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Abstract: Lévy flights random walk is one of key parts in the cuckoo search (CS) algorithm to
update individuals. The standard CS algorithm adopts the constant scale factor for this random
walk. This paper proposed an improved beta distribution cuckoo search (IBCS) for this factor in
the CS algorithm. In terms of local characteristics, the proposed algorithm makes the scale factor of
the step size in Lévy flights showing beta distribution in the evolutionary process. In terms of the
overall situation, the scale factor shows the exponential decay trend in the process. The proposed
algorithm makes full use of the advantages of the two improvement strategies. The test results
show that the proposed strategy is better than the standard CS algorithm or others improved by
a single improvement strategy, such as improved CS (ICS) and beta distribution CS (BCS). For
the six benchmark test functions of 30 dimensions, the average rankings of the CS, ICS, BCS, and
IBCS algorithms are 3.67, 2.67, 1.5, and 1.17, respectively. For the six benchmark test functions of
50 dimensions, moreover, the average rankings of the CS, ICS, BCS, and IBCS algorithms are 2.83, 2.5,
1.67, and 1.0, respectively. Confirmed by our case study, the performance of the ABCS algorithm was
better than that of standard CS, ICS or BCS algorithms in the process of EDM. For example, under
the single-objective optimization convergence of MRR, the iteration number (13 iterations) of the
CS algorithm for the input process parameters, such as discharge current, pulse-on time, pulse-off
time, and servo voltage, was twice that (6 iterations) of the IBCS algorithm. Similar, the iteration
number (17 iterations) of BCS algorithm for these parameters was twice that (8 iterations) of the IBCS
algorithm under the single-objective optimization convergence of Ra. Therefore, it strengthens the
CS algorithm’s accuracy and convergence speed.

Keywords: cuckoo search algorithm; self-adaption; beta distribution; dynamic step-size control
factor; EDM

1. Introduction

Evolutionary computing algorithms, such as the particle swarm optimization (PSO)
algorithm [1,2], the artificial bee colony (ABC) algorithm [3,4], the glowworm swarm
optimization (GSO) algorithm [5,6], and the wolf colony (WC) algorithm [7,8], have the
advantages of reliable performance and global search when solving continuous function
optimization problems, which have attracted the interest many scholars in applying them
to related practical parameter optimization problems. These algorithms are mainly inspired
by the intelligent phenomenon of biological groups in the natural world, and are a kind of
random optimization algorithm proposed by imitating the behavior of social animals. They
are heuristic search algorithms that are optimized based on a given goal, the core premise of
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which is that a group composed of many simple individuals can achieve complex functions
through simple cooperation with each other. These algorithms can solve problems such as
data mining, network routing optimization, robot path planning, logistics and distribution
vehicle scheduling, and wireless sensor networks. However, these algorithms have their
own shortcomings. For example, the disadvantage of the PSO algorithm is the lack of
dynamic adjustment of speed, which makes it easy to fall into local optimization, resulting
in low convergence accuracy and difficult convergence; The GSO algorithm must require
excellent individuals within the perceptual range to provide information, otherwise the
individuals will stop searching, thus reducing the convergence speed. Therefore, Yang and
Deb [9,10] proposed a cuckoo search (CS) algorithm, in which this evolutionary calculation
simulates the behavior of cuckoos looking for nests and laying eggs and letting the host
birds hatch them on their behalf. The CS algorithm uses Lévy flights to move randomly
instead of simple isotropic random search, which enhances the search performances of the
algorithm and shows certain advantages in solving function optimization problems [11,12].
The main advantages of the CS algorithm are fewer parameters, simple operation, easy
implementation, strong random search path optimization and optimization capabilities,
and the ability to converge to the global optimal. The application of cuckoo search to
engineering optimization problems has shown its high efficiency, such as the solution of
flow shop scheduling problems.

Thereafter, some scholars improve the search ability of the CS algorithm by mixing
other algorithms with the cuckoo search algorithm. Wang et al. [13] proposed a cuckoo
search hybridized with the particle swarm optimization algorithm, named the CSPSO
algorithm. Hu et al. [14] introduced cooperative coevolution framework technology into
the cuckoo search algorithm. On the other hand, some scholars have studied and improved
the key search components in the cuckoo search algorithm. Wang et al. [15,16] used the
dimension by dimension updating search mode and orthogonal crossover operation to
enhance the search efficiency of bias random walk. Valian et al. [17] dynamically updated
the foreign egg discovery probability and the Lévy flights random walk step factor in the
standard algorithm. The rule was to decrease with the increase in the iteration step size,
and the authors proposed an improved cuckoo search algorithm (ICS). Wang et al. [18]
proposed using uniformly distributed random numbers to dynamically set the Lévy flights
random walk step factor. Because uniform distribution is a simple probability distribution,
Lin et al. [19] proposed a cuckoo search algorithm with beta distribution search (BCS) by
replacing beta distribution with uniform distribution, and the simulation results confirmed
the effectiveness of the improved strategy.

As a non-traditional processing method, electrical discharge machining (EDM) has
been widely used in the aerospace, molding, automobile and other industries due to its
ability to process difficult-to-machine workpieces. EDM is a violent thermal processing
process, requiring a very short time through the gap between the workpiece and the tool
for thousands of discharges to remove a certain volume of metal materials. The material
removal rate (MRR) and surface roughness (SR) are important indicators to measure
efficiency and quality. Many input process parameters such as peak current, pulse-on
time, pulse-off time and servo voltage will affect the output performance; therefore, proper
input parameters must be selected to obtain good results. Due to the many factors that
affect the effectiveness of EDM, such as the complexity and randomness of the machining
process, even a skilled engineer, it is difficult to achieve the best results using advanced
EDM technology. On the contrary, improper selection of parameters may also lead to
serious consequences, such as an abnormal discharge state, surface cracks, a thick white
layer and poor material removal, thereby reducing productivity.

Patel Gowdru Chandrashekarappa et al. [20] optimized the process parameters while
electrical discharge machining HcHcr steel based on the Taguchi hybrid principal compo-
nent analysis method. Prakash et al. [21] studied the surface modification of Ti-6Al-4V alloy
partial sintered Ti-Nb electrode discharge coating. Moreover, our team studied [22,23] the
process optimization of the magnetic field-assisted electric discharge machining method,
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including not only the electrical parameters, but also the magnetic field strength. In addi-
tion, with the development of advanced ceramic materials, EDM also needs to consider its
economics and needs to optimize its machining process [24]. Therefore, using appropriate
modeling and optimization techniques, such as PSO, GA, and CS, to determine the rela-
tionship between machining performance (MRR and SR) and its key input parameters is
an effective method to solve this problem.

In order to improve the user experience of online process optimization, the process
optimization algorithm not only needs to converge, but also requires a small number of
iterations. Inspired by Valian [17] and Wang [18], this study integrates the two improvement
strategies: an improved cuckoo search algorithm and a cuckoo search algorithm with beta
distribution. Then, the scale factor shows an exponential decay trend and a cuckoo search
algorithm, using improved beta distributing search (IBCS), is proposed. Therefore, this
study improves the standard CS algorithm and compares it with several other common
variants of the CS algorithm, and has been verified in EDM.

The remaining sections of this study are as follows. Section 2 describes the necessary
information about the cuckoo search algorithm. Then, the CS algorithm using an improved
beta distribution strategy, proposed in this study, is detailed in Section 3. Subsequently,
Section 4 depicts the simulation of the proposed ICBS algorithm, and analyzes the simula-
tion results, which is compared to CS, ICS and BCS. It is important that a case study in the
process of EDM is investigated in Section 5 to demonstrate the merits of the proposed ICBS
algorithm. Lastly, a concise conclusion for the ICBS algorithm and its application in the
process of EDM is drawn from Section 6.

2. Cuckoo Search Algorithm

The CS algorithm is an evolutionary algorithm based on biomimetics, which is op-
timized for D-dimensional search space

[
xj,min, xj,max

]
(j = 1, 2, . . . , D) question. The CS

algorithm first initializes the population, listed in Equation (1) [9,10],

xi,j,0 = xi,j,min + r
(
xi,j,max − xi,j,min

)
, i = 1, 2, . . . , NP (1)

where, r ∈ [0, 1] is the scaling factor and NP is the size of the population. After initialization,
the CS algorithm updates the population iteratively. In this process, the CS algorithm first
uses Lévy flights to randomly walk and update the next generation of new individuals.
Then, the individuals with good fitness will replace previous ones with poor fitness, and
otherwise they will remain in place. Furthermore, the CS algorithm uses biased random
walk to search for new individuals, and also uses the above greedy strategy to update
individuals. After completing this round of iterative search, the algorithm updates the
current optimal solution in the entire population. The updated strategy of Lévy flights
randomly walking for the current individual is expressed as Equation (2) [9,10],

Xi,G+1 = Xi,G + α0
∅× µ

|v|
1
β

(Xi,G − Xbest) (2)

where, Xi,G, Xi,G+1 and Xbest represent the ith (1, 2, . . . , NP) current individuals in the Gth
generation, the new ith individuals of the population in the (G + 1)th generation, and the
best individuals in the Gth generation, respectively; α0 is the step size scale factor (generally
is 0.01); µ and v obey the normal distribution, β = 1.5, and the ∅ function corresponds to
Equation (3) [9,10],

∅ =

Γ(1 + β)× sin
(

π×β
2

)
Γ
(

1+β
2

)
× β× 2

β−1
2

 1/β (3)
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In the biased random walk, each dimension of the individual updates the step size
according to a certain probability, as shown in Equation (4) [9,10],

xi,j,G+1 =

{
xi,j,G + r

(
xm,j,G − xn,j,G

)
i f rand > pa

xi,j,G otherwise
(4)

where xm,j,G and xn,j,G represent the mth and nth individuals in the Gth generation pop-
ulation (m 6= n 6= i); r is the scaling factor, pa ∈ [0, 1] represents the probability of for-
eign egg discovery (generally 0.25), and rand is a uniformly distributed random number
that obeys [0, 1].

3. CS Algorithm Using Improved Beta Distribution Strategy
3.1. Improvement Strategies

Beta distribution is a kind of continuous probability distribution, which is defined
between the intervals (0, 1). It is widely used in mathematical statistics and machine
learning. In the beta distribution, the random variable x obeys the probability density
function of parameters a and b, as in Equation (5) [19],

f (x; a, b) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1 (5)

According to the research results by Wang et al. [18], a larger step-size scale factor
(α0) is detrimental to the performance of the algorithm when solving most optimization
problems. On the other hand, in order to compare the effectiveness of the algorithms in
this paper, the values of the parameters a and b in the beta distribution in this study are
the same as those in [19]. The condition is that a ≤ b, bmax = 15, bmin = 5, and amin = 1.
Therefore, the updated strategy for parameters a and b is as follows in Equation (6).{

b = bmin + rand× (bmax − bmin)
a = amin + rand× (b− amin)

(6)

In Equation (6), the values of the parameters a and b are random. Then, Lévy flights
move randomly, and the probability density function of the random variable x changes
every time. Therefore, the random number generated by the beta distribution also changes,
as for the step-size scale factor (α0), which has a certain disturbing effect on the search
evolution process of the CS algorithm. However, from the perspective of the overall
evolution trend, the mean value of the step-size scale factor (α0) does not decrease, because
in Equation (6), the mean values of a and b gradually approach a constant with the increase
in algebra in the evolution process. Hence, the mean value of the step scale factor (α0) also
gradually approaches a constant.

Therefore, in order to further increase the influence of disturbance in the evolution
process, this paper adaptively reduces the mean value of α0 according to evolution iter-
ations. The strategy is to introduce a scaling factor (α0,abcs) to update α0. Therefore, the
scaling update of the proposed IBCS algorithm α0 is calculated as in Equation (7),

α0,abcs = ra,G × α0,bcs (7)

In Equation (7), α0,abcs is the beta distribution random value as the step-size scale
factor, which is determined by the beta distribution, and ra,G is the current evolution
iterations scaling factor, calculated by Equation (8),

ra,G = rmax × exp
(

1
G

Ln
(

rmin

rmax

))
(8)

where G is the current iteration algebra, while rmin and rmax are 0.1 and 1, respectively.
With the increase in evolution iterations, ra,G gradually becomes smaller, which means that
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the disturbance of Lévy flights random walk becomes smaller. In the early CS algorithm,
the disturbance of Lévy flights random walk is larger, which can avoid premature maturity.

3.2. IBCS Algorithm

Step 1: For the objective function f (x), X = (x1, x2, . . . , xd)
T , n variables (population

size) as the initial position of the host bird’s nest xi(i = 1, 2, . . . , n) are randomly generated
by Equation (1). The relevant parameters of the IBCS algorithm are initialized, such as
population size n = 30, foreign egg discovery probability pa = 0.25, the value of bmax = 15,
the value of bmin = 5, the value of amin = 1, the value of rmax = 1, and the value of rmin = 0.1
in scaling the boundary of the D-dimensional search space

[
xj,min, xj,max

]
.

Step 2: Generate a random IBCS population, and calculating the objective function
value for each host bird’s nest, and recording the current iteration number as N_iter = 1.

Step 3: Use Equations (5)–(8) to calculate the scale factor (α0) of Lévy flights random
walk, and executing the Lévy flights random walk for all individuals in the population
according to Equations (2) and (3), and judging whether to update current individual.

Step 4: Use Equations (4) to perform biased random walk on all individuals in the
population, and determining whether to update the current individual.

Step 5: If the end condition is met, output the current optimal position and the
corresponding optimal value of the objective function, and the procedure ends; otherwise,
go to step 6.

Step 6: After the new population is generated, the objective function value for each host
bird’s nest is calculated again, updating the current iteration number to N_iter = N_iter + 1.
Then, go to step 3.

According to the description of the above IBCS algorithm, the flow chart of the
algorithm is shown in Figure 1.
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4. Simulation and Analysis
4.1. Benchmark Functions

In order to estimate the performance of the IBCS algorithm, six typical test functions
are used for comparative analysis. The dimension, variable value range and target value of
the test function are shown in Table 1.

Table 1. The dimensionality, initial value range and target value of the benchmark function.

No. Function Name Dimension Initial Value Range Target Value

f 1 Shpere 30 [−5, 5] 0
50 [−10, 10] 0

f 2 Ackley 30 [−5, 5] 0
50 [−10, 10] 0

f 3 Rastrigin 30 [−5, 5] 0
50 [−10, 10] 0

f 4 Rosenbrock
30 [−5, 5] 0
50 [−10, 10] 0

f 5 Griewank
30 [−5, 5] 0
50 [−10, 10] 0

f 6 Schwefel
30 [−5, 5] 0
50 [−10, 10] 0

4.2. Parameter Settings

In order to facilitate the comparison of the effectiveness of the IBCS algorithm, the
main parameter settings of the IBCS algorithm are the same as those in BCS and ICS. For
the IBCS parameter settings, they are set in Section 3. For the benchmark test function,
the evaluation times are D× 6000. In order to evaluate the performance of the algorithm
fairly, this paper uses the average error to evaluate, and each benchmark function runs
30 times independently.

4.3. Results and Analysis

It can be seen from the calculation results in Table 2 that for the six benchmark test
functions of 30 dimensions, the average rankings of the four algorithms are 3.67, 2.67, 1.5,
and 1.17, respectively. Except for the f 6 function, the IBCS algorithm is slightly worse than
the BCS algorithm, but better than ICS and standard CS. In other cases, the IBCS algorithm
is better than the other three algorithms. From the calculation results in Table 3, it can be
seen that for the six benchmark test functions of 50 dimensions, the average rankings of
the calculation performance of the four algorithms are 2.83, 2.5, 1.67, and 1.0, respectively.
For the high-dimensional f 6 function, the IBCS algorithm has obvious advantages over the
BCS algorithm this time, and is better than ICS and standard CS. Therefore, combining the
30-dimensional and 50-dimensional calculation results, the performance of IBCS is better
than the other three algorithms, and the hybrid improvement strategy is more effective
than the standard algorithm or a single improvement strategy.

The IBCS algorithm is obviously better than the other three algorithms. This is because
the IBCS algorithm is improved on the basis of the ICS algorithm and the BCS algorithm.
The change in the scale length factor (α0) for the Lévy flights random walk step has a
greater impact on the performance of the cuckoo search algorithm. Figures 2–5 show the
historical record values of α0 during the evolution of the standard CS algorithm, the ICS
algorithm, the BCS algorithm, and the IBCS algorithm in 30 dimensions.
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Table 2. Test results of four optimization algorithms on 30-dimensional test functions.

No. Algorithm Mean Variance Sort

f 1

Standard CS [9,10] 2.059 × 10−19 4.473 × 10−38 4
ICS [17] 1.643 × 10−33 8.102 × 10−65 3
BCS [19] 8.217 × 10−34 9.779 × 10−66 2

IBCS 4.109 × 10−34 5.064 × 10−66 1

f 2

Standard CS [9,10] 2.603 × 10−09 3.669 × 10−17 4
ICS [17] 3.553 × 10−15 0 3
BCS [19] 5.092 × 10−15 3.206 × 10−30 2

IBCS 3.789 × 10−15 8.124 × 10−31 1

f 3

Standard CS [9,10] 4.069 × 101 3.625 × 101 3
ICS [17] 4.138 × 101 4.775 × 101 3
BCS [19] 3.448 × 101 1.564 × 102 2

IBCS 3.184 × 101 5.774 × 101 1

f 4

Standard CS [9,10] 1.633 × 101 2.391 × 100 3
ICS [17] 1.598 × 101 2.253 × 101 3
BCS [19] 1.056 × 101 5.114 × 10−1 1

IBCS 1.108 × 101 5.927 × 10−1 1

f 5

Standard CS [9,10] 5.070 × 10−16 7.711 × 10−30 4
ICS [17] 0 0 1
BCS [19] 0 0 1

IBCS 0 0 1

f 6

Standard CS [9,10] 3.655 × 10−17 3.172 × 10−33 4
ICS [17] 3.159 × 10−32 1.221 × 10−63 3
BCS [19] 2.327 × 10−33 4.768 × 10−66 1

IBCS 1.679 × 10−32 1.501 × 10−64 2

Table 3. Test results of four optimization algorithms on 50-dimensional test functions.

No. Algorithm Mean Variance Sort

f 1

Standard CS [9,10] 1.953 × 10−20 2.935 × 10−40 4
ICS [17] 1.252 × 10−32 2.005 × 10−65 3
BCS [19] 8.432 × 10−34 3.898 × 10−68 2

IBCS 5.699 × 10−36 3.701 × 10−72 1

f 2

Standard CS [9,10] 4.757 × 10−10 2.0625 × 10−19 4
ICS [17] 6.394 × 10−15 2.244 × 10−30 1
BCS [19] 6.751 × 10−15 1.262 × 10−30 3

IBCS 6.394 × 10−15 2.244 × 10−30 1

f 3

Standard CS [9,10] 6.946 × 101 8.525 × 101 1
ICS [17] 1.023 × 102 3.295 × 102 4
BCS [19] 6.338 × 101 4.604 × 102 1

IBCS 6.192 × 101 2.147 × 102 1

f 4

Standard CS [9,10] 3.535 × 101 3.095 × 100 3
ICS [17] 3.853 × 101 3.104 × 100 3
BCS [19] 2.817 × 101 3.292 × 10−1 1

IBCS 2.731 × 101 8.941 × 10−1 1

f 5

Standard CS [9,10] 0 0 1
ICS [17] 0 0 1
BCS [19] 0 0 1

IBCS 0 0 1

f 6

Standard CS [9,10] 2.131 × 10−17 2.567 × 10−34 4
ICS [17] 2.558 × 10−30 4.766 × 10−60 3
BCS [19] 6.789 × 10−31 5.379 × 10−61 2

IBCS 6.648 × 10−33 5.753 × 10−65 1
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For the standard CS algorithm [9,10], the α0 curve in Figure 2 remains constant,
and the step scale factor in Lévy flights random walk remains unchanged. For the ICS
algorithm [17], the α0 curve exhibits exponential decay. In the early stage of evolution,
a relatively large α0 is needed to facilitate global search. In the later stage, a smaller α0
is beneficial to local optimization. Therefore, the ICS algorithm [17] is better than the
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process of evolution. This helps to prevent the cuckoo search algorithm from falling into a
local optimal solution, and α0 varies between 0 and 0.9. This is conducive to the diversity
of step scale factor in the Lévy flights random walk. Therefore, the BCS algorithm [19] is
better than the standard CS algorithm [9,10], which can also be verified from the data in
Tables 2 and 3.

For the IBCS algorithm proposed in this study (shown in Figure 5), the step scale
factor in Lévy flights random walk presents a beta random distribution in the evolution
process. At the same time, it makes the evolution process show an exponential decay trend
on the whole. Therefore, the trend of the step scale factor curve in the IBCS combines the
effects of ICS [17] and BCS [19]. It can be seen from the above analysis that such a step
scale factor should have a better optimization effect. From the data in Tables 2 and 3, we
can see that the IBCS algorithm, proposed in this study, is not only better than the standard
CS algorithm [9,10], but also better than the ICS algorithm [17] and the BCS algorithm [19]
of a single optimization problem.

Furthermore, this study presents the convergence curves of test function f1, test
function f3 and test function f5 under the 30-dimensional function and 50-dimensional
function, respectively, as shown in Figures 6–8. The other three test functions are limited
by the length of the paper and are not given in this study. It can also be directly observed
from the graph that the convergence speed of the IBCS algorithm, proposed in this paper,
is significantly better than that of the standard CS algorithm [9,10]. Compared with the ICS
algorithm and the BCS algorithm [17,19], it also has certain advantages, and the effect is
more obvious for high dimensions (50 dimensions).
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5. Case Study

As a non-traditional processing method, the process of electric discharge machining
(EDM) has been widely used in the aerospace, molding, automotive and other industries.
The EDM aims to remove a certain volume of metal material in a very short time by relying
on the heat generated by electric discharge [25,26]. Two evaluation indexes of important
indexes in EDM are the material removal rate (MRR) and surface roughness (Ra) [26–28].
Due to many factors affecting the machining effects, such as peak current, pulse turning
time, pulse shutdown time, and servo voltages affect the performance of the output. Even
a skilled engineer, due to the complexity and randomness of the processing process, will
find it difficult to achieve the best results through advanced processing technology. In
addition, improper parameters may also result in serious consequences, such as abnormal
discharge state, surface cracking, etc., thereby reducing processing quality. Therefore,
the relationship between the processing performance (MRR and Ra) and its main input
parameters is determined, and the optimal process parameter combination is obtained,
which is an effective method for solving this problem.

As a stable compound of C and Si, the lattice structure of SiC is composed of two
closely arranged sublattices. Each Si (or C) atom is bound to the surrounding C (SI) atom
by a directional strong tetrahedral sp3 bond. Although the tetrahedral bond of SiC is very
strong, the energy of stacking fault formation is very low, which determines the polytype
phenomenon of SiC. The most common multi-vectors are cubic-mounted 3C/SiC and
hexagonal macro 4H, 6H/SiC. Fouly et al. made Al/SiC composites in high-frequency
sintering methods and studied their mechanics and tribological properties [29]. Chen et al.
adopted a vacuum pressure impregnation method to prepare a high-volume fraction of
high thermal conductivity SiC/Al composites [30].

Thereafter, Ming et al. [28] proposed soft computing models, of an intelligent optimiza-
tion system, to optimize the process of electro-discharge machining of SiC/Al composites.
In their study [28], a series of experiments on a block of SiC/Al composites (8× 7× 0.2 mm)
had been conducted on Topend ED-50 EDM machine (depicted in Figure 9), which was
manufactured by Kingone Co. Ltd. The SiC/Al composite machined was a high-volume
fraction material, and its particle size, containing 45 % SiC particles, was 5 µm. Its yield
pressure and elastic modulus were 329.9 MPa and 150.6 GPa, respectively. In the machining
process, the type of dielectric was Mold DY-1, which was a specialized dielectric with high
stability for the EDM process [28]. Additionally, the material of the tool electrode was
copper, and its shape was 8 × 7 × 2 mm. Additionally, other detailed information was
depicted in the literature [28].

Based on the machining data and regression method, the models of MEE and surface
roughness (Ra) are shown in Equations 9 and 10 (Ip: discharge current, Ton: pulse-on time,
Toff: pulse-off time, and Sv: servo voltage), respectively [28].

MRR = −4.76 + 0.2201Ip + 0.620Ton + 0.352To f f + 0.0720Sv
+0.01976I2

p − 0.01240Ip × To f f + 0.0182Ton × To f f
−0.00976Ton × Sv − 0.00586To f f × Sv

(9)

Ra = −59.4 + 3.001Ip − 0.1053Ton − 1.441To f f + 1.73Sv
+0.1026T2

o f f − 0.1145S2
v + 0.1032Ip × To f f − 0.0396Ip × Sv

(10)

In order to verify the effectiveness of the improved cuckoo algorithm in this paper,
we perform a single-objective optimization based on Equations (9) and (10). Through the
optimization algorithm (CS, ICS, BCS, and IBCS), the discharge parameter combination at
the maximum MRR can be obtained. Similarly, the discharge parameter combination at the
minimum value of Ra can be calculated. The optimization of the CS, ICS, BCS, and IBCS
algorithms was performed 12 times, and the number of iterations of MRR and Ra under
the optimal value (less than 0.5% error) was obtained by statistics, respectively. Table 4 lists
the test results of four optimization algorithms on the MRR single-objective optimization.
As depicted in Table 4, the performance of IBCS, proposed in this study, is better than that
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of standard CS, ICS and BCS. Similarly, the same conclusion can be obtained from Table 5,
and the success ratio of 10 iterations in the IBCS algorithm is the best. For the success ratio
of 50 iterations, all four of the optimization algorithms could achieve the desired results for
both the MRR and Ra single-objective optimization problem.

Crystals 2021, 11, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 9. Experimental setup and workpiece; (a) Topend ED−50 EDM machine; (b) workbench; (c) 
workpiece. Reprinted with permission from ref. [28]. Copyright 2021 Copyright Springer Nature. 

Table 4. Test results of four optimization algorithms on the MRR single-objective optimization. 

Algorithm 
Success Ratio (%) 

Sort 
10 Iterations 50 Iterations Average 

Standard CS [9,10] 58.33 100 79.17 4 
ICS [17] 66.66 100 83.33 3 
BCS [19] 83.33 100 91.67 2 

IBCS 91.67 100 95.83 1 

Table 5. Test results of four optimization algorithms on the Ra single-objective optimization. 

Algorithm 
Success Ratio (%) 

Sort 
10 Iterations 50 Iterations Average 

Standard CS [9,10] 50 100 75 4 
ICS [17] 75 100 87.5 2 
BCS [19] 66.66 100 83.33 3 

IBCS 83.33 100 91.67 1 
  

Figure 9. Experimental setup and workpiece; (a) Topend ED−50 EDM machine; (b) workbench; (c)
workpiece. Reprinted with permission from ref. [28]. Copyright 2021 Copyright Springer Nature.

Table 4. Test results of four optimization algorithms on the MRR single-objective optimization.

Algorithm Success Ratio (%)
Sort

10 Iterations 50 Iterations Average

Standard CS [9,10] 58.33 100 79.17 4
ICS [17] 66.66 100 83.33 3
BCS [19] 83.33 100 91.67 2

IBCS 91.67 100 95.83 1

Table 5. Test results of four optimization algorithms on the Ra single-objective optimization.

Algorithm Success Ratio (%)
Sort

10 Iterations 50 Iterations Average

Standard CS [9,10] 50 100 75 4
ICS [17] 75 100 87.5 2
BCS [19] 66.66 100 83.33 3

IBCS 83.33 100 91.67 1

Figure 10 demonstrates the comparison of the convergence results of the single ob-
jective optimization for MRR and Ra in the process of EDM, respectively. As depicted
in Figure 10a, the IBCS algorithm obtains the desired convergence results of MRR by
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6 iterations. However, the standard CS algorithm acquires the desired convergence results
of MRR by 13 iterations. Additionally, the lowest iteration numbers of the ICS and BCS
algorithms, satisfying the desired convergence, are both 9. Under the single-objective opti-
mization convergence of MRR, the iteration number of CS algorithm is twice that of IBCS
algorithm. After the first iteration, moreover, the optimization results of IBCS algorithm
are better than the other three algorithms (CS, ICs or BCS). It also can be concluded from
Figure 10b that the IBCS algorithm obtains the desired convergence results of Ra by 8 itera-
tions, and the CS, ICS and BCS algorithms acquire the desired convergence results of Ra by
13, 15, and 17 iterations, respectively. The results demonstrate that the iteration number
of BCS algorithm is twice that of IBCS algorithm under the single-objective optimiza-
tion convergence of Ra. Therefore, the IBCS algorithm is the best for the single-objective
optimization in the process of EDM.
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6. Conclusions

The CS algorithm is a new bionic evolutionary algorithm that has emerged in recent
years. This paper studies a cuckoo search algorithm using improved beta distribution and
its application in the process of EDM. The following conclusions can be obtained.

(1) This paper proposed a new cuckoo search algorithm that uses an improved beta
distribution strategy, which causes the Lévy flights random walk step scale factor to present
a beta random number distribution in the evolutionary process. At the same time, the
step-size scale factor of the evolution process had an exponential decay trend.

(2) The simulation test results show that the proposed strategy in the IBCS algorithm
is feasible and can effectively improve the convergence speed and solution performance,
which is compared to the standard CS algorithm. For the six benchmark test functions of
30 dimensions, the average rankings of the CS, ICS, BCS, and IBCS algorithms are 3.67,
2.67, 1.5, and 1.17, respectively. For the six benchmark test functions of 50 dimensions,
moreover, the average rankings of the CS, ICS, BCS, and IBCS algorithms are 2.83, 2.5, 1.67,
and 1.0, respectively.

(3) The IBCS algorithm combines the advantages of the ICS algorithm and the BCS
algorithm, and its performance is better than these two algorithms. At the same time, as
the scale of the solution becomes larger, the performance of the IBCS algorithm remains
stable. Compared with the standard CS algorithm, ICS algorithm and BCS algorithm, the
IBCS algorithm can better reflect its superiority.

(4) As confirmed by our case study, the performance of ABCS algorithm was better
than that of the standard CS, ICS or BCS algorithms in the process of EDM. For exam-
ple, under the single-objective optimization convergence of MRR, the iteration number
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(13 iterations) of the CS algorithm was twice that (6 iterations) of the IBCS algorithm. Simi-
lar, the iteration number (17 iterations) of the BCS algorithm was twice that (8 iterations) of
the IBCS algorithm under the single-objective optimization convergence of Ra.

Nomenclature and Abbreviations

ABC artificial bee colony
BCS beta distribution search
CS cuckoo search
EDM electrical discharge machining
GSO glowworm swarm optimization
IBCS improved beta distributing search
ICS improved cuckoo search
PSO particle swarm optimization
WC wolf colony
Ip the discharge current
Ton the pulse-on time
Toff the pulse-off time
Sv the servo voltage
Xi,G the ith (1, 2, . . . , NP) current individuals in the Gth generation
Xi,G+1 the new ith individuals of the population in the (G + 1)th generation
Xbest the best individuals in the Gth generation
α0 the step size scale factor
pa the probability of foreign egg discovery
r the scaling factor
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