quantitative knowledge is missing, possible differences between the effects of
different mineralizers remain unknown, and a possible influence of Ga-containing solutes
beyond the effect of the mineralizer itself remains unclear.

Most studies in literature have assumed the flow to be turbulent [14,32–35], whereas
Mirzaee et al. appear to use a laminar flow model but give no reasoning for doing so [16,36].
Internal fluid temperature measurements showing irregular fluctuations on a short time-
scale [37] support the occurrence of turbulences.
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In summary, turbulent flow appears to be more likely to be the correct assumption,
though both are considered at this stage to see if there is a significant effect on the results
of this study of wall temperature distribution. Turbulent flow was modeled using LVEL
model, a prescribed effective viscosity model based on a work by D. Spalding [38], which
was originally developed for channel and pipe flows but can be expected to be approxi-
mately accurate also for more complex interactions between solids and fluids. It is suitable
in particular for transitional Reynolds numbers (as expected in the case of ammonother-
mal growth) and well-suited for conjugate-heat-transfer problems in complex geometries
while being computationally less expensive than Lam-Bremhorst-Yap and 2-layer-k-epsilon
models [23].

The equations used in LVEL model are as follows (see [23] and [38] for an extensive
description). The dimensionless distance from the wall, y+, is defined as described in
Equation (7):

y+ = y
√

τ/ρ

umolecular
. (7)

Therein, y represents the distance from the wall, τ the shear stress in the fluid, ρ the
density of the fluid and µmolecular the absolute viscosity of the fluid in laminar motion.

The dimensionless quantity u+ is defined as u·(ρ/τ)1/2. The two dimensionless quan-
tities y+ and u+ are related by a differentiable formula known as Spalding’s law of the Wall
(Equation (8)).

y+ = u+ + (1/8.6)
[
exp

(
Cu+

)
− 1− Cu+ −

(
Cu+

)2/2−
(
Cu+

)3/6−
(
Cu+

)4/24
]
. (8)

Differentiation of Equation (2) yields a universal relationship between the dimension-
less effective viscosity ν+ and the local Reynolds number R. This dimensionless viscosity is
used in the momentum equations, thus LVEL model is a form of zero-equation turbulence
model. The dimensionless effective viscosity ν+ is described as follows (Equation (9)):

ν+ = 1 + (C/8.6)
[
eC·u+ − 1 − Cu+ −

(
Cu+

)2/2 −
(
Cu+

)3/6
]
. (9)

The local Reynolds number R is defined as the product of the local value of the
absolute velocity of the fluid and the distance from the nearest wall divided by the laminar
viscosity. Since the product of u+ and y+ equals the local Reynolds number R, it can be
computed using Equation (10) for every location:

R = u+
{

u+ + (1/8.6)
[
eC·u+ − 1− Cu+ −

(
Cu+

)2/2−
(
Cu+

)3/6−
(
Cu+

)4/24
]}

. (10)

At every point in the flow, u+ is computed by an iterative Newton–Raphson procedure.
Consequently, the dimensionless effective viscosity ν+ and the effective viscosity can also
be computed for every point in the flow, which permits accounting for the effects of
turbulences.

The governing equations can be described in the following generalized form for
continuity (Equation (11)), conservation of momentum (Equation (12)), and energy equation
in the temperature form (Equation (13)):

∇→u = 0. (11)

ρ
∂
→
u

∂t
+

(
ρ

ϕ

→
u
)
· ∇→u = −∇p + u ∇2 →u − D

(
ϕu
K

+
ϕρF√

K

∣∣∣→u ∣∣∣) →u − ϕρre f αν

(
T1 − Tre f

)→
g . (12)

Therein, ϕ represents the porosity. The binary parameter D quals 0 for ϕ = 1 (i.e., any-
where outside a porous medium) and 1 for ϕ < 1 (i.e., inside a porous medium). The perme-
ability of the porous medium is K = d2

p ϕ3/(150(1− ϕ)2) with a nutrient particle diameter
dp of 5 mm. The Forchheimer coefficient F of the porous medium is F = 1.75/(

√
150ϕ1.5).

It should be noted that the viscosity µ in equation 12 is modified by the turbulence model
for cases A2, A3, B, and C. In those cases, an effective viscosity ue f f = ν+umolecular is used.
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Information on the calculation of the dimensionless effective viscosity ν+ has been given in
Equation (9).

The energy equation in temperature form is described in Equation (13):

ρcp
∂
→
T1

∂t
+ ρcp

→
u ·∇T1 = ∇·(k∇T1) +

.
Q. (13)

The energy source term
.

Q depends on the simulation case, which is due to the
differences in thermal boundary conditions. In case of type A cases,

.
Q is nonzero and

comprises the source terms introduced by the heaters per area,
.

Q1/A and
.

Q2/A. Moreover,
in the case of type A cases, there is an additional energy equation as stated above in
equation 4 for the radiosity temperature T3.

For case B, the boundary conditions were as follows:
For 175 mm ≤ Z ≤ 335 mm, Y = −35 mm (region of top heater): T1 = TTC,1
For 0 mm ≤ Z ≤ 137.5 mm, Y = −35mm (region of bottom heater): T1 = TTC,2

For 137.5 mm < Z < 175 mm and 335 mm < Z < 370 mm, Y = −35 mm:
.

Q = 0
(adiabatic boundary).

For Z = 0 mm and 0 mm ≥ Y ≥ −35 mm:
.

Q = 0 (adiabatic boundary)
For Z = 370 mm and 0 mm ≥ Y ≥ −35 mm:

.
Q = 0 (adiabatic boundary)

For case C, temperatures at all domain boundaries were fixed to the value of T1 that
had been obtained as a result of case A3 at the equivalent position.

For type A cases, the initial values were defined as follows: Pressure p = 1.01325 × 105 Pa
everywhere outside the ammonia-filled cavity and p = 1.0 × 108 Pa inside the ammonia-filled
cavity, velocity components v = 1.0 × 10–10 m/s and w = 1.0 × 10−10 m/s in all fluid-filled
regions, T1 = T3 = 20 ◦C.

For cases B and C, initial values were: Pressure p = 1.01325 × 105 Pa everywhere
outside the ammonia-filled cavity and p = 1.0 × 108 Pa inside the ammonia-filled cavity;
velocity components v = 1.0× 10−10 m/s and w = 1.0× 10−10 m/s in all fluid-filled regions;
T1 = 20 ◦C within the autoclave head (335 mm ≤ Z ≤ 370 mm). At the wall sections
corresponding to the position of the heaters, the set temperatures were used as initial
conditions in type B and C cases, i.e.: For 175 mm ≤ Z ≤ 335 mm and Y = −35 mm (region
of top heater): T1 = TTC,1; for 0 mm ≤ Z ≤ 137.5 mm and Y = −35 mm (region of bottom
heater): T1 = TTC,2. Outside the mentioned locations, the initial temperature for cases B
and C was T1 = 500 ◦C.

The following combination of solver types were used: AMG (BoomerAMG from
HYPRE, does not use a preconditioner) for pressure P1 (p), CGRS (Conjugate-Gradient-
Residual Solver) with PBP (Point-By-Point preconditioner) for velocity components vz and
vy as well as for the scalar variable LTLS and T3. The use of Conjugate-Gradient-Residual
Solver is known to be often advantageous for pressure P1 (p) when modeling buoyancy-
driven flows with complex geometry [39]. The same holds for TEM1 (temperature T1),
which denotes the first-phase temperature in Phoenics, in complex conjugate heat transfer
cases [39]. The variable LTLS is an auxiliary variable needed for the calculation of the
distance to the nearest solid wall and the gap width between two nearest solid walls [23].
T3 represents the radiosity temperature used by IMMERSOL radiation model [23]. For
TEM1, CGRS solver with AMG preconditioner was used. For the density ρ (or DEN1
in Phoenics), the STONE solver (the default solver in Phoenics that is based on Stone’s
Strongly Implicit method [39]) was used.

For all simulations, the double-precision version of the solver was employed, which
reduces the accumulation of round-off errors by changing accuracy from 7 to 15 significant
digits. The use of double precision had been found to facilitate convergence in initial
experiments with similar simulations, which is common in natural convection cases.

Since a lack of (precise) reproducibility can occur in numerical simulations under
certain technical circumstances [40] and a non-deterministic behavior of simulations could
cause “learning difficulties” for the machine learning model, simulation A3 was re-run
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five times to confirm reproducibility. The resulting wall temperatures at the locations
corresponding to the location of control thermocouples in the experimental setup were
found to be fully reproducible up to at least seven significant digits (no effort was made to
check repeatability beyond seven digits).

All simulations were implemented as transient cases because the fluid flow inside the
autoclave is most likely not stable over time. This assumption is in accordance with a nu-
merical study of 3D flow inside ammonothermal autoclaves that reports fluctuations of flow
velocities and temperatures [14], further numerical studies [15–17], and experimentally
observed temperature fluctuations [37,41] that originate from flow velocity fluctuations [37].
As expected based on those considerations, convergence appeared to be difficult to im-
possible when attempting to find a stationary solution. Recognizing the possibility of
multiple solutions for the flow field and the possibility that initial conditions can influence
which one of those solutions develop in the system [20], room temperature was consistently
used as initial value for the entire domain for type A cases. As expectable from these
considerations in conjunction with the high density and volumetric heat capacity of the
fluid, type A cases were found to be sensitive to the time grid in the sense that a change
in time grid would necessitate adapting the power of the heaters in order to maintain set
temperatures at the control thermocouple locations at the end of the last time step (final
solution). The general characteristics of the solution, however, did not show a pronounced
time grid dependence and thus, time grid dependence of the temperature distribution and
flow field are expected to be minimal if heater powers were adjusted for each time grid
tested. This was beyond the scope of the current study, given that the general results of
this study would not change significantly. The time grid was kept constant within this
study (except for the mentioned pre-experiments). The first timestep was set to 10 h to
ensure sufficient time for the establishment of a stable global temperature field (similar to
temperature ramp-up in an experiment). This duration was chosen based on experimental
experience and represents a conservative value, given that in an experiment, power is
increased gradually. Thereafter, two timesteps on a comparatively short timescale (5 s each)
were added in order to allow the flow to develop further. This led to a further decrease
in residuals, which is assumed to be due to the flow finalizing its development for the
then-established temperatures (especially temperature of slow-reacting high heat capacity
components such as autoclave walls).

Regarding discretization in space, regions with smaller cell sizes were defined inside
the autoclave and in the air gaps inside the furnace, and the grid was refined so that
stable convergence could be observed while keeping computation times reasonable. For
the A cases as an example, the average cell size in vertical direction was 1.07 mm and
the average cell size y-direction was 1.47 mm. The biggest cell volume divided by the
average cell volume was about 4.65 and the smallest cell volume divided by the average
cell volume was about 5.05 × 10−2

. For case A3 as an example, the normalized residuals
were 4.371 × 10−2% for P1, 1.564 × 10−1% for V1, 3.021 × 10−1% for W1, 1.887 × 10−2%
for LTLS, 2.503 × 10−2% for TEM1, 3.098 × 10−5% for DEN1, and 1.340 × 10−3% for T3,
respectively. A grid sensitivity test was conducted by doubling the number of cells in each
region of the cartesian grid. However, direct comparison proved to be difficult. With the
decreased cell sizes (beyond the previously determined well-converging, approximately
optimal grid), the residuals increased, seemingly because convergence deteriorated. The
unusual effect that a finer (intermediate) grid size can sometimes produce worse results is
mentioned in Phoenics Encyclopedia [23] in an evaluation that compares LVEL to other
turbulence models, albeit no explanation is given for this behavior. Assuming that the
cause is the deterioration of convergence, it would be necessary to re-optimize convergence-
promoting measures such as relaxation times for each variable in order to present a space
grid sensitivity study that does not suffer from convergence issues (but would again not
represent a straightforward comparison). We have therefore optimized discretization in
space rather for obtaining convergence than for achieving full grid-independence of the
solutions. In conclusion, minor deviations due to grid dependence may exist in those cases
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where solutions with different geometry had to be compared. To minimize this effect, the
space grids were designed for type A as well as for type B and C cases with all solids in
place. The simulations without internal solids were then performed using the same grids
as with internal solids.

Iterations were used as the termination criterion. A maximum number of necessary
iterations to obtain a quasi-steady state was determined by monitoring the progress of solu-
tion. The case with the highest sum of heater powers was chosen for this estimation because
the initial value for temperature was room temperature throughout the domain and thus
the necessary number of iterations increases with increasing heater power. Both observed
convergence and stabilization of a spot value of outer wall temperatures were considered
in order to ensure both reaching of final temperatures and numerical convergence.

An overview of simulation cases presented in this study is given in Table 4.

Table 4. Overview of simulation cases relating them to their label in the text and figures.

Label Geometry Type Flow Interior Solids Boundary Condition

A1 With furnace Laminar None Heater power

A2 With furnace Turbulent None Heater power

A3 With furnace Turbulent Nutrient, baffle and seeds Heater power

B Autoclave only Turbulent Nutrient, baffle and seeds Heater-long fixed T

C Autoclave only Turbulent Nutrient, baffle and seeds Fixed outer wall T
distribution from A3

The model including the furnace was solved in three variations to investigate the
impact of the flow model and the impact of solids inside the autoclave. The purpose of the
geometry variation inside the autoclave was clarify how sensitively the wall temperature
distribution reacts on changes in convective heat transfer inside the autoclave.

For comparison, the case closest to growth conditions (A3) was also simulated using
the “conventional” method for boundary condition definition, i.e., including only the
autoclave and with heater-long fixed temperatures and adiabatic walls elsewhere (B).

Lastly, the wall temperature distribution of case A3 was exported with a resolution of
0.5 mm and used as a boundary condition for an autoclave-only case termed case C. This
was done in order to investigate the option of using a less complex geometry for detailed
studies based on the wall temperature distribution obtained by the simulation including
the furnace.

2.2. Machine Learning for Adjusting Input Parameters of Simulations

A complication for simulations using heater power as boundary condition is that it
is difficult to directly simulate a case with specific set temperatures, as it is not known
beforehand what power settings need to be used in order to reach (but not exceed) the
specified set temperatures. In the following, the rate of heat supply to the heaters (or their
output powers) will be termed

.
Q1 and

.
Q2, for the top and bottom heaters, respectively.

Other quantities will carry subscripts 1 and 2 for the top and bottom zones as well. A
combination of parametric runs and a machine learning model was used to accelerate
the process of determining values for

.
Q1 and

.
Q2. The idea behind this is that for an

otherwise given model, it may be possible to find a sufficiently accurate description of the
relationship between heater powers and temperatures at the thermocouple locations that is
much simpler and computationally less expensive than a simulation of heat transfer and
fluid flow. Machine learning models using simulation results as input data have already
been applied for modelling flow velocity and supersaturation in SiC solution growth,
aiming at more efficient optimization of growth parameters [42]. This shows that fluid flow
can be modelled relatively accurately using machine learning algorithms, suggesting that
our approach for power tuning may also be feasible. Also, a machine learning model may
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be able to capture the effects of changes to the physical model studied by re-training on a
relatively small number of simulations run with these variations as additional features. A
flowchart visualizing the workflow of the integrated approach using both physics-based
simulations and machine learning is depicted in Figure 2. The initial values for

.
Q1 and

.
Q2 need to be guessed well enough to produce a converging simulation while limiting
temperatures to a physically reasonable range (20 ◦C to 3000 ◦C were used). Therefore, it
can be necessary to do (or start and cancel if not converging due to exceeding the upper
temperature limit) a few simulations initially. Once a rough estimate of the maximum
power had been found, an evenly spaced grid of values was used to obtain more initial
training data by conducting parametric runs. New values for

.
Q1 and

.
Q2 were chosen based

on the predictions of the machine learning models. For this purpose, the models were used
to predict temperatures TTC,1 and TTC,2 for 10,000 different power settings, which were
created by generating two sets of random numbers and scaling them to the range of powers
that had initially been found to be suitable for keeping temperatures in a reasonable range.
From those predictions, 10 to 20 sets of power settings were chosen by searching for those
that yield TTC,1 and TTC,2 closest to Tset,1 and Tset,2. These were then used in the next round
of simulations (for technical reasons, the number of simulations that can be conducted
within one parametric run depends on the number of digits of the parameters, hence the
number had to be decreased when approaching the target values).
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Machine learning models were programmed in Python using Tensorflow and scikit-
learn software library. Both random forest regressor and a neural network models were
tested. Due to the need to predict two temperatures (TTC,1 and TTC,2), MultiOutputRegres-
sor was used when using models that do not natively support multiple outputs (random
forest regressor). The number of features can be as low as two (

.
Q1 and

.
Q2) as long as the

physics-based simulation considers only one model that does not vary except for the heater
power settings. The model was initially trained on a subset of data with heater powers
being the only two features, and subsequently re-trained as features had to be added and
corresponding data became available.

Additional features (besides heater powers) comprise different open/space ratio of
the baffle, number of seeds, nutrient porosity, and flow models. After adding new features,
hyperparameters of the models were adapted in order to optimize accuracy. To make
the process more time-efficient and also to make results regarding model accuracy more
deterministic but keep the procedure efficient, hyperparameters that were found to have a
significant influence in initial trials were optimized automatically by randomized search.
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For the random forest regressor, mean absolute error was used as the criterion to
evaluate the quality of a split. The most relevant parameters, which were then subject to
automated hyperparameter optimization were the number of estimators and the maximum
depth of the decision tree. For neural networks, the most relevant hyperparameters were
the number and size of hidden layers and activation function, with the former two being
the more important ones.

Although an extensive study of the developed machine learning algorithms is beyond
the scope of this study, an overview on the performance of the models will be given. For
this purpose, hyperparameters of models were optimized for a representative sample of
typical datasets and the best obtained models were evaluated regarding their accuracy and
training time. For evaluating the performance of the machine learning models as a function
of dataset size (dataset group DG1 in Table 5), the order of the data was randomized prior
to training in order to avoid unintentional co-evaluation of other factors affecting accuracy.
Such factors could be specific to subsets of data containing only data with constant values
for some of the features. An overview of groups of datasets used for evaluation is given in
Table 5.

Table 5. Groups of datasets used for model evaluation. For the group that varies in the number of features (DG2), more
detailed information is given in brackets in the following format: (Number of simulation datasets, number of features
varying within these datasets).

Dataset Group Varying Parameter Parameter Values

DG1 Number of simulation data sets 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 137

DG2 Number and types of features varying
within dataset

No internal solids (54/3), no internal solids but only turbulent
flow (59/3), all features but only laminar flow (50/5), all features

but only turbulent flow (85/5)

For the evaluation of the models, we will focus mainly on models using the resulting
final dataset. This dataset will therefore be described and visualized in the following. An
overview on the distribution of tested power settings (regardless of other features) is shown
in Figure 3. The diagonal from low to high powers stems from the initial investigation to
determine a suitable range of power settings. Since simulations subsequently focused on
power settings resulting in temperatures close to the target values, the vicinity of those
power settings is represented by more datapoints. While this may not be optimal for
obtaining a model that generalizes well, it was sufficient for the purpose of the models in
the current study.

It is important to note that also the additionally features are not represented by equal
amounts of data. This is visualized in Figure 4, which also shows the distribution of data as
a function of control thermocouple temperatures. If plotted as a function of temperatures,
the distribution of data exclusively follows a diagonal line (different from if plotted as
a function of power settings). This indicates that both heaters have a significant effect
on both zones. Comparing the subplots in Figure 4 shows that most simulations with
laminar flow were done without internal solids such as nutrient, seeds and baffle. This is
for two reasons: Firstly, laminar flow and an autoclave empty of solids were used for initial
simulations for simplicity. Secondly, solids act as obstacles to flow and hereby increase the
probability for the flow to be turbulent, thus, the combination of laminar flow with internal
solids appears less likely to occur in reality. This distribution of data is not ideal from a
machine learning perspective because it would be easier for a model to adequately capture
the effects of all features if comprehensive data with all features varied independently were
available. However, the objective here was to create data that are just good enough to find
appropriate power settings reasonably quickly.
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3. Results and Discussion

The methodic results regarding machine-learning-assisted simulations will be pre-
sented, followed by simulation results on outer autoclave wall temperature distribution.
The effects of different boundary condition definition methods on the internal temperature
and flow field results will be analyzed and the implications for future work will be dis-
cussed. First, result of the random forest regressor will be shown because this also allows
for evaluating the relative importance of different features.

3.1. Results and Performance of Machine Learning Algorithms

Performance of a random forest regressor trained on the complete dataset at the end
of this study is visualized in Figure 5a,b. It can be seen from Figure 5a that data from
simulations are matched better in the region that contains most datapoints. Nevertheless,
it is also clearly visible in Figure 5b that even in the core region of interest (i.e., vicinity
of the targeted set temperatures), deviations are significant. Thus, the random forest
regressor is most useful for initial rough estimation of a suitable power range to be studied
in more detail, and for approximately quantifying feature importances. A bar diagram
of feature importances (Mean Decrease in Impurity—see, e.g., [43] and references therein
for a theoretical background on random forests and the related terminology) is presented
in Figure 5c. The standard deviation of feature importances between the trees forming
the forest (inter-trees variability) is displayed in the form of error bars in Figure 5c. The
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inter-trees variability suggests that both heater powers as well as the flow model have
a statistically significant correlation with temperatures TTC,1 and TTC,2, whereas this is
less clear for nutrient porosity. The number of seeds and open/space ratio do not show
a clearly significant impact on the temperatures TTC,1 and TTC,2, thus we conclude that
they have either no or only a weak influence on wall temperatures for a given combination
of heater powers. It is interesting that the power of the bottom heater is recognized as a
more important feature than the power of the top heater. This is a further indication of the
importance of convective heat transfer, as convective heat transfer will cause heat transfer
from the bottom to the top. This also fits well with a study by Li et al. [18] on industry
scale hydrothermal autoclaves that views the bottom heater as the main heater and even
assumes an outgoing heat flux for the autoclave wall in the region of the top heater.
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Testing individually optimized neural networks for different sub-datasets (i.e., con-
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Figure 5. Results using the complete dataset at the end of this study. (a) Overview of simulated data together with those
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importances obtained from the random forest regressor model (error bars represent inter-trees variability).

Testing individually optimized neural networks for different sub-datasets (i.e., con-
taining a reduced number of features or smaller amount of data, as dominant during data
generation) shows that neural networks usually yielded a lower mean absolute error (or
higher accuracy) compared to random forest regressors. Corresponding data are presented
in Table 6. Though yielding better accuracy, neural networks also require more time for
training and especially for the optimization of hyperparameters. The large standard devia-
tion in both hyperparameter optimization and training times for neural network originate
from the use of different activation functions, which strongly affects training times. In
addition, the second investigated hyperparameter—number of hidden layers and numbers
of neurons therein—also has a pronounced effect on training times. However, for the
discussed task it is usually reasonable to invest the time needed to train neural networks.

Table 6. Summary of typical data characterizing the accuracy and time-efficiency of random forest regressor and neural
network models in this study. The term average indicates that values are an average of those for TTC,1 and TTC,2. The values
in the table represent averages obtained using 19 datasets as described in Table 5.

Model Type Mean Absolute Error
(Average)/K

Mean Accuracy
(Average)/%

Hyperparameter Optimization
Time/min

Training Time (Best
Estimator)/s

RFR 39.21 ± 19.89 92.61 ± 7.08 0.18 ± 0.34 1.19 ± 0.27

NN 14.94 ± 11.95 96.55 ± 3.44 11.28 ± 36.91 17.10 ± 19.50

The standard deviation for the average mean absolute errors indicate that there is a
considerable variation depending on the number of features, amount of data per feature,
and total amount of data for both types of models. However, trends behind such variations
were not clearly observable due to the simultaneous variation of number of data and
number of features.
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An exemplary comparison of random forest regressor and neural network predictions
in relation to simulation results is shown in Figure 6. Mean absolute errors in this example
are 24.54 K for random forest regressor and 5.88 K for neural network, respectively. This
comparison is for an intermediately complex (3 features) dataset of intermediate size
(54 simulations). The neural network performs better especially when power settings of the
two heaters are very different and seems to be better at capturing effects of turbulent flow.
Nevertheless, the differences between the two models are less pronounced in the core area
of interest (around TTC,1 = 550 ◦C and TTC,2 = 650 ◦C), which is probably due to a higher
density of training data in that region. This higher density of data probably also is the
reason that the accuracy of the models appears to be somewhat better in this core region of
interest, thus, the errors and accuracies calculated for the entire data space underestimate
the usefulness of the models. However, due to the high accuracy that would be desirable
for the core region of interest both models were found to be most useful for speeding up
the process of finding approximately suitable power settings. For finetuning (decreasing
deviations from set temperatures from about 5 K to less than 1 K, manual adaptation of
power settings was therefore sometimes found to be the easier path.
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Figure 6. Exemplarily comparison of prediction data from random forest regressor and neural network to test data.
(a) Bottom temperature TTC,2 as a function of top power

.
Q1, (b) bottom temperature TTC,2 as a function of bottom power

.
Q2, (c) splitting of the data by the third feature, namely flow model.

It is worth noting that although it is technically simple to create a model to directly
predict heater powers for specified control thermocouple temperatures (i.e., using tempera-
tures as a feature to predict corresponding power settings) this showed considerably worse
results. A likely reason for this is that a combination of heater powers will deterministically
result in a combination of temperatures TTC,1 and TTC,2 but a combination of temperatures
can occur as a result of more than one combination of power settings. It was therefore more
practical to use powers as features and make a large number of predictions for random
power settings and select those that happened to come close to the desired temperatures
for further consideration.

3.2. Results of Simulations That Include the Entire Growth Setup

An overview of the temperature distribution for the entire domain is shown in Figure
7 for cases A1, A2, and A3, respectively, and an analogous overview regarding the velocities
is given in Figure 8. Note that the temperatures TTC,1 and TTC,2 for all evaluated type A
cases deviate by only 0.3 K on average (maximum deviation: 0.9 K) and are thus deemed
fully comparable for the purpose of this study. Specific values are denoted in Figure 8.
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The adaptations in heater powers needed to reach near-identical temperatures at the
control thermocouple locations is visible in the heater temperatures and the temperature
distribution within the heaters. The trend of decreasing bottom heater temperature and
increasing top heater temperature from A1 to A2 to A3 may be due to a decrease in
convective heat transfer. From A1 to A2, the change from laminar to turbulent flow allows
multiple, shorter convection cells to develop inside the autoclave whereas in case A1 there
is only one convection cell with higher maximum velocities (see Figure 9 for a close-up of
the interior space of the autoclave with adapted velocity scale).
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In accordance with expectations, the velocity distribution in the air-filled spaces of
the domain is very similar for all three cases (Figure 8). The higher maximum velocity
above the autoclave head is likely due to more pronounced convective heat transfer inside
the autoclave transporting heat to the autoclave head. Since the velocities are similar for
all three cases in the air-filled spaces inside the furnace, it appears unlikely that there is a
major direct effect of the flow model change on air flow and the related heat losses.

Regardless of the flow model and the presence or absence of solids inside the autoclave,
inhomogeneous temperature distributions were found within each heater as well as within
the corresponding sections of the autoclave wall (see Figure 9 for a close-up showing only
the autoclave with an adapted temperature scale). It is worth noting that qualitatively
similar inhomogeneities in wall temperatures within heater regions have also been found
in numerical simulations of industry scale hydrothermal autoclaves [18], suggesting that
wall temperature inhomogeneity occurs in a wide range of solvothermal reactors.

The wall temperature distribution remains qualitatively similar in all three cases. It
is clearly evident that major heat losses through the uninsulated autoclave head have a
strong effect on the temperature distribution in the autoclave wall that extends well into
the region of the upper heater. This suggests that insulation or possibly even heating
of the autoclave head could allow for improved control of temperature distribution and
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consequently supersaturation inside the autoclave. In terms of the fluid flow, there is a
significant difference that affects internal temperature distribution: While laminar flow (in
an autoclave empty of solids) results in a single convection cell and thus rather homogenous
internal temperature distribution, multiple convection cells appear when turbulent flow is
assumed. The occurrence of multiple convection cells can be related to the development
of multiple regions that are characterized by more pronounced temperature differences
and thus become visible in Figure 9. Expectably, this effect is fostered by the presence of
solids, as they act as obstacles to flow and tend to cause a more complex flow consisting of
an increasing number of smaller flow cells.

Isotherms through the autoclave walls are relatively close to horizontal in the upper
half of the autoclave. Overall, it can be seen clearly that the thermal gradients in the outer
autoclave wall are passed on to the inner wall and therefore must be expected to have a
significant impact on the internal flow field. Slopes in isotherms through the autoclave wall
appear to be caused by convective heat transfer inside the autoclave, resulting in opposite
algebraic slope for the growth and dissolution zones, respectively.

A more detailed analysis of the temperature distribution at the outer autoclave walls
is given in Figure 10, which shows profile plots of temperatures along all autoclave walls.
Deviations between the different cases increase with increasing distance from the control
thermocouple locations (labeled bottom/top heater setpoint in Figure 10). This is to be
expected because heater powers were adjusted so as to create set temperatures at the
locations where control thermocouples are located in the real experimental setup. For
the vertical wall (Figure 10a), the length and position of the heaters is also indicated,
and temperature distribution for heater-long fixed temperature boundary conditions are
depicted schematically. This indicates that up to 50 K difference can occur at the outer
autoclave wall depending on the method of boundary condition definition.
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Figure 10. Temperature distributions at outer autoclave walls determined by simulations of the complete setup including
the furnace. (a) Vertical autoclave wall. (b) Horizontal autoclave walls (horizontal position of 0 corresponds to symmetry
axis of autoclave). For the top autoclave wall, a position in the autoclave head corresponding to the thickness of the bottom
autoclave wall was chosen, as this mimics a suitable choice for simulations that do not include the furnace.

Regarding the top and bottom walls of the autoclave, the largest deviations occur
between the two cases without interior solids. Deviations range from 8 K (bottom wall
close to center) to 20 K (top inner wall close to center). This shows that convective heat
transfer has a significant impact on the temperatures at autoclave head and bottom. This
suggests that not only the flow model but also other assumptions that affect convective
heat transfer (such as fluid properties) must be expected to have noticeable effects.
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At the bottom of the autoclave, temperatures are higher at the outside and lowest
at the center. This is in accordance with expectations because there are heat losses by
convective heat transfer to the top and because these are less compensated further away
from the heater. At the top of the autoclave, the opposite is observed, which is most likely
due to a heating effect of warmer fluid rising as well as due to the geometry of the autoclave
head (the distance to the nearest air-cooled head surface is longer at the center).

The general shape of the profile plots is similar in all cases, suggesting that it may be
feasible to define boundary conditions as a location-dependent function that matches the
set temperature at the control thermocouple locations.

3.3. Accuracy Losses with Conventional Boundary Condition Definitions

In the following, simulation case B will be analyzed in comparison to case A3. Case C
is also plotted in the figures of this section for easier comparison but will be discussed in
Section 3.4.

The comparison of case B and A3 shows that there are remarkable differences in
the internal temperature distribution and velocity field depending on the method of
boundary condition definition. As it can be seen in Figure 11a, there are major deviations
in temperature distribution along the vertical direction at the centerline of the autoclave.
Temperature deviations are most pronounced in the upper part of the autoclave and reach
about 155 K near the top inner wall. This is likely to be relevant because the growth process
is driven by the dependency of GaN solubility on temperature. Deviations in the growth
zone are comparatively small (up to about 15 K) but could still have a noticeable effect. In
particular, temperatures at seeds turns out to be more sensitive to seed position than a type
B simulation would suggest. A thermal gradient between seeds at different height is in
agreement with experimental results: There is usually an increase of growth rates towards
the bottom of the autoclave.
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condition definition along the centerline of the autoclave (a,b) and in the vicinity of the inner autoclave wall (c,d). Regions
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In particular, the combination of a 15 K temperature deviation in the growth zone
and a 60 K temperature deviation well within the nutrient can have large effects on the
solubility difference between nutrient and seeds and therefore significant effects on growth
rate must be expected. Experimental research with fluid temperature measurements near
seeds and nutrient shows that the above-mentioned combination of temperature deviations
can easily change growth rates by 100 µm/day in ammonothermal GaN growth using Na
as mineralizer—the reader is encouraged to study Figure 2 in the referenced experimental
study by Griffiths et al. [41].

As for the flow field (Figure 11b), results with both types of model are very similar
in the vicinity of the seeds. However, type B simulation appears to exaggerate the flow
velocity in the growth zone under the baffle and dampen local flow velocity fluctuations
in the dissolution zone. Flow velocities in the dissolution zone are expected to affect
dissolution kinetics, which in turn could have an impact on both on-seed growth and wall
deposit formation.

In Figure 11c,d, temperatures and velocities in the vicinity of the inner wall are
analyzed as a function of vertical position. The same general trends as already described
for along the centerline are observed.

An analogous analysis for temperature and flow velocities in radial direction is pre-
sented in Figure 12 for two different vertical positions. Figure 12a,b refer to the vertical
position at which the center of the nutrient is located, whereas Figure 12c,d refer to the
vertical position of the center of the middle seed. As one may already suspect from the
vertical profile line analyses, the temperature distributions in the growth zone show the
same qualitative trends for all investigated boundary condition definitions (Figure 12c).
Also, the radial distribution and magnitude of velocities is very similar in the growth zone
(Figure 12d). However, as already indicated by the vertical plots, there are major deviations
in the upper part of the autoclave. Figure 12a shows an inversion of the radial gradient,
turning into a warm wall scenario for simulation A3. Note that the temperature scale in
Figure 12a,c is rather different, thus, the deviations near the seeds shown in Figure 12c are
not as large as they may seem at first. The radial distributions of velocities in the upper
part of the autoclave is also rather different, although average magnitudes remain similar
(see Figure 12b).
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3.4. Refined Boundary Condition Definition Methods

A variety of adapted methods of boundary condition definition can now be envisioned.
To balance computational cost and accuracy, it is of course desirable to work with a
model that remains as small as possible, especially for detailed simulations of which
many minor variations need to be computed. In the following, we investigate the option
of working with a combination of type A simulations for determining the outer wall
temperature distributions and a simplified simulation (type C) that uses the obtained
outer wall temperature distribution as a boundary condition. The results of such a type
C simulation are compared with those of a simulation that uses heater-long fixed set
temperatures and adiabatic walls elsewhere (“conventional” boundary conditions, type
B), as well as to type A simulation. Temperature distributions as well as flow fields of
simulations with a typical set of internal solids as present during growth are shown in
Figure 13 for all types of boundary condition definition.
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As one can see from Figure 13, type C preserves the general characteristics that were
observed in the corresponding simulation that included the furnace (A3), such as notice-
able thermal gradients especially within the dissolution zone and the maximum velocities
occurring further away from the seed crystals. For both A3 and C, the region where the
two main convection cells meet resides inside the porous medium, in contrast to the result
with heater-long fixed temperatures (B). This can be expected to have a major effect on mass
transport during crystal growth. It should however be noted that more detailed studies that
capture the variations of fluid flow speeds (and possibly flow pattern structure) over short
and intermediate timescales need to be conducted in the future in order to fully evaluate
which effects on crystal growth are to be expected. Capturing such short-term fluctuations
was beyond the scope of this study, as the focus was to determine a realistic wall temperature
distribution and suitable approach for future studies.

In view of the moderate sensitivity of outer wall temperatures to changes in flow
obstacles or flow model (analyzed in Figure 10), we conclude that the considered stepwise
approach can provide a reasonable balance of accuracy and computational cost, especially
when further physical or chemical processes are to be included. This stepwise approach
starts with a simulation using fixed heater power and including the furnace, with an
internal geometry that should preferably be representative for an average of the internal
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geometries in the planned, more detailed studies. This outer wall temperature distribution
can then be transferred to a simulation that includes only the autoclave, where it can
be used as a fixed temperature boundary condition. This should be efficient as long as
there are no frequent changes in set temperatures. In case of changing set temperatures,
the process can be accelerated using machine learning for determining the appropriate
power settings. Other ways to deal with frequent changes to set temperatures may be
the numerical implementation of proportional–integral–derivative (PID) control or the
definition of wall temperatures as a function of set temperatures and location based on
the analysis of profile curve shapes of the temperature distribution. Such approaches are
beyond the scope of this work but may be subject to future studies.

As for the computational cost, on the same workstation, case A3 took 3120 s of
CPU time whereas B and C took 796 s and 457 s, respectively. It should be noted that
the difference will become larger by various model modifications that have practical
relevance for detailed studies of the internal flow. This includes anything that increases
the computational cost per grid cell. In particular, simulations with high time resolution,
3D calculations, or simulations with added physics (such as supersaturation) are expected
to be prohibitively time-consuming without limiting the domain to the autoclave for
detailed studies.

4. Conclusions

The effect of different boundary condition assumptions on the internal temperature
and fluid flow fields in ammonothermal autoclaves has been investigated directly for the
first time. The results indicate that it is insufficient to use heater-long fixed temperatures
at least if temperature distribution and fluid flow in the upper zone of the autoclave are
also of interest. Deviations up to 155 K were observed at the upper end of the reaction
chamber, which corresponds to the dissolution zone in the here investigated case of retro-
grade solubility. Clearly, this is a too large deviation if the dissolution process and local
supersaturation are to be studied in a simulation. The observation that internal tempera-
tures are affected by different types of boundary conditions especially in the upper part
of the autoclave suggests that heat losses through the autoclave head are of significance.
This suggests that insulation or direct temperature control through an additional heater
may improve the controllability of internal temperature distribution and supersaturation.
Depending on the boundary conditions there are also significant differences in flow pattern,
in particular regarding the region in which the main convection cells meet. Especially for
any simulation that includes mass transport of solutes, a more accurate way of defining
thermal boundary conditions appears essential in view of these results. This holds in
particular for simulations that implement local supersaturation as the driving force for
ammonothermal crystallization, given that temperature deviations of about 60 K extend
through much of the dissolution zone and add to temperature deviations of up to 15 K in
the growth zone.

If growth and dissolution zones are inverted due to normal solubility, heat losses
through the autoclave head can be expected to have an even more significant effect on the
temperature distribution and fluid flow in the growth zone, since the growth zone is in the
upper part of the autoclave in the case of normal solubility.

A first method for addressing the boundary condition problem was also presented.
A balance between accuracy and computational cost can be achieved by combining two
different models. The first model contains the furnace and its surrounding and uses heater
powers as boundary conditions. This first model provides a realistic wall temperature
distribution that is used as a fixed temperature boundary condition in the second model,
which only includes the autoclave (including its walls). It is important to note that both
models are conjugate in the sense that flow and temperature fields are solved simulta-
neously so that they can affect each other. This is necessary due to the importance of
convective heat transfer.
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For the practical problem of determining suitable power settings to match heater set
temperatures, machine learning models and in particular neural networks can help to learn
faster and more sustainably from past simulation experiences. Random forest regressors
proved to be useful mostly at the beginning of the study when the amount of data was too
small for neural networks to yield good accuracy; however, neural networks outperformed
the random forest regressors as more data became available. Therefore, when applying this
method on a regular basis with an increasing amount of data, neural networks are expected
to yield better prediction accuracy as observed in the later parts of this study. However,
random forest regressors remain useful even in the case of good data availability because
they provide insights into the relative importance of different features. They can thus help
to recognize features that do not show a statistically significant correlation with the target
variables, which can be useful for example for implementing only relevant features in a
neural network. Note, however, that it is important to select an appropriate measure of
feature importance for the goals and data of a specific study (see for example [44] and
references therein for an overview of established methods and recent developments in the
variable importance evaluation of random forests). For both random forest regressors and
neural networks, implementing automatic optimization of hyperparameters was found to
be very helpful from the practical viewpoint of minimizing human trial-and-error efforts.
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Nomenclature
Abbreviations
DG dataset group
NN neural network
RFR random forest regressor
Variables and physical quantities
cp specific heat capacity
E Young’s modulus
k thermal conductivity
p pressure (representing first phase pressure P1 in Phoenics)
t time
T1 temperature (representing first phase temperature TEM1 in Phoenics)
T3 radiosity temperature (representing variable T3 in Phoenics)
Tset,1 set temperature at control thermocouple location of zone 1 (top heater zone)
Tset,2 set temperature at control thermocouple location of zone 2 (bottom heater zone)
TTC,1 temperature at control thermocouple location of zone 1 (top heater zone)
TTC,2 temperature at control thermocouple location of zone 2 (bottom heater zone)
α linear thermal expansion coefficient
αv volumetric thermal expansion coefficient
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β compressibility
ε emissivity
λ3 thermal conductivity pertaining to the radiosity temperature T3
ν kinematic viscosity
ρ density
.

Q energy source term
.

Q1 power of heater zone 1 (rate of heat supply at top heater)
.

Q2 power of heater zone 2 (rate of heat supply at bottom heater)
M mass of fluid in a mesh cell
m mass-inflow rate
Tset set temperature for heater control
y+ dimensionless distance from the wall
u velocity
v velocity component in Y-direction
w velocity component in Z-direction
u+ auxiliary variable defined as u·(ρ/τ)1/2
v+ dimensionless effective viscosity
L distance from the nearest wall
VEL local velocity
dX distance between mesh cell centers
A cell-face area
H enthalpy
Je radiosity
ε′1 emissivity per unit length
s′1 scattering coefficient per unit length
Wgap gap between nearby solid walls
τ shear stress in the fluid
µ dynamic viscosity
µmolecular the absolute (dynamic) viscosity of the fluid in laminar motion
R local Reynolds number
Re Reynolds number
K Permeability of the porous medium
F Forchheimer coefficient
D binary parameter to combine equations for free flow and porous media flow
dp particle diameter of the porous medium
Subscripts
− neighboring mesh cell in negative direction
+ neighboring mesh cell in positive direction
abs absolute (referring to absolute temperature in Kelvin)
eff effective
ref reference
t current time step
t−1 previous time step
TC thermocouple/location of control temperature measurement
T3 pertaining to heat radiation/radiosity temperature T3
Operators
u equal or almost equal
6∼= neither exactly nor approximately equal
Constants
C Karman constant (equal to 0.417)
σ Stefan–Boltzmann constant
g gravity
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