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Abstract: The rich physical properties of metal-intercalated polycyclic aromatic hydrocarbon materi-
als have recently attracted considerable attention. Crystals of potassium-intercalated 2,7-dimethylna-
phthalene were synthesized via solid phase reaction. The combination of XRD measurements and
first-principles calculations indicated that each unit cell contains two potassium atoms and four
organic molecules. Magnetization measurements revealed that the samples show a Curie paramag-
netism. Theoretical calculations showed that the intercalated structure becomes metallic and has local
magnetic moment. Raman spectroscopy confirmed the migration of electron from potassium 4s to car-
bon 2p orbital, which is the source of magnetism. Our research on naphthalene derivatives is helpful
for expanding the range of novel organic magnetic materials and organic superconducting materials.

Keywords: polycyclic aromatic hydrocarbons; potassium intercalated; curie paramagnetism

1. Introduction

The polycyclic aromatic hydrocarbons (PAHs) in nature are generally obtained from
the fractionation of coal tar and the aromatizing products of petroleum, which are widely
concerned by chemists and environmentalists [1–7]. In the field of novel functional materi-
als, PAHs have also shown potential value in organic electronic device [8,9] and organic pho-
tovoltaic devices [10]. In 2010, organic superconductivity with the high superconducting
transition temperature (Tc) of 7 K and 18 K was discovered in picene [11], which opened the
prelude to modulation of PAHs by means of metal intercalation. Metal-intercalated PAHs
can exhibit ferromagnetism [12,13], antiferromagnetism [14–16], paramagnetism [17–19],
or superconductivity [20–28]. In terms of geometrical structure, PAHs with novel magnetic
properties can be divided generally into nonfused and fused types. The former mainly
include biphenyl [20], p-terphenyl [21], p-quaterphenyl [22], p-quinquephenyl [23], etc.
The latter include naphthalene [29], anthracene [17], phenanthrene [24,25], picene [11,26],
pentacene [13], coronene [27], dibenzopentacene [28], and so on. Strong electron correlation
is thought to be related to magnetism in these structures.

Much has been done on the traditional PAHs, and recent attention has been paid
to other materials with similar structures. For example, 2,2’-bipyridine [30] similar to
biphenyl and triphenylbismuth [31] similar to triphenylmethane are also superconducting
after metal intercalation. In addition, the methyl modified structure of triphenylbismuth
has organic superconductivity [32,33], and the phenyl modified structure of anthracene
possesses π-electron weak ferromagnetism [12]. This opens a wider window to further
develop metal intercalated organic materials.
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While exploring the potential magnetic properties of PAHs, it is significant to study
the effect of metal insertion on the structure and electronic properties of organic crystals,
as well as the mechanism of magnetic production [34–36]. Crystalline K2Pentacene and
K2Picene with Curie behavior were successfully synthesized, forming extended herring-
bone structures [19]. In K-intercalated rubrene (C42H28), both the decomposition of organic
material and the insertion of potassium were found at the same time, which is a common
feature of similar systems [37]. Hee Cheul Choi et al. calculated the energy difference ∆
(∆ = ELUMO+1 − ELUMO) of 200 PAHs molecules by the computational search method, and
predicted that triphenylene (C18H12) with small ∆ should be organic superconductors [38].

Here, we report the magnetic property and structure information of potassium-
intercalated 2,7-dimethylnaphthalene (2,7-DMN), one of the methyl derivatives of naphtha-
lene. In each 2,7-DMN molecule, two methyl groups are connected to the 2 and 7 positions
of naphthalene, respectively. Naphthalene was theoretically predicted to exhibit compen-
sated ferromagnetism and half metallic behavior by intercalating potassium atom [29],
but no local magnetic moment was observed experimentally in potassium intercalated
2,3-dimethylnaphthalene (2,3-DMN, an isomer of 2,7-DMN) [39]. We expect to change the
position of the methyl group to adjust the molecular interaction and electronic structure of
potassium intercalated PAHs molecular crystals, thus generating novel physical properties.

2. Experiments

Potassium metal (purity 99%) was purchased from Sinopharm Chemical Reagent
(Shanghai, China). Pristine 2,7-DMN (purity 98%, GC) were purchased from Tokyo Chemi-
cal Industry (Tokyo, Japan). The potassium metal was cut into small granules carefully in
glove box and was then thoroughly mixed with 0.1 g of organics according to stoichiometric
ratio of 1:1. It is better to cover the potassium granules with organic powder, so as to avoid
the reaction of silvery white potassium with trace H2O or O2 remaining in the environment,
and generate a layer of deep purple stable compound on the metal surface, which affects
the interaction between active potassium and organics.

The sample was enclosed into a special pre-cleaned quartz tube, vacuumed to approxi-
mately 10−4 Pa and sealed. The tube containing the sample was placed in the water bath of
an ultrasonic machine at 80 ◦C for 8 h. Then, the sample quartz tube was gradually heated
to 120 ◦C in 40 min in an annealing furnace. The furnace maintained at 120 ◦C for 2 days
and after that cooled down slowly by −3 ◦C/h. This long period of heat preservation
and slow cooling was to allow the alkali potassium to fully react with the organics. After
the preparation process, the original white organic powder and silvery potassium turned
homogeneous black, indicating the success of the intercalation experiment. The tubes were
stored in the glove box until measurement.

When the sample was taken out of the tube to measure, it could be seen that there
were still lumps of potassium slag at the bottom of the tube. The possible reason was
that black KH was formed on the surface of the potassium block, causing the internal
potassium to not completely react with 2,7-DMN. Only powdered black samples were put
on corresponding sealed capillary or capsule for measurement.

The crystal structures of the samples were measured by an X-ray diffractometer
(λ = 1.5418 Å, Bruker D8 Advance, Bruker Corporation, Billerica, MA, USA). The vibration
information of the samples was measured by Raman spectrometer (Horiba, Kyoto, Japan)
in a 633 nm laser. The magnetic properties of the samples were measured using SQUID
magnetometer (Quantum Design MPMS3, San Diego, CA, USA).

The crystal and electronic structures of the samples were calculated by plane wave
pseudopotential method [40]. The electron–electron and electron–ion interactions were
simulated by generalized gradient approximation [41,42]. In addition, 3 × 1 × 3 k-points
mesh were used for structural optimization. The partial density of states was calculated
using a 5 × 3 × 5 k-point sampling scheme. The convergence criterion for the energy is set
as 10−5 eV, and the convergence criterion for the maximum force is set as 0.02 eV/Å.
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3. Results and Discussion
3.1. Magnetic Property of Potassium-Intercalated 2,7-DMN

Most simple PAHs such as naphthalene and biphenyl are generally diamagnetic in
the absence of unpaired electrons or radical spins [43]. Pristine 2,7-DMN also exhibited
weak diamagnetism with a magnitude of about −5 × 10−4 emu·Oe−1·mol−1, as shown in
Figure S1 of Supplementary Materials, while both the two potassium-intercalated 2,7-DMN
samples (labeled as K12,7-DMN-A and K12,7-DMN-B, respectively) exhibited typical Curie
paramagnetism after potassium intercalation, as clearly shown in Figure 1.

Figure 1. (a) The relationship between molar magnetic susceptibility (χM) and temperature of
potassium intercalated 2,7-DMN-A sample. The inset shows the χMT−T curves of this sample.
(b) The relationship between molar magnetic susceptibility and temperature of potassium intercalated
2,7-DMN-B sample. The inset shows the χMT−T curves of this sample.

Figure 1a exhibited the molar magnetic susceptibility (χM) of K12,7-DMN-A sample
with temperature under 20 Oe in field cooling (FC) and zero field cooling (ZFC) conditions.
With the decrease of temperature, the molar magnetic susceptibility of the sample increased
inversely. The ZFC and FC data almost coincided in the whole measurement temperature
rage, suggesting that the sample did not contain nonnegligible magnetic impurities. The
Curie–Weiss formula (χM = χM0 + C/(T−θ)) is used to fit the ZFC curve, and the fitted
Weiss constant (θ) of K12,7-DMN-A sample is 0.098 K, as listed in Table 1, indicating that
the sample may have a tiny ferromagnetic exchange interaction.

Table 1. Curie–Weiss fitting parameters of K12,7-DMN-A and K12,7-DMN-B samples.

Sample χM0 (emu Oe−1 mol−1) θ (K) C (emu K Oe−1 mol−1) M (µB mol−1)

K12,7-DMN-A 0.27 × 10−4 0.098 28.7 × 10−4 0.15
K12,7-DMN-B 0.99 × 10−4 0.234 9.6 × 10−4 0.09

The inset in Figure 1a showed the χMT−T curve of the K12,7-DMN-A sample. Pre-
vious literature showed that χMT of ferromagnetic material firstly increases and then
decreases with the increase of temperature until the Curie temperature, followed by a
weak temperature dependent behavior in the paramagnetic region [44], while χMT of
antiferromagnetic material firstly increases rapidly with the increase of temperature, and
then turns to increase slowly in the paramagnetic region [45]. As can be seen from the inset
in Figure 1a, χMT of the K12,7-DMN-A sample increases almost linearly with increasing
temperature, indicating that no magnetic phase transition occurs in the sample.

Figure 1b showed the magnetic data of K12,7-DMN-B sample under the same condi-
tion, which exhibited the same behavior as K12,7-DMN-A sample. One thing to note is that
the molar magnetic susceptibility curves of both samples wobbled slightly at high tempera-
ture, which is due to the fact that the absolute value of the molar magnetic susceptibility
at high temperature has decreased to near the measurement accuracy of the instrument
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(~10−8). Nevertheless, it is beyond doubt that the samples intercalated by potassium atoms
exhibited completely different magnetic behavior from the original diamagnetism.

Table 1 lists the Curie–Weiss fitting parameters of K12,7-DMN-A and K12,7-DMN-B
samples. Very small error values (less than 0.01 K in fitting θ) indicate that the fitting is
reliable, while the magnetic moments of 0.15 and 0.09 µB per mole suggest that there is
local magnetic moment in the intercalated materials. In the paramagnetic K3phenanthrene
and Rb3phenanthrene samples, the experimentally observed magnetic moment is 0.2 µB
per mole [24], and similar small magnetic moment was also found in the paramagnetic
K4.0picene sample [11].

3.2. Crystal and Electronic Structures of Potassium-Intercalated 2,7-DMN

XRD pattern of pristine and two potassium-intercalated 2,7-DMN samples were
exhibited in Figure 2. Pristine 2,7-DMN sample grew in a preferred orientation with
obvious peaks only located at 8.7◦ and 17.4◦ positions. After intercalation preparation, both
the above peaks had a right shift of about 0.2◦ and new obvious peaks located at 19.6◦ and
28.5◦ appeared, suggesting that the intercalation of potassium atoms into organic molecule
suppressed preferred orientation growth and caused changes in lattice parameters to form
new crystal structures. KH peaks were found in samples, indicating that a small amount
of potassium bonded to hydrogen in 2,7-DMN molecules to form KH. In addition, K12,7-
DMN-A and K12,7-DMN-B samples were obtained with the same intercalation ratio and
preparation process. The purpose of repeated preparation is to improve the persuasiveness
of new structure and paramagnetic results in potassium intercalated 2,7-DMN. Of course,
due to the nonuniformity of the solid phase sample and the weak signal of organic material,
the experimental data of different samples are slightly different, but their new crystalline
phase and magnetic properties formed after potassium intercalation are consistent.

Figure 2. XRD pattern of pristine and potassium-intercalated 2,7-DMN. The symbol “#” represents
the peak position of KH. “Calculated” refers to the XRD profile of the theoretical structure. The
symbol “*” indicates the calculated position that coincides with the experimental curve.

The general method for searching the crystal structure of potassium-intercalated 2,7-
DMN in theory is to insert potassium atoms into 2,7-DMN molecules according to the mole
ratio of 1:1, 2:1 and 1:2, and relax the atomic positions sufficiently. Then, the XRD of all the
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obtained stable structures (hundreds of species) are then compared with the experimental
data to find the most likely structure to match the latter. It is worth noting that small
fluctuations in structural parameters can also cause large changes in XRD data. Finally, a
structural model is found which is in good agreement with the experimental data, which
has a 1:2 ratio of potassium to organic material. Its XRD pattern is labeled as “Calculated”
in Figure 2. The refined XRD data are shown in Figure S2 of the Supplementary Materials.
As can be seen from the comparison of experimental and theoretical XRD data, most
peak locations and relative intensities in the calculated results are close to those in the
experimental data, and the small difference between the two may be caused by defects or
polymorphs in the recrystallization process of intercalated samples preparation, similar to
other intercalated PAHs [19,38].

Figure 3a shows the theoretical crystal structure of potassium-intercalated 2,7-DMN.
In this structure, each unit cell contains two potassium atoms and four 2,7-DMN molecules.
The crystal parameters are a = 6.679 Å, b = 7.819 Å, c = 19.787 Å, α = 90◦, β = 92.44◦,
and γ = 90◦, and the cell volume is 1032.4 Å3. The positions of C, K, and H are shown in
Supplementary Materials. It can be clearly seen from a 2 × 2 × 2 supercell in Figure 3a
that the potassium atoms are inserted into the b-c plane of the organic molecules, which
often leads to the expansion of these two lattice parameters [11]. In the crystal unit cell,
the distance between potassium and the nearest neighbor carbon atom is about 2.51 Å,
falling in between the ionic bond length (2.15 Å) and the covalent bond length (2.73 Å).
This indicates that the interaction between potassium and 2,7-DMN is a mixture of ionic
and covalent characters. Here, we assume that the ionic and covalent radii of potassium
are 1.38 and 1.96 Å, respectively, and the radius of carbon is 0.77 Å.

Figure 3. (a) The calculated potassium-intercalated 2,7-DMN structure is shown in a 2 × 2 × 2
supercell. The purple balls represent potassium atoms, and the brown balls represent carbon atoms.
(b) The band of the theoretical model. (c) The relationship between Orbital-resolved partial density
of states (PDOS) and the energy of theoretical model. (d) The relationship between spin-dependent
density of states (DOS) and the energy of theoretical model.
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The energy of the ferromagnetic and antiferromagnetic configurations was calculated
based on the theoretical model. The results show the energy of ferromagnetic configuration
is less than 1 meV lower than that of antiferromagnetic configuration, indicating that the
intermolecular magnetic exchange interaction is very small, which is responsible for the
Curie paramagnetism of samples. The molecular magnetic moment was also calculated
for the ferromagnetic configuration. The magnetic moment range of carbon atom is about
0.01~0.07 µB, and the total molecular magnetic moment is about 0.2~0.3 µB. The small
magnetic moment per mole in our samples is due to very small magnetic moment on each
naphthalene unit. This is very different from inorganic materials, where each unpaired
electron can form a magnetic moment of 1 µB. Owing to the presence of non-magnetic
materials in the intercalated samples, such as KH, the experimentally fitted magnetic
moment is smaller than the theoretical value.

The energy band of the theoretical model is shown in Figure 3b. The presence of
electronic states on the Fermi level indicates that the theoretical structure is metallic.
Figure 3c,d presents partial density of states (PDOS) and spin-dependent density of states
(DOS) of the theoretical model in the ferromagnetic configuration, respectively. The PDOS
suggests that the C-2p orbital makes the main contribution to the state near the Fermi level,
and the contribution of the C-2s and K-4s orbitals is very small, indicating that electrons
are transferred from the K-4s orbital to the π-orbital of 2,7-DMN. On account of the near
degeneracy between ferromagnetic and antiferromagnetic configurations, the density of
states with spin down and up near the Fermi level is almost symmetric, as shown in
Figure 3d [12]. The summation of DOS of spin down and up in Figure 3d is basically the
same as PDOS of C-2p orbital in Figure 3c, suggesting that C-2p orbital is the main source
of magnetism generation in potassium-intercalated 2,7-DMN. The metallic behavior of the
structure can also be verified from DOS and PDOS near the Fermi level.

3.3. Raman Spectroscopy of Pristine and Potassium-Intercalated 2,7-DMN

The variation information of 2,7-DMN molecule before and after potassium intercala-
tion was carried out by Raman spectroscopy. Pristine 2,7-DMN has a total of 66 Raman
vibration modes which can be roughly divided into C-H stretching, C-C stretching, C-C
bending, C-H bending, ring bending and methyl group vibrations, etc. All the vibration
modes of pristine organics shown in Figure 4 are basically consistent with those of 2,7-DMN
reported in the literature [46]. The two modes at 143 and 468 cm−1 belong to the ring
torsional bending. The two modes at 421 and 444 cm−1 involve the ring in-plane bending.
The mode at 773 cm−1 involves the C-H out of plane bending. The two modes at 1177 and
1384 cm−1 involve the C-H in-plane bending. The two modes at 1464 and 1545 cm−1 are
assigned to the C-C stretching. The mode at 1572 cm−1 is assigned to the CH3 out of plane
bending [46].

When potassium is intercalated into 2,7-DMN, the vibration modes of the two samples
change significantly. The two modes in pristine 2,7-DMN at 143 and 444 cm−1 disappear,
while the two modes at 1464 and 1572 cm−1 remain the same. In addition, the modes
at 421, 468, 773, 1177, 1384, and 1545 cm−1 red-shift by 6, 15, 25, 11, 24, and 20 cm−1,
respectively. This red-shift phenomenon which can be explained by phonon softening effect
reveals a clear signature of charge transfer to organic molecules and is also found in other
metal-intercalated PAHs [47,48], GICs [49], C60 [50] and carbon nanotube [51]. It is worth
noting that novel physical properties such as superconductivity or ferromagnetism have
been found in all of these donor-intercalated organic materials with π-molecular orbitals,
suggesting that the charge transfer injects conduction electrons into the organic [52].

The interaction between potassium atoms and organic molecules mainly manifests
in the low frequency vibration region of the Raman spectrum, due to relatively heavy
mass of K and weaker interaction compared to C-C bond. Because the crystallinity of the
metal intercalation sample is not good enough, it is difficult to distinguish the detailed
changes of the structure from the Raman spectroscopy data in the low frequency region. It
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was found that the interaction between potassium and organic materials will suppress the
lattice vibration and also cause the peak to broaden [50].

Figure 4. Raman spectroscopy of pristine and potassium-intercalated 2,7-DMN samples collected at
room temperature.

4. Conclusions

In this study, thermostatic ultrasound and low-temperature annealing were used to
prepare potassium-intercalated 2,7-DMN molecule crystal materials. Magnetic measure-
ment showed that all the samples with potassium intercalation exhibited Curie paramag-
netism, and the maximum magnetic moment was 0.15 µB·mol−1. Combined with X-ray
diffraction and first-principles calculations, it was found that potassium and 2,7-DMN
formed a stable new intercalated structure according to the molar ratio of 1:2. The calcula-
tion results show that the intercalated structure should be metallic and has local magnetic
moment, but the magnetic interaction between the molecules is very small, leading to the
paramagnetic behavior in the samples. The red-shift phenomenon in Raman spectrum also
confirmed that intercalation induced the 4s electron transfer of potassium, which was the
source of the local magnetic moment in the samples.

Potassium-intercalated triphenylene showed Curie paramagnetism, while sodium-
intercalated triphenylene exhibited superconductivity [38]. Similar differentiation was also
found in AxC60 (A = K, Rb, Cs) [53]. In potassium-intercalated picene, it was theoretically
predicted that an increase of volume by 10% can enhance the local magnetic moment and an-
tiferromagnetic order, while a 10% decrease in volume favors a nonmagnetic state with zero
local magnetic moment. These results suggest that the physical properties of alkali-metal-
intercalated organic materials are very sensitive to the distance between molecules [54].
In potassium-intercalated 2,3-DMN, the average occupied volume of each molecule is
235.75 Å3, while in potassium-intercalated 2,7-DMN, this value becomes 258.1 Å3, indicat-
ing that the molecular spacing is slightly larger for the latter case. This may be the cause
of the magnetic moment in the potassium-intercalated 2,7-DMN sample. Therefore, the
decoration of PAHs with organic functional groups in the appropriate positions opens a
new way for the research of new organic magnetic and superconducting materials.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11070803/s1, Figure S1: The relationship between molar magnetic susceptibility (χM) and
temperature of pristine 2,7-DMN sample, Figure S2: Comparison of the experimental XRD of the
samples and the data of the refined theoretical structures, Cif data of 2,7-DMN.
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