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Abstract: For LCs with a non-zero flexoelectric coefficient difference (e1–e3) and low dielectric
anisotropy, electric fields exceeding certain threshold values result in transitions from the homoge-
neous planarly aligned state to the spatially periodic one. Field-induced grating is characterized
by rotation of the LC director about the alignment axis with the wavevector of the grating oriented
perpendicular to the initial alignment direction. The rotation sign is defined by both the electric
field vector and the sign of the (e1–e3) difference. The wavenumber characterizing the field-induced
periodicity is increased linearly with the applied voltage starting from a threshold value of about π/d,
where d is the thickness of the layer. Two sets of properties of the field-induced gratings are studied
in this paper using numerical simulations: (i) the dynamics of the grating appearance and relaxation;
(ii) the transmittance and reflectance spectra, showing photonic stop bands in the waveguide mode.
It is shown that under ideal conditions, the characteristic time of formation for a spatially limited
grating is determined by the amplitude of the electric voltage and the size of the grating itself in
the direction of the wave vector. For large gratings, this time can be drastically reduced via spatial
modulation of the LC anchoring on one of the alignment surfaces. In the last case, the time is defined
not by the grating size, but the period of the spatial modulation of the anchoring. The spectral
structure of the field-induced stop bands and their use in LC photonics are also discussed.

Keywords: nematic liquid crystals; flexoelectric instability; photonic liquid crystals; liquid crystal
microlasers

1. Introduction

The flexoelectric instability effect, which was first considered theoretically in [1,2] and
subsequently confirmed and studied experimentally in [3–5], is in the author’s opinion
one of the most attractive phenomena in nematic liquid crystals. For the first time, this
phenomenon, later called "flexoelectric instability", was observed in relatively thin planarly
aligned layers of nematic LCs as the appearance of domains oriented along the direction
of the initial planar alignment [6]. These domains arose in an electric field exceeding
a certain threshold value. It was believed that both the small thickness of the LC layer
and the low electrical conductivity of the liquid crystal material are important for their
appearance. These domains fundamentally differed from the Williams domains [7], which
were well known at that time, since they were oriented along the initial direction of the
LC alignment, while the Williams domains associated with hydrodynamic instability were
oriented perpendicular to the direction of the initial LC alignment (Figure 1). Later, the
flexoelectric instability was studied experimentally and theoretically for an LC layer with an
initial hybrid alignment (planar alignment on the first of the boundaries and vertical on the
second one) [8,9]. In [9], it was shown that with movement in the direction perpendicular to
the planar alignment, the director experiences rotation around the alignment axis, making
it possible to consider the effect as breaking the chiral symmetry. The study of the threshold
characteristics and other features of the formation of flexoelectric domains was continued
in [10,11]. In more recent studies [12,13], the flexoelectric instability effect is considered as
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a unique way to reliably measure flexoelectric coefficients. Nevertheless, despite the long
history, the number of publications devoted to the flexoelectric instability is rather low.
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laser effect, it is fundamentally important to change the spectral positions of the photonic 
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the boundary conditions, as in [27], or with topological problems that exclude a 
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simulation. For modeling, the author's own software is used, which is constantly evolving 
and has successfully proven itself over the decades of its use for predicting optical and 
electro-optical phenomena in LCs. For example, the properties of the laser effect, which 
were studied using this software in a specific LC system with a deformed lying helix [28], 
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of the dependence of the period of the induced gratings on the applied electric voltage, as 
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Figure 1. Schematic illustration of the LC director distribution for different domains: Williams
domains (a); flexoelectric domains (b). For the Williams domains, the initial alignment is along the
x-axis, while for the flexoelectric domains the alignment is along the y-axis.

This study aims to draw the attention of researchers to new features of the flexoelectric
instability that have not been previously studied. For example, until now the effect has been
observed only either in static or in quasi-static (e.g., using both dc and ac voltage) electric
fields; therefore, the features of the dynamics of the appearance of the grating when the
electric field is turned on and the rate of its relaxation when the field is turned off remained
unexplored. The spatial periodicity of the induced structures and the related photonic
properties are also of particular interest. Indeed, in recent years, nematic LCs in spatially
periodic electric fields, and in particular chiral LCs that spontaneously form periodic
structures, have been intensively studied as representatives of photonic LCs [14–19] and as
laser effect media [20–28]. To obtain an electrically wavelength-tunable laser effect, it is
fundamentally important to change the spectral positions of the photonic stop bands, at
the edges of which lasing occurs. Until now, such tuning has been difficult in systems with
nematic liquid crystals. This difficulty is due to either fixed periodicity of the boundary
conditions, as in [27], or with topological problems that exclude a continuous change in the
pitch of the cholesteric spiral in an electric field [29,30]. One of the aims of this investigation
is to study the possibility of rapidly changing the spectral positions of the photonic stop
bands across a wide spectral range.

This study is based solely on the results of numerical simulations and includes two
sections. Each section summarizes the basic components of the associated numerical
simulation. For modeling, the author’s own software is used, which is constantly evolving
and has successfully proven itself over the decades of its use for predicting optical and
electro-optical phenomena in LCs. For example, the properties of the laser effect, which
were studied using this software in a specific LC system with a deformed lying helix [28],
have recently been confirmed experimentally [27]. The first section is devoted to the study
of the dependence of the period of the induced gratings on the applied electric voltage, as
well as to the dynamics of the appearance of gratings and their relaxation depending on
the amplitude of a rectangular voltage pulse. In the second section, the optical properties
of the induced gratings are discussed.

2. Results of Numerical Simulations and Discussion

The simulations include two stages. In the first stage, the transition from the homo-
geneous state to the spatially periodic state is simulated. In this case, the virtual LC layer
with the homogeneous planar alignment is transformed by an electric field to the state with
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an in-plane periodic texture. In the second stage, the optical properties are evaluated by
solving Maxwell equations using the final difference time domain (FDTD) method for the
waveguide geometry, when the injected light waves package propagates along the wave
vector of the field-induced grating.

The numerical simulations are performed using the author’s LCDTDK and FDTDK
software programs, which have had a rather long developing and testing curve (more
than 20 years). These software programs allow simulations for both texture (liquid crystal
director distribution) and optical problems for LC systems with complicated designs.

Numerical modeling is based on the solution of the complete system of equations
of both the continuum theory of liquid crystals with arbitrary boundary conditions and
Maxwell’s equations, taking into account a variety of properties that characterize real liquid
crystal systems; however, for ease of perception, only the most key equations are presented
below, with an indication of the simplifications allowed for our specific system.

2.1. Simulations of the Flexoelectric Instability

The texture calculations are based on solving general equations of the liquid crystal
continuum theory for the 3D LC domain.

The governing equations for finding the LC director (n = (nx, ny, nz)) distribution are
as follows:
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where µ is the Lagrange multiplier, which is due to the constraint
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x + n2
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z = 1, (2)

where γ is the rotational viscosity of LC and F is the free energy density, expressed as:

F =
1
2

{
K1(∇·n)2 + K2(n·(∇× n))2 + K3(n× (∇× n))2

}
− EP f −

ε0

2
(ε·E)E,

P f = e1(∇·n)n− e3(n×∇× n) (3)

where K1, K2 and K3 are splay, twist and bend elastic coefficients, respectively; Pf is the
flexoelectric polarization; ε0 ∼= 8.85 × 10−12 F/m is the vacuum dielectric constant; E is the
electric field vector. The elastic parameters used in this work are variable but close to those
of the experimental LC (K1 = 15 pN, K2 = 7 pN) [3,4]. A value of 0.1 Pa s for the rotational
viscosity (γ) used in dynamics simulations is within the range of quite typical values
for nematic LCs (typical range is 0.03–0.2 Pa·s [31]). The flexoelectricity is of principal
significance in this work, and it is assumed that e1 = 10 pC/m and e3 = 30 pC/m, so the
difference |e1 − e3| = 20 pC/m is close to that found in [3,4]. As was already mentioned, in
the case described here, the low frequency dielectric anisotropy (εa) is zero, so the dielectric
tensor ε is reduced to a scalar value ε and no corresponding dielectric torque appears. Our
virtual LC is nonchiral and the corresponding term responsible for the natural helix pitch
is omitted in (3).

The model boundary conditions are variable, including those close to ones achieved
experimentally using the polyimide alignment layer. It should be reiterated that after
the rubbing, the polyimide film results in the planar alignment with a small pretilt angle
(a value of 2◦ with respect to the y-axis is used) and strong anchoring (rigid anchoring
conditions are used in the model).

Because the director field is not homogeneous, the electric field distribution is also not
a homogeneous one. In order to find the electric field distribution, Equation (1) is coupled
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with the Maxwell equations ∇× E = 0 and ∇·
(

ε0εE + P f

)
= 0; thus, we assume that the

LC is the ideal dielectric with zero free charge density in the bulk.
The spatial distribution of the LC director in middle of the layer, which appears as

a result of the flexoelectric instability effect, is shown in Figure 2 at voltages of various
magnitudes. Note that at zero voltage, the distribution of the LC director is uniform in
all three dimensions. In this case, the orientation plane of the director is parallel to the
yz-plane and the director’s pretilt angle with respect to the y-axis is 2◦ (this is a typical
value for the pretilt angle achieved in real LC systems). As can be seen, a periodic grating
appears in the electric field and the distribution of the director becomes inhomogeneous
in both the z- and x-directions. The director rotates around the y-direction as we move
along the x-direction. The distance p along the x-direction at which the director makes a
full revolution is comparable to the layer thickness. For example, in Figure 3, which shows
the distribution for a layer with a thickness of 2 µm, the period p is approximately 1.6 µm.
In the center of the layer, the functions describing the x- and z-components of the director
are close to sinusoids, with a phase shift of 90◦ even in a sufficiently strong field (10 V/µm).
In this case, the y-component of the director is rather small; that is, the director experiences
rotation that is almost in the vertical xz-plane. The sign of the rotation is defined by the
sign of the phase shift between curves for nx and nz, which is reversed if we change either
direction of the electric field or the sign of the flexoelectric coefficient difference (e1–e3).

Figure 4 shows the dependence of the spatial frequency (1/p) on the magnitude of the
applied voltage. As can be seen, up to very strong fields, when the director in the center of
the layer experiences rotation in an almost vertical plane, these dependences are close to
the linear; that is, they can be represented in the following form:

1/p = a + bU, (4)

where the value of a can be defined as the extrapolation frequency at zero voltage U,
when in reality the grating does not exist, since the effect is characterized by the threshold
voltage Uth.
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Figure 2. In-plane director distribution in the middle (z = 0.5 µm) of the LC layer at voltages of 15 V (bottom plane) and
30 V (top plane) applied across the LC layer of a thickness of one micrometer. The color scale is for the z-component of the
LC director. The inset shows the director distribution in the xz-plane for a fraction of the calculation domain in the middle
at 15 V.
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Figure 3. Director distribution in the center of a 2-µm-thick layer at a voltage of 20 V after switching
on an electric voltage with an amplitude of 20 V.

As can be seen in Figure 4, the rate of change in the spatial frequency as the voltage
changes is determined by the coefficient b, which in turn depends on the ratio between
the elastic constants. As follows from the data in Figure 5, the spatial period depends on
the elastic constants K1 and K2, but doesn’t depend on K3. A decrease in K2 leads to an
increase in b (compare also curves 1 and 2, Figure 4), and accordingly a greater sensitivity
of the spatial frequency to the voltage. In the case of the one-constant approximation,
when K1 = K2 = K3 = K, analytical expressions were obtained in [1,2] for both the observed
optical period Wth = pth/2 of the induced grating and for the threshold voltage Uth of the
appearance of the grating:

Wth = d

√
1 + µ

1− µ
, Uth =

2πK
|e1 − e3|(1 + µ)

, (5)

where µ = εaK
4π(e1−e3)

2 . Since in our case the dielectric anisotropy εa = 0, then µ = 0, and from

Equation (5) one can get Wth = d = 2 µm and Uth
∼= 4.5 V, which is in good agreement with

the simulations (curve 1, Figure 4).
At sufficiently high electric fields, the calculated value of the spatial frequency oscil-

lates somewhat as the electric voltage U increases (see curve 2 in Figure 4 at U > 15 V).
The analysis shows that these oscillations are caused by edge effects associated with the
finite size of the modeled domain, which also defines the x-size of the induced grating
(in our case, this size is 20 µm in the x-direction, Figure 2). It can also be found that at
high voltages, the distribution can become inhomogeneous in the y-direction, as shown in
Figure 2 at U = 30 V.

The dependence of the induced grating period on each of the elasticity constants at
two other fixed constants is shown in Figure 5. As can be seen, the dependences of the
grating period on K1 and K2 are quite pronounced. For example, an increase in K1 from
10 pN to 30 pN leads to an increase in the period by about 1.5 times. It is interesting that
the period p does not depend on K3. The dynamics of the appearance and relaxation of the
grating at different amplitudes of the voltage pulse is illustrated by the data in Figure 6.
These data were obtained for the x-size of the modeled domain Lx = 20 µm, which of course
coincides with the size of the induced grating. The analysis shows that the dynamics does
not depend on the y-size as long as there are no inhomogeneities in the distribution of the
director in the y-direction (I remind that the y-direction is for the field-off alignment). To
reduce the computation time, as well as to exclude the influence of inhomogeneities in the
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y-direction, the data were obtained for a y-size of 100 nm, which in fact corresponds to the
two-dimensional case.
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Figure 4. Dependence of the spatial frequency (1/p) of the induced grating on the applied voltage
for two series of elastic coefficients: (1) K1 = K2 = K3 = 15 pN; (2) K1 = 15 pN, K2 = 8 pN, K3 = 30 pN.
The thickness of the LC layer d = 2 µm.
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Figure 6. Dynamic response of the director state (ny-component, top) to the applied voltage pulse (bottom).

Here, the distribution of the director in the y-direction is assumed to be uniform. The
analysis also shows that after the application of an electric field, deformation occurs at the
edges of the modeled domain and propagates at a certain speed to its center. Therefore,
to analyze the time response, a spatial point is chosen in the center of the computational
domain in x, y and in the middle of the layer. In this case, the appearance of the grating is
accompanied by decreasing the y-component of the director, which changes together with
other components but experiences the least oscillations (Figure 3).

Figure 6 shows that the dynamics can be characterized by three characteristic times.
First, deformation in the center of the simulated domain begins to appear after a certain
dwell time (td). The second time (ton) is for the equilibrium state over the entire compu-
tational domain, which includes the time td, and in fact is the time taken to induce an
equilibrium grating. After switching off the electric field, very fast relaxation occurs with
a characteristic time toff. As can be seen from the inset in Figure 6, this time lies in the
sub-millisecond range and decreases as the amplitude of the voltage pulse increases; thus,
this time can be associated with the period of the induced grating and can be estimated as:

to f f =
γ

Kq2 , (6)

where K is an effective elastic module and q = 2π/p is the voltage-dependent wavenumber
of the induced grating. For example, for K = 15 pN, γ = 0.1 Pa s and p = 2 µm, from (6) we
obtain toff

∼= 0.7 ms, which is in good agreement with the numerical data for the lowest
voltage in the inset to Figure 6. Note that the relaxation occurs uniformly over the entire
simulated domain, with the exception of small near-boundary regions, where the relaxation
time is found to be somewhat longer.

The origin of the dwell time td is well illustrated by the data in Figure 7. As can be
seen, the dwell time increases linearly with increases in the size of the simulated domain
(the size of the induced grating). This is because the dwell time is due to the propagation
time of the deformation from the edges of the simulated domain to its center.
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The fact that the time (ton), which includes the dwell time, is determined by its size
is very important for understanding the low speed of formation of the periodic texture
in the experiments, where static electric fields [3] had to be used. At the same time,
understanding the nature of the dwell time allows us to offer a liquid crystal system with
a high response speed. Indeed, the boundaries of the modeled domain are, in fact, the
region of nucleation of an elastic deformation wave, which propagates to the central part
of the simulated domain; therefore, if on the second boundary of the alignment surface, a
periodic structure is created from artificial anchoring “defects”, where the conditions for
the vertical alignment of the LC director are achieved at short intervals (Figure 8, t = 0),
then as a result we can obtain a system for which the total time ton of the grating induction
is determined not by its total size, but the period of modulation of the anchoring conditions.
In the example in Figure 8, the anchoring modulation period at the upper boundary of the
LC layer is 10 µm and the corresponding time ton is about 6 ms, regardless of the overall
grating size. Experimentally, the modulation of the anchoring boundary conditions can
be carried out using a local focused ion beam treatment [27] of a rubbed polyimide film,
which is usually used for the LC alignment.

2.2. Photonic Properties (FDTD Simulations)

The FDTD method is widely used in modern optical simulations. It is based on a
direct solution for the Maxwell equations in the time domain. The basics of the FDTD
method are described in numerous sources. I would like to recommend the EMPossible
site [32], where one can find quite detailed and useful lectures explaining different aspects
of the method and possible numerical implementations, which can be a good starting point
for developing complicated software.

The author’s FDTDK software module used in this work is directly bound to the
LC texture module LCDTDK and is briefly described in [28]. The dielectric properties
of materials in FDTDK are defined in terms of the spatial distribution of the dielectric
tensor components and by considering their spectral dispersion. The spectral dispersion is
considered within framework of the popular, multiple-oscillator Lorentz–Drude model.
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It is important to say that in the current study, the spectral dispersion is not taken
into account. The virtual LC material is described by frequency-independent values of
the principal components of the dielectric tensor (ε|| = 3.06, ε⊥ = 2.31). The last values of
the dielectric tensor components correspond to the principal refractive indices n|| = 1.75
and n⊥ = 1.52, which are close to typical for many LC materials (for example, the E7-LC
from Merck).

The scheme of the FDTD-simulated space domain is shown in Figure 9. Because the
LC layer is homogeneous along the y-axis, all of the d/dy derivatives vanish and the optical
problem is reduced to the 2D problem in the xz-plane, which allows for significant increases
in efficiency of the FDTD simulations. The LC-layer (1) with a thickness of 2 µm and a
length L of 40 µm is placed in a virtual medium (2), with a refractive index of 1.46. Because
all principal refractive indices of the LC are higher, the last one allows for a waveguiding
regime for the light impinged into the LC layer from the unidirectional light source (3). The
virtual sensor (4) is placed in the shadow of the light source (3) and registers only the light
reflected by the DLH layer, while the sensor (5) is for the transmitted light. The electrodes
used to apply the voltage are neglected in the sense that their refractive indices are set
to be the same as for the medium (2). The uniaxial perfectly matched layers (6) prevent
reflections from boundaries of the calculated space domain.

The light source (4) generates a pulse of the electromagnetic field propagating along
the x-axis. The light has linear polarization in the yz-plane at 45o with respect to the y-axis;
thus, both TM- and TE-polarized modes are excited in the LC layer. The magnitude of
the pulse is constant in the z-direction. The pulse represents a sine wave (λ = 550 nm)
modulated by the Gaussian waveform with a 1/e-height duration of ~1 fs. This results in a
rather wide spectrum of generated light, which allows for calculations of the reflectance
spectra in a wavelength range of 500 to 4000 nm. The sensor (4) registers across time
the components of the electromagnetic field. To obtain the reflectance and transmittance
spectra, the ratio of the energy flux in the x-direction (Px) of the electromagnetic field at
sensors (4) and (5) to the energy flux irradiated by light source (Pls) is calculated. The
values Px and Pls are calculated versus the wavelength by taking the Fourier transform of
the field registered by the sensors and finding x-components of the Poynting vector at the
sensors and light source (3) positions. Because the x-components of the Poynting vector for
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the reflected light are negative, the reflectance magnitudes in spectra shown below are also
negative. The spectral resolution in the calculated spectra is defined by total registration
time for the electromagnetic field. In our calculations, the total registration time is about
2000 fs, which corresponds to resolutions better than 1 nm in the visible spectral range and
a few nanometers in the near-infrared range.
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The transmittance and reflectance spectra for z- and y-polarized modes are shown in
Figures 10 and 11. The spectra show pronounced photonic stop bands in the wave intervals
of 2200–2700, 1700–2200 and 1200–1600 nm for the applied voltages of 15, 20 and 30 V,
respectively. The edge positions (λ1, λ2) of these stop bands can be estimated from the
Bragg law equation:

λ1,2(U) =
2n⊥,||p(U)

m
(7)

where n⊥ and n|| are principal refractive indices of the LC material for the diffraction
order m = 2. Actually, at m = 2, exactly the same situation occurs as in the cholesteric liquid
crystals. Nevertheless, there is a principal difference from the cholesteric LCs, which is
connected to the tilt of the director in the yz-plane when the director rotates around the
y-axis (Figure 3). Because of the tilt, the director state with the maximum positive value
of the nz director component is not equivalent to the state with the minimal negative nz
component. The last property results in that the Bragg reflection is allowed not only for
m = 2, but also for m = 1. Moreover, the reflections of the higher orders (m = 3, 4, 5) are very
visible, especially in the reflectance spectra at the highest voltage (Figure 11c).

Photonic stop bands are characteristic only for z-polarized light. This is due to the
peculiarities of modulation of the LC director field, when it is the director projection onto
the xz-plane that undergoes rotation, while the y-component experiences only insignificant
oscillations (Figure 3). The reflection spectra clearly show not only stop bands associated
with modulation of the LC director field, but also fine oscillations caused by the Fabry–
Perot effect, showing interference of reflections from the boundaries of a waveguide with
a length of 40 µm. These subtle oscillations are present in both the spectra of z-polarized
light and y-polarized light; however, aside from the Fabry–Perot effect, it is easy to see in
the reflection spectra of z-polarized light that the photonic stop bands are split into several
sub-bands. It can be assumed that the nature of this splitting is the same as in the case of
a deformed helix in cholesteric LCs [27,28]. A sufficiently high reflection in the region of
higher-order stop bands (m = 4, 5; see insets in Figures 10c and 11c) makes it possible to use
them to excite a laser effect in the visible region of the spectrum in the range of 500–800 nm,
as was implemented in [27].
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Figure 10. (a–c) Transmittance spectra for the z- (1) and y-polarized (2) components of the light at
different voltages U. The inset in (c) shows a fraction of the same spectrum in visible range with a
higher spectral resolution.
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Figure 11. (a–c) Reflectance spectra for the z- (1) and y-polarized (2) components of the light at
different voltages U. The inset in (c) shows a fraction of the same spectrum in visible range with a
higher spectral resolution.

Finally, one cannot fail to note the extremely wide spectral range of electric tuning for
the positions of the stop bands, which for layers with a thickness of one to two microns,
can cover both the near-IR and visible ranges.
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3. Conclusions

In this work, we have studied the dynamic properties of the effect of flexoelectric
instability, which manifests itself in the induction of a periodic structure (grating) in an
electric field. It has been shown that under ideal conditions, the characteristic time of
formation of a spatially limited grating is determined by the amplitude of the electric
voltage and the size of the grating itself. The latter is associated with the time required for
the propagation of elastic deformation from the edges of the grating, where the instability
manifests itself most clearly, to its center. It was shown that in the case of a large grating, the
time taken for its formation can be drastically reduced through pulsed spatial modulation
of the LC anchoring on one of the alignment surfaces, where against the background of
uniform planar anchoring conditions, narrow regions are created for the vertical alignment
of the LC. In this case, the time of formation for the grating is determined by the period
of spatial modulation of the anchoring. The author believes that a similar effect can be
obtained by patterning the electrode system at one of the boundaries of the LC layer
and using an inhomogeneous electric field; thus, new possibilities are opening up for
experimental study and for applying the effects of flexoelectric instability associated with
its dynamic properties in pulsed electric fields.

Due to the possibility of rapidly changing the grating period across a wide dynamic
range using an external voltage, flexoelectric periodic structures become unique representa-
tives of controlled photonic LCs. In particular, it was shown in this work that in an LC layer
with a small thickness (1–2 µm), the spectral position of the induced photonic stop bands
can be controlled in the range of hundreds and thousands of nanometers in the visible and
near-IR ranges. In the waveguide mode, the Bragg reflection from the periodic structure of
the grating is characterized by many orders, which can be used both for creating planar
spectral filters and for other photonic devices, such as to obtain laser effects in various
spectral ranges.
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