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Abstract: In this work, the performance of the carbon doped compositionally complex alloy (CCA)
MoNbTaW was studied under ambient and high pressure and high temperature conditions. TaC and
NbC carbides were formed when a large concentration of carbon was introduced while synthesizing
the MoNbTaW alloy. Both FCC carbides and BCC CCA phases were detected in the sample com-
pound at room temperature, in which the BCC phase was believed to have only refractory elements
MoNbTaW while FCC carbide came from TaC and NbC. Carbides in the carbon doped MoNbTaW
alloy were very stable since no phase transition was obtained even under 3.1 GPa and 870 ◦C by
employing the resistor-heating diamond anvil cell (DAC) synchrotron X-ray diffraction technique.
Via in situ examination, this study confirms the stability of carbides and MoNbTaW in the carbon
doped CCA even under high pressure and high temperature.

Keywords: high entropy alloy; synchrotron X-ray diffraction; diamond anvil cell; high pressure and
high temperature property; calculation of phase diagram

1. Introduction

High entropy alloy (HEA) has drawn increasing attention because a combination of
different elements can build a simple microstructure which has promising properties [1–7].
HEAs are defined as alloys with at least four or more principal elements which have
a concentration between 5% and 35 at%, where the properties of HEA may be tunable
based on the elements contained. Being more broadly defined than traditional HEAs,
compositionally complex alloys (CCAs) may have more than one phase in the microstruc-
tures, in which the secondary phase can be precipitate, ordered, disordered, or amorphous
phase [8,9]. HEAs/CCAs were generally explored by changing one element in the existing
alloy or by adding additional elements with the purpose of enhancing performance such as
mechanical properties of alloys. For example, it was reported that an additional Al element
in AlXCoCrCuFeNi promotes the transition of FCC to BCC structure. Meanwhile, the Al
element was claimed to be the key factor influencing the microhardness [10].

It has been reported carbon (C) addition is another powerful method for inducing
remarkable precipitation strengthening of CCAs [11–18]. For instance, 3.0 at% C doped
in the alloy CoCrFeMnNi could lead to increased tensile yield strength from 371 MPa
to 792 MPa [17] because of the existence of nano-carbides which showed excellent bal-
anced strength and ductility in the alloy. Another example of the carbide-forming alloy
is the Mo0.5NbHf0.5ZrTi refractory HEA, whose compressive strength and plasticity were
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increased due to the formation of MC carbides with M = Nb, Hf, Zr, and Ti when the
concertation of C was only 0.3 at% [18]. It is found from the previous experimental findings
that the formation of carbide phase and solution strengthening are key factors for enhanc-
ing hardness, plasticity, yield strength, and tensile strength in HEAs [19–21]. Bai et al.
add 2.5 at% of C to Fe36Mn36Ni9Al10 high entropy alloy which increased mechanical
properties such as plasticity, yield strength and tensile strength. It is expected that the
addition of C enhanced the plasticity of MoNbTaW alloy. The performance of C doped
CCAs with low concentrations of C have been investigated under normal or high tem-
perature [11–18]. However, the carbides–CCA alloy with high concentrations of carbon,
especially the compounds under both high temperature and high pressure, have not yet
been investigated.

In many fields, such as the propulsion systems in aircraft engines and rockets, the
key technologies rely on systems that operate at elevated pressure and temperature. The
service life of these systems is limited by some critical components which rely on the
material that can resist mechanical loads at high temperature and high pressure. Therefore,
researchers in this field aim to develop materials that can operate at higher temperature
and high pressure. Synchrotron x-ray diffraction (XRD) coupled with resistor-heating or
laser-heating diamond anvil cell (DAC) technique can provide microstructural information
under high temperature and high pressure at the same time [22–27], which makes it
possible to study performance of materials under both high temperature and high pressure.
The high pressure can easily be generated through DAC by compressing small samples
between two opposing diamond culets, while the high temperature can be generated by
heating DAC through laser or resistor. Laser-heated DAC [23–25] has become an important
tool, but the lack of temperature measurement accuracy is an ongoing problem [24]. On
the other hand, an electrical heater with adjustable voltage and current out of the resistor
heated DAC [27,28] makes it easier to precisely control and measure the temperature.

In this work, we explored the formation of carbides in MoNbTaW alloy with large
concentration of C introduced during the synthesis of MoNbTaW. The performance of
carbide–CCA alloy was investigated at a high pressure of ~3.1 GPa and a high temperature
up to ~870 ◦C by using the resistor-heating DAC synchrotron XRD technique. Our study
shows that carbides could be easily formed by doping large concentrations of carbon to
the alloy, and the compounds are still stable even under the tested high temperature and
high pressure.

2. Materials and Methods

CCA alloy powders were mechanically alloyed via high-energy ball-milling from
the powder mixture of Nb (99.8%, ~44 µm, Alfa Aesar, Korea), Mo (99.99%, <150 µm,
Sigma-Aldrich Ltd., Korea), Ta (99.98%, ~149 µm, Alfa Aesar, Korea), and W (99.9%,
~12 µm, Sigma-Aldrich Ltd., Korea) powders. Stainless steel balls with a diameter of 5 mm
were used as milling media. The ball-to-powder mass ratio was 10:1. Moreover, 3 wt%
stearic acid (CH3(CH2)16COOH) as both process control agent and carbon dopant was
added to avoid cold welding and agglomeration of powders while doping the CCA alloy.
After placing the powder mixture, ball, and stearic acid into the water-circulated chamber,
attrition milling was performed at 500 rpm for 96 h under an argon atmosphere. During
the ball milling process, the carbon elements in the stearic acid were resolved in the Mo,
Nb, Ta, and W mixture, which led to the large concentration of carbon in MoNbTaW CCA.

The performance of the obtained sample under high temperature and high pressure
were investigated by using the resistor-heating DAC (BX90 Cell [26] (as shown in Figure 1a).
The DAC synchrotron XRD data were collected at beamline 12.2.2 of the Advanced Light
Source (ALS), Lawrence Berkeley National Laboratory (LBNL) [24]. As shown in Figure 1a,
the cell has an annular space (24 mm outside diameter × 14 mm inside diameter) inside
the piston that allows the placement of a resistive heater. The cell also has U-shaped cuts in
their cylinder part serving as wire inlets for thermocouples and electrode wires. The heater
is an external tungsten heater [28] purchased from HPTLab. The basic framework of the
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heater is a ring-shaped aluminum oxide holder with a tungsten wire coil inside. As the
tungsten wire is subject to oxidation in air at elevated temperatures, the whole cell requires
a protective can that keeps the DAC assembly in an inert gas mixture of argon + 2% H2. The
sample was loaded into a rhenium gasket with a sample chamber of 80 micron in diameter
and held between the diamond anvils with 400 µm diameter culets. The scheme of the
experiment setup is shown in Figure 1b. A gas membrane was used to control the pressure.
The synchrotron XRD diffraction patterns were recorded by a MAR345 image plate at an
energy of 25 keV with a 10 × 10 µm2 spot size X-ray beam with the wavelength of 0.4959 Å.
The standard material CeO2 was used to calibrate the sample-detector distance and detector
orientation. MgO powder was added as the medium for pressure transmission, and Pt
powder was used to calibrate the pressure. The alloy sample mixed with MgO and Pt
was firstly compressed to 3.1 GPa, then heated from room temperature to ~870 ◦C in
10 h while pressure kept at 3.1 GPa. In the end, the mixture was cooled down to room
temperature in 2 h. The diffraction images were analyzed by Dioptas [29]. Scanning
electron microscopy (SEM) with an energy dispersive spectroscopy (EDS) attachment was
used for the microstructure observation and composition characterization. An accelerating
voltage of 20 KV and a current of 4 nA were utilized. Clark Instrument, Model CM-802AT,
Novi, MI, USA, was used to examine the hardness of the sintered bulk sample, the testing
load of 1000 gf was used, and the dwell time was 15 s. To avoid the influence among indents,
the interval between adjacent indents is over three times the diagonal of the indents.
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Figure 1. (a) The BX90 DAC. (b) The illustration of the radial synchrotron XRD experiment in a
diamond anvil cell DAC with membrane (relevant details inside DAC are labeled in the Figure).

To investigate the formation of carbides in CCAs with various concentrations of C,
phase diagrams predictions were performed through calculations using the CALPHAD
software [30,31]. CALPHAD develops reliable, self-consistent thermodynamic databases
that describe the Gibbs free energy of each individual phases in a system using semi-
empirical equations. On the basis of the known descriptions of the constituent lower-order
systems, the thermodynamic description for a higher order system can be obtained via an
extrapolation method in the CALPHAD method. It represents that the Gibbs free energy of
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multicomponent alloys can be extrapolated based on the binary A-B solution phase, which
can be described as:

Gφ
m = ∑

i=A,B
xi · Gφ,o

i + RT ∑
i=A,B

xi ln xi + xA · xB ∑
v

Lv · (xA − xB)
v (1)

where the first term of the equation represents the reference states with xi, the mole fraction
of a component, i, and Gφ,o

i , and the Gibbs free energy of a pure component, i, with a
φ structure. The second term is the ideal mixing term which is described by R, the gas
constant, and temperature T. The last term is the excess Gibbs free energy of mixing with
Lν, the interaction coefficient, and ν, the power of the polynomial series. Equation (1)
can be extrapolated into a multi-component system using geometric models, such as the
Muggianu model [32]. For example, the ternary system with component of A-B-C, the
Gibbs energy can be extrapolated from the binary ones:

Gternary = AABGAB + AACGAC + ABCGBC + GABC (2)

where Aij is the coefficient which can be a function of composition used to extrapolate
binary systems to ternary ones and Gij is the Gibbs energy for binary system. Ternary
and higher-order interaction parameters may be necessary to describe a multi-component
solution phase. The related Thermo-Calc-2019 software was employed to predict the
phase diagram of refractory alloys, in which the related Thermo-Calc’s high entropy alloy
database (TCHEA1) [33] was claimed to have good agreement with the experimental
observations on the phase of refractory HEAs [34–38]. The CALPHAD calculation predicts
the phase of MoNbTaW, which has only BCC phase under a temperature up to ~3000 K.
The prediction is the same as the reported observations [5,39], which indicates the reliability
of CALPHAD.

3. Results

The XRD patterns of ball milled carbon doped MoNbTaW (C-MoNbTaW) sample
are shown in Figure 2 (black line). For comparison, the XRD of sintered bulk specimen
synthesized by spark plasma sintering (SPS) is also shown in Figure 2 (see the red line in
Figure 2). Both BCC and FCC (carbides) peaks were obtained in the sintered bulk specimen
and ball milled sample. According to the Bragg’s law, λ = 2dhklsinθhkl , for a cubic system,
d2 = a2/

(
h2 + k2 + l2), the lattice constant of FCC crystal calculated from the sintered bulk

alloy is 3.072 Å, and BCC is 3.150 Å. The XRD peaks were broad in the ball milled powder
because of the strain and crystallite size reduction, which led to the overlap of FCC and
BCC peaks in the XRD. The scanning electron microscopy (SEM) images of carbon doped
MoNbTaW particles are shown in Figure 3a,b. Clearly, the particles are irregular shaped
with size of the obtained C-MoNbTaW ranging from 0.2 to 0.8 µm with an average value of
0.5 µm. The EDS analysis in Figure 3c confirmed that ~8.2 wt% of C was contained in the
C-MoNbTaW sample. Figure 4 shows the microstructures, and the EDS mapping results of
the bulk sintered sample. Pores are observed in the bulk sintered C-MoNbTaW sample,
which is typical in samples made with powder metallurgy (indicated with white arrows
in Figure 4a). There are mainly two areas in the sintered bulk sample, namely the bright
area and the dark area. With the help of EDS mapping, the dark area is the enrichment of
Nb and Ta elements, while the bright area indicates higher concentrations of W. Besides,
Mo distributes uniformly throughout the material. Due to the limited amount of C, its
signal is hardly observed. The average amount of C element on the sample surface was
determined to be around 5.7 wt% in the bulk sintered sample. Compared with C content
detected in the C-MoNbTaW particles, it is deduced that the higher concentration of C
results from contaminants attached on the particle surfaces. In the meantime, the average
Vickers hardness of bulk sintered C-MoNbTaW sample was tested at five different spots
and average hardness was found to be 1668 HV with a standard deviation of 35 HV.



Crystals 2021, 11, 1073 5 of 10
Crystals 2021, 11, 1073 5 of 11 
 

 

 
Figure 2. XRD pattern of carbon doped MoNbTaW ball milled powder (black) and sintered bulk 
specimen (red). 

  
Figure 3. (a,b) Microstructure of C-MoNbTaW sample. (c) EDS analysis of carbon doped 
MoNbTaW. 

(a) (b) 

(c) 

10 µm 1 µm 

Figure 2. XRD pattern of carbon doped MoNbTaW ball milled powder (black) and sintered bulk
specimen (red).

Crystals 2021, 11, 1073 5 of 11 
 

 

 
Figure 2. XRD pattern of carbon doped MoNbTaW ball milled powder (black) and sintered bulk 
specimen (red). 

  
Figure 3. (a,b) Microstructure of C-MoNbTaW sample. (c) EDS analysis of carbon doped 
MoNbTaW. 

(a) (b) 

(c) 

10 µm 1 µm 

Figure 3. (a,b) Microstructure of C-MoNbTaW sample. (c) EDS analysis of carbon doped MoNbTaW.

In situ XRD patterns of the C-MoNbTaW/MgO/Pt mixtures obtained under various
temperatures at 3.1 GPa are demonstrated in Figure 5. These XRD patterns are used to
investigate the phase stability of C-MoNbTaW under high pressure and high temperature.
The XRD peaks of MgO, Pt, and samples are marked by black, red, and blue dots, respec-
tively. The major peaks include: MgO 111, 311, and 222 peaks, (the MgO 200 and 220 peaks
are replaced by dash lines to guarantee a better view of sample peaks); Pt 111, 200, and
220 peaks; carbides (FCC) 111, 200, 220, 311, and 222 peaks; and MoNbTaW (BCC) 110,
200, and 211 peaks. As stated in Figure 2, the FCC 200 and BCC 110, FCC 220 and BCC
200, and FCC 311, 222, and BCC 211 are overlapped because of the close peak position,
thus, only four main peaks of the sample can be clearly observed. Under 3.1 GPa and
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room temperature, the sample is identified to have BCC and FCC phases by DAC XRD,
indicating the phase stability of the sample under a pressure up to ~3.1 GPa. Furthermore,
peaks neither appear nor disappear when temperature is increased from room temperature
to 870 ◦C with the pressure kept at 3.1 GPa, indicating that there is no phase transition at
high temperature of 870 ◦C and high pressure of 3.1 GPa.
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4. Discussion
4.1. Carbides in the MoNbTaW Alloy

The BCC phase detected from XRD in Figure 2 belongs to the MoNbTaW alloy
which was reported to have only BCC single phase even when the temperature reaches
1600 ◦C [5,39]. The FCC peaks were aligned through the open source XRD database Ma-
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terial Projects, which shows that the FCC patterns belong to the carbides TaC/NbC. The
intermetallic phase and carbides were formed by refractory metals interacting with the
carbon in the stearic acid after long-time high-energy ball milling. A similar observation
was reported when fabricating an AlFeMgTiZn alloy by ball milling, and the carbides were
formed due to a small amount of stearic acid used during the process [40].

The values of chemical mixing enthalpy ∆Hmix (kJ/mol) of atomic pairs obtained from
Miedema’s model [41] and the electronegativity difference ∆χ

r between C and the refractory
elements are listed in Table 1. C-based binaries have a negative ∆Hmix which is much lower
than that of the binary refractory compounds (ranging from −26 to 0 kJ/mol [41]). This
indicates that carbides are easy to be formed when mixing C with refractory elements.
Moreover, C-Ta and C-Nb pairs have larger ∆χ

r than those of other C-refractory elements,
which indicates a stronger attractive interaction between C and Ta/Nb. As a result, the
binary compounds TaC/NbC were formed. Comparison of these two parameters shows
that the most possible carbides obtained in the C-MoNbTaW alloy are TaC/NbC, which is
consistent with the experimental observation.

Table 1. The Pauling scaled electronegativity difference ∆χ
r and the chemical mixing enthalpy

∆Hmix (kJ/mol) of atomic pairs between C and the refractory elements.

Binary Mo-C Nb-C Ta-C W-C

∆Hmix −67 −102 −60 −42

∆χ
r 0.39 0.95 1.05 0.19

The phase diagram of MoNbTaW and C-MoNbTaW under 3.0 GPa obtained by CAL-
PHAD are plotted in Figure 6a,b. Very few amounts of HCP phase were obtained in
C-MoNbTaW, as shown in Figure 6b. The composition analysis shows that the component
in BCC phase include W, Ta, Mo, and Nb with the mole fraction of each element close to
0.25. The component in the HCP phase includes 0.54 mole fraction of Ta, 0.13 mole fraction
of Nb, and 0.33 mole fraction of C, which indicates the formation of Ta-Nb-C carbides in
MoNbTaW alloy.
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According to the phase diagram, the (Ta/Nb)2C carbides with the HCP phase were
obtained. However, it is different from the experiment that (Ta/Nb)C carbides with FCC
phase were obtained in the alloy. To explore the possible phase of the Nb-Ta-C system
with various C concentrations under ambient conditions, its phase diagram was plotted
in Figure 6c,d. As shown in the Figures, when the mole percentage of C is less than 50%,
the phase of the Nb-Ta-C system would have a transition from BCC, HCP, to FCC with the
increase in C mole percentage; the Nb-Ta-C system has only FCC and graphite phase when
the mole percentage of C is more than 50%. It should be noticed that during the synthesis
of C-MoNbTaW, metal powders were merged in the stearic acid. This can allow stearic acid
to provide sufficient carbon elements to interact with refractory elements. On the other
hand, the C element provided by stearic acid made it impossible to form the graphite phase
during ball milling. In this case, even though the phase diagram predicted by CALPHAD
indicates that the HCP phase could be formed in carbon doped MoNbTaW, the actual phase
of carbides obtained in the ball milled alloy is FCC, considering the synthesis process.

4.2. C-MoNbTaW under High Pressure and High Temperature

It is clearly shown is Figure 5 that the full width at half maximum (FWHM) decreased
with the increase in temperature up to 598 ◦C. The reason is that increasing temperature
may enhance the order of the crystalline. On the other hand, the Pt 111 and the second peak
of alloy (FCC 220 and BCC 200) are initially overlapped at the 2-theta value of ~12.5 degrees.
The peak splitting is obtained when the temperature increases to 741 ◦C, making the Pt 111
and the FCC 220 and BCC 200 distinguishable due to the different change of crystalline size
of Pt and C-MoNbTaW with the increase in temperature. While only a small amount of
sample is detected when the temperature is 870 ◦C, the intensity of the alloy peaks is weak.

It is interesting that the diffraction peaks of both FCC and BCC peaks shift to smaller
2θ angles with temperature increased up to 741 ◦C, which indicates that the lattice expands
based on the Bragg’s law. The peaks shift to smaller 2θ angles with temperature increased
in the range of 741 to 870 ◦C. The corresponding lattice as the function of temperature for
BCC and FCC phase are shown in Figure 7. As shown in the Figure, the linear trend was
obtained for lattice constant as a function of temperature as the temperature increased to
741 ◦C for both FCC and BCC lattice, which can be explained by the intrinsic nature of
thermal expansion in the alloys due to the increasing atomic thermal vibration from their
equilibrium positions [42]. The drop of lattice constant when the temperature increased
from 741 to 870 ◦C is still under investigation.
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5. Conclusions

In this work, carbon doped MoNbTaW was synthesized by ball milling and studied
under various temperatures at 3.1 GPa. Carbides TaC and NbC were formed by introducing
acid to the mixture during the synthesis of MoNbTaW, which led to the coexistence of
BCC (MoNbTaW) and carbide phase as obtained by XRD. The carbides are easy to obtain
when a large concentration of carbon is mixed with refractory elements during ball milling
according to the CALPHAD calculation. Both phases are very stable even when the
temperature increased to 870 ◦C at 3.1 GPa. The mechanical properties of C-MoNbTaW
are expected to be improved since carbides are the favorable phases in the form of hard
constitutes in metal matrix composites. The resistor-heating DAC used in this work
performed high temperature and high pressure tests at the same time, which can be
further applied to explore the performance of other alloys. Based on this in situ study,
we demonstrated the carbides synthesizing method and the coexistence of highly stable
phases in CCA at both high pressure and high temperature.
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