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Abstract: Visible light communication (VLC) is an advanced, highly developed optical wireless
communication (OWC) technology that can simultaneously provide lighting and high-speed wireless
data transmission. A VLC system has several key advantages: ultra-high data rate, secure com-
munication channels, and a lack of interference from electromagnetic (EM) waves, which enable a
wide range of applications. Light-emitting diodes (LEDs) have been considered the optimal choice
for VLC systems since they can provide excellent illumination performance. However, the quan-
tum confinement Stark effect (QCSE), crystal orientation, carrier lifetime, and recombination factor
will influence the modulation bandwidth, and the transmission performance is severely limited.
To solve the insufficient modulation bandwidth, micro-LEDs (µ-LEDs) and laser diodes (LDs) are
considered as new ideal light sources. Additionally, the development of modulation technology
has dramatically increased the transmission capacity of the system. The performance of the VLC
system is briefly discussed in this review article, as well as some of its prospective applications in the
realms of the industrial Internet of Things (IoT), vehicle communications, and underwater wireless
network applications.

Keywords: visible light communication; laser diode; light-emitting diode; modulation scheme;
optical receiver; quantum communication

1. Introduction

Electromagnetic waves have an extensive range of applications, including cell phone
communications, wireless radio broadcast, Wi-Fi, etc. Depending on the wavelength,
electromagnetic waves can be roughly divided into radio waves, infrared rays, visible light,
ultraviolet rays, etc. Though radio frequency (RF) is not susceptible to low interference,
it is capable of wide area coverage [1]. Nevertheless, RF has several disadvantages, such
as interference, bandwidth limitations, safety issues, transmission power limitations, and
a crowded radio spectrum [2–5]. Therefore, visible light communication (380 to 780 nm)
has been developed to solve these challenges as an alternative solution to the problem
mentioned above. Wireless optical communication technology is characterized by its
emphasis on the realization of high-frequency bandwidth communication capacity, which
is significantly greater than the current radio wireless communication frequency. In the past
ten years, light fidelity (Li-Fi) technology, which combines illumination and communication,
has risen to the forefront of study.
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Optical Wireless communication (OWC) has two main advantages: one is that it won’t
be interfered with by electromagnetic waves. Despite the fact that current flight regulations
allow passengers to use electronic devices on planes and vital medical equipment in hospi-
tals, and copper nets are embedded in the walls to prevent mobile phone interference, there
are still some chances for interference. On the other hand, wireless optical communication
in these sensitive places can avoid interference. The other advantage is power saving;
it is more power efficient to turn on and off a LED/LD than to use RF wireless radio
frequency to transmit signals. Hand-held devices have limited battery power, so it is more
advantageous to use optical wireless communication to transmit signals. Li-Fi technology
design is directly combined with the LED bulb of the skylight board to enable hotspot
for indoor wireless internet access, and most mobile phones have LED flashes and CMOS
camera lenses, which means that they can potentially receive and send information. The
beam steering and VLC position combination is a promising solution to directionality
between the light source and the receiver [6]. Although the active components of the VLC
system will inevitably increase the power consumption, alignment difficulties, cost, and
volume of the mobile device, these can be mitigated by utilizing a modulated retroreflector
(MRR) in the mobile device; this has been successfully demonstrated recently [7]. In the
future, mobile phones may be able to easily exchange information; a schematic of a VLC
System is shown in Figure 1.
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LED output into white light sources. When compared to RGB three-color hybrid LEDs, 
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Figure 1. A schematic of a VLC System (Tx: Transmitter; Rx: Receiver; DAC/ADC: Digital/Analog
converter; TIA: Transimpedance amplifier).

Visible light communication is mainly composed of two components: an optical
transmitter (Tx) and optical receiver (Rx), as shown in Figure 1. After preprocessing and
encoding, a binary bit stream drives the light source (LED/LD), and the electrical signals
are converted into optical signals through modulation. Signal distortion generated by
other channels is compensated by using pre-processing. The equalization technology can
increase the response bandwidth of the LED and increase the transmission data rate. The
receiver’s post-equalization can compensate for other channel losses, such as phase noise.
High-order coding modulation techniques were used to increase the transmission rate and
spectrum efficiency.

The light sources that are predominantly used in VLC systems are LEDs and laser
diodes. White light is preferred for indoor illumination; hence, red, green, and blue LEDs
(RGB-LEDs) are mixed to generate white light sources, or yellow phosphors convert blue
LED output into white light sources. When compared to RGB three-color hybrid LEDs,
employing yellow phosphor Gallium Nitride (GaN) blue LEDs can minimize light source
complexity and system cost. However, when the blue photon hits yellow phosphor [8–11],
the transition causes a relatively reduced penetration power and frequency modulation
bandwidth, thereby limiting the signal-to-noise ratio (SNR) and transmission capacity of Li-
Fi systems. In 2020, J. Vučić et al. modulated the limited bandwidth of an LED with Discrete
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Multitone (DMT) format, achieving 513 Mbit/s of data rate [12]. In 2012, Khalid et al.
reached a data rate of 1 Gbit/s with a phosphorescent white LED by the utilization of a DMT
modulation scheme [13]. To improve spectrum utilization, Li-Fi systems mostly use carrier-
less amplitude and phase (CAP) and M-ary quadrature-amplitude-modulation (M-QAM)
as the modulation format. In 2013, Wu et al. used CAP and QAM-orthogonal frequency-
division multiplexing (OFDM) to modulate an RGB-LED, reaching a data rate of 2.93 and
3.22 Gbit/s, respectively [14]. However, the coherence, noise performance, and direct
modulation bandwidth of the traditional LEDs were all hampered by the spontaneously
radiating photons of the active region stimulated by the photons. To overcome the problems
mentioned above, resonant cavity LEDs or micro-LED arrays (µ-LEDs) have been proposed
due to their high internal quantum efficiency (IQE), light extraction rate, and variable
modulation bandwidth. Since the RC constant of the device cannot limit the bandwidth of
the µ-LED [15] and the GaN µ-LED is a much smaller LED (<100 µm), it has been proven
to provide better white light than traditional LEDs, with a higher output intensity and
wider modulation bandwidth [16,17].

Laser diodes (LDs) are another light source often employed in VLC systems. They
have stronger coherence, narrower spectral linewidth, and larger modulation bandwidth,
making them more suited for data rates exceeding Gbit/s [18,19]. Unlike LEDs, which
can only provide up to a few hundred MHz of usable bandwidth, a commercial transistor-
outline can (TO-can)-packaged GaN blue LD was reported in 2013 carrying 2.5 Gbit/s
of error-free on-off keying (OOK) transmission, which can provide a VLC system with
1.4 GHz of bandwidth [20]. In 2013, Chen et al. demonstrated a bidirectional VLC that can
provide 2.5 Gbit/s 16-QAM OFDM, using a red laser pointer [21]. To increase the data
rate, in 2013, Chi et al. achieved 9 Gbit/s VLC in a 5 m point-to-point (PtP) free space
link by utilizing 64-QAM OFDM to modulate a GaN blue LD [22]. The lighting function
of an LD is similar to an LED, which is realized by covering the output end of blue LD
with yellow phosphor or using the collimated beam of mixed R/G/B LD. In 2015, Lee et al.
demonstrated a non-return-to-zero OOK (NRZ-OOK) data stream that transmitted at a
data rate of 2 Gbit/s using a blue LD covered with a yellow phosphor [23]. In the same
year, Retamal et al. achieved a data rate of 4 Gbit/s by embedding the yellow fluorescence
of the blue LD into remote color conversion [24]. In 2015, Chi et al. also illustrated a
blue LD-based white light converted by a phosphorous diffuser, with a correlated color
temperature (CCT) of 5217K, which can transmit 16-QAM OFDM data at a data rate of
5.2 Gbit/s in a 0.6 m free space channel [25]. Additionally, Tsonev et al. expected to achieve
a data rate exceeding 100 Gbit/s by using an R/G/B hybrid LD light source for white light
VLC carrying a QAM-OFDM signal [26]. In 2017, Wu et al. achieved an 8 Gbit/s data rate
with 16-QAM OFDM over 0.5 m free space by using a commercial R/G/B TO-can-packaged
LD [27]. These illustrations suggested that visible light LDs have greater data transmission
potential than LEDs and that this potential will grow in the future. Mainstream white light
VLC light sources will be achieved by using laser and color mixing technology, and a brief
comparison of light source used in VLC systems is presented in Table 1.

Table 1. Comparison of light source used in the VLC system.

Light Source Size (mm2) Limiting Factor Bandwidth Power Eye Safe

LED 0.1~1 τRC (~1 ns) ~10 MHz >1 W Yes
µ-LED <0.01 τcarrier (~1 ns) <1.5 GHz ~µW Yes

Laser diode <0.2 τPhoton (~1 ps) 10~20 GHz >1 W No
Laser light ~0.01 τPhoton (~1 ps) 10~20 GHz >1 W Yes

2. VLC Transmitter Light Source
2.1. Theoretical Background of LED for VLC Application

At present, most of the light sources used in VLC systems are white light LEDs, which
are mainly divided into two categories, RGB-LED and phosphor-converted (pc)-LED. RGB-
LED is realized by the utilization of three primary color phosphors which are excited
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by violet or ultraviolet LEDs; another approach is to package red, green, and blue chips
together to emit white light (RGB-LED), as shown in Figure 2a. On the other hand, a
pc-LED converts the light source into white light by exciting the yellow phosphor with a
blue LED chip, as shown in Figure 2b [28,29].
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Studying the modulation characteristics of the LED device is critical to improving the
performance of the new Li-Fi system. The modulation bandwidth of the LED determines
the channel capacity and data rate of the communication system. The definition of LED
modulation bandwidth is the frequency when the AC optical power output by the LED
drops to 50% of a certain reference frequency value (−3 dB). As the photoelectric response
of a pc-LED is relatively behindhand [30], the modulation bandwidth of the Li-Fi light
source is limited to a few MHz, therefore limiting the data rate of the entire system; even
the use of a blue filter failed to improve the defects of the light source.

Use of a higher modulation bandwidth by using wavelength division multiplexing
(WDM) with three different wavelengths of light increases the channel capacity of RGB-
LEDs. The terminal receives three wavelengths of light through filters of each wavelength,
which significantly improves the transmission efficiency. However, different colors of
RGB-LED have different operating temperatures, depending on the output light flux. To
achieve independent color operating at different temperatures, the feedback loop and each
single-color LED’s driving current need to be controlled individually, which leads to higher
cost and a more complex modulation circuit.

The response rate and modulation bandwidth of the LED are influenced by the carrier
lifetime. In addition, increasing the radiation recombination rate of electrons and holes
and reducing the spontaneous radiation lifetime of carriers is a conventional approach for
designing a modulation circuit and minimizing the RC delay. The spontaneous emission
lifetime of carriers has been decreased by increasing the injected carrier concentration,
which can be achieved by increasing the injection current and delta doping. Under high
injection current, as the injected carrier concentration increases, the exciton recombination
probability increases, the radiation recombination carrier lifetime decreases, and the electro-
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optical conversion responds quickly. Delta doping technology also results in high carrier
injection, thereby reducing carrier lifetime and improving modulation bandwidth at the
same current density.

Due to the built-in piezoelectric polarization of the LED, the traditional polar LED
grown on the c-plane has limited bandwidth, especially in the green spectral region [31].
The polarization in the c-plane-oriented InGaN quantum well produces a robust quantum
confinement Stark effect (QCSE), which separates electrons and holes, thereby increasing
the time for radiation recombination [31,32]. As a result, the device’s performance will
dramatically reduce, and the Auger effect QCSE will cause significant peak changes but
also cause a significant drop in luminous efficiency under high injection currents [31,33].
To mitigate this polarization field, growing quantum wells in semipolar or non-polar
directions allows better overlap of electrons and holes, which leads to faster radiation
recombination, especially with thicker quantum wells [34–40]. It was expected that a
higher electro-optical bandwidth and potentially reduced Auger effect could be achieved
by crystal orientation.

With the advantages of semipolar LEDs in luminous efficiency and wavelength stabil-
ity, researchers have expanded their applications; for instance, in high-resolution displays
and high-speed visible light communications. Nevertheless, better implementation of VLC
includes improving the modulation characteristics of LED light sources and the emission
efficiency under high-speed modulation, which depend on their carrier recombination
lifetimes.

Semipolar LEDs with less QCSE have a faster radiation recombination rate [30]. How-
ever, µ-LEDs have a better frequency response, low power consumption, and higher
brightness [36]. The high brightness of a µ-LED leads to a faster transmission data rate and
lower bit error rate (BER). By using a high-speed photodetector to detect the modulated
LED photocurrent signal, the −3 dB frequency is related to specific diode parameters. The
frequency response has been evaluated using a fixed current. The LED cut-off frequency
was affected by the carrier lifetime and Resistor-Capacitor (RC) time constant composed of
depletion layer capacitance and the junction differential resistance, which determines the
transmission data rate of the LED.

The modulation bandwidth can determine the data rate of the VLC application, so
the −3 dB frequency bandwidth of LED can be related to the resistance-capacitance time
constant (τRC) and the minority carrier lifetime, as shown in the Equation (1) [37]:

f−3dB =

√
3

2πτ
=

√
3

2π

(
1
τr

+
1

τnr
+

1
τRC

)
(1)

where τr and τnr represent the radiative and non-radiative carrier lifetime, respectively.
The modulation bandwidth of GaN LEDs is mainly determined by the RC time con-

stant and carrier lifetime [41–44]. The modulation bandwidth can be increased due to
the decrement of the carrier lifetime by increasing the injected current density [38,45].
However, increasing the current density may cause the quantum efficiency and LED perfor-
mance to decrease [46]. Several reports have indicated the carrier recombination process in
GaN-based LEDs would be influenced by carrier localization [47–49] and the QCSE [50,51].
µ-LEDs can achieve a smaller carrier lifetime and higher modulation bandwidth because
they can withstand higher injection current density. As the current density increases, QCSE
will become less effective, increasing the optical power and modulation bandwidth [52].
Because the µ-LED has a smaller active area, the relative geometric capacitance and RC
time constant, the main parameters limiting the modulation bandwidth, will be reduced.
Growing LEDs on semipolar or non-polar substrates increased the modulation bandwidth,
corresponding to a higher radiation recombination rate. GaN-based µ-LEDs have excellent
performance in high brightness, high contrast, fast response time, extended service life, and
low power consumption. Because of its ultra-small light-emitting area, a single µ-LED has
a low power emission. By assembling multiple µ-LEDs into array, the output light power
can be increased. A µ-LED array will be prepared for monochromatic and polychromatic
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emission [53,54]. In this section, we review the characteristics and applications of µ-LED
arrays in the field of VLC, and a brief benchmark for µ-LEDs used in VLC systems is shown
in Figure 3 [42,55–64]. To utilize µ-LEDs in a VLC system, integrating multi-color emitters
on a single chip is required. This can be achieved by combining blue µ-LEDs with color
conversion materials (pc-LED) or RGB-LEDs.
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2.2. Theoretical Background of Laser for VLC Application

Due to the low data transmission rate of the LED modulation, Professor Hardal Hass
was the first to use laser diodes to replace LEDs for Li-Fi. By utilizing lasers’ high energy
and luminous efficiency, the data transmission rate can be ten times higher than LEDs.
Laser lighting can produce white light through color mixing technology, similar to RGB
LEDs. Although an LED-based VLC can achieve a transmission rate of 10 Gb/s and
increase the upper limit of the data transmission rate of 7 Gb/s in Wi-Fi, the laser data
transmission rate can easily exceed 100 Gb/s. The R&D team of Arizona State University
developed a nano-scale white light laser which can be a potential Li-Fi light source. Laser
diodes have several advantages in communication applications: faster response speed,
direct modulation, and high coupling efficiency. For general semiconductor lasers, the
LD can modulate light controlled by the input current when the injected current exceeds
the threshold current (Ith), as the modulation characteristics show in Figure 4. The linear
region above the threshold current to the saturation area is the LD working area, the
modulation range. Hence, reducing the device threshold current and obtaining a more
extensive modulation working area is crucial.

The threshold current density is shown in Equation (2):

Jth =
ed
Iinj

(
BN

′2e
2 αm+αi

Γg0 + CN′3e
3 αm+αi

Γg0

)
(2)

where Jth is threshold current density; e is the electron element charge; d is the active layer
thickness; Iinj is the injection current; N′ is the transparent carrier concentration; αm and
αi are the mirror loss and optical absorption loss, respectively; Γg0 is Maximum mode
gain; and B and C are the radiation recombination coefficient and Auger recombination
coefficient, respectively.
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A laser-based VLC system reaches tens of gigabit-per-second of data rates, benefiting
from its extensive modulation bandwidth. The modulation speed of the laser diode is
controlled by the photon lifetime (~ps) rather than the carrier lifetime (~ns) in the LED. In
addition, a laser-based VLC system enables narrow beam transmission for long-distance
applications. A 100 m OOK-modulated VLC link was demonstrated with a data rate of
2.3 Gbps in 2017 [65]. While the OOK modulation technique is commonly used due to its
simplicity, many advanced modulation schemes have been used in laser-based VLC to
realize high data rates, with the feasibility to exceed 100 Gbps.

In a high-speed VLC system, the transmitter is critical to achieving a high data rate.
A promising light source in a VLC system requires high optical output power, large
modulation bandwidth, high energy conversion efficiency, low operation voltage, small
form-factor, and long lifetime. Since the blue-green lasers were based on gallium nitride
materials, the high-speed laser-based VLC system requires a fast GaN-based transmitter.
Three types of lasers were commonly used as transmitters: edge emitting laser diodes
(EELDs), super luminescent diodes (SLDs), and vertical-cavity surface-emitting lasers
(VCSELs).

2.2.1. Edge Emitting Laser Diodes (EELDs)

A typical white laser transmitter is constructed using a blue laser exciting yttrium
aluminum garnet (YAG) phosphor. Nakamura et al. performed the first demonstration of
an InGaN/GaN-based room-temperature EELD [66], utilizing the injection locking tech-
nique and demonstrating that the bandwidth of the laser diode can be enhanced, making
it promising for high data rate VLC systems [67]. In 2018, Mukhtar et al. demonstrated
a prism-based self-injection locked (SIL) external cavity diode laser based on a violet
LD with a continuous wavelength tunability of 5.15 nm [68]. In 2020, Holguin-Lerma
et al. demonstrated that a novel InGaN-based distributed feedback (DFB) laser diode with
narrow-linewidth emission at approximately 480 nm enabled a 10.5 Gbps data rate using a
16-QAM OFDM modulation scheme [69].

The phosphor material is laser-pumped to produce eye-safe white light emission, which
has significant advantages over the non-human-eye-safe beam from a single-wavelength
coherent emission high-power LD chip [70,71]. Figure 5 shows an integrated surface-
mount device (SMD) package for laser lighting applications. The laser beam hits the
phosphor, and the combination of photons from the LD and the phosphor converts the
photons to produce a white light spectrum. These laser SMDs can produce a directional
beam of 400–500 lumens from a 300–400-micron spot, producing a brightness level beyond
1000 cd/mm2 [72].
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2.2.2. Super Luminescent Diodes (SLDs)

SLDs shown in Figure 6 are light emitters generating amplified spontaneous emission
(ASE), combining optical characteristics of LEDs and LDs. An SLD combines the advantage
of both an LD and LED. That is, the diffraction-limited, spatially coherent, excellent
coupling to external component, and small form factor of the LD, and the wideband
spectrum and time incoherence of the LED [74].

Since developing high-power and high-speed violet-blue SLDs, VLC systems based
on SLD transmitters have been demonstrated with data rates of 3.8 Gbps with a DMT
modulation scheme by Hu, F. et al. in 2020 [75]. Studies have shown that GaN-based SLDs
can achieve high power emission power, such as over 100 mW blue SLD in continuous
wave operation [76].
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2.2.3. Vertical Cavity Emitter Lasers (VSCELs)

VCSELs, illustrated in Figure 7, are ideal for high-speed communication systems ow-
ing to their high optical beam quality and short cavity. However, the GaN-based violet-blue-
green emitting VCSELs suffer from the large lattice-mismatch AlGaN/GaN distributed
Bragg reflectors (DBRs). Research efforts are required to develop room-temperature
continuous-wave operation high power GaN-based VCSELs. Experimental results have
revealed the modulation bandwidth of violet-blue InGaN/GaN quantum-well VCSEL
beyond GHz, confirming that GaN-based VCSELs have great potential for high-speed VLC
transmitters [78].

However, a laser diode could be a possibility for a Li-Fi light source; Nobel Laureate in
Physics Nakamura Shuji anticipated that laser illumination would eventually replace LED
lighting, but the current lighting technology is led by the rather established and low-cost
LED. The development of high-brightness, high-efficiency, high-speed modulation micro-
LED modules and laser diodes, among other features, may accelerate Li-Fi technology’s
commercialization. We summarize the recent research achievements in LED and laser-
based VLC in Table 2.



Crystals 2021, 11, 1098 9 of 28

Crystals 2021, 11, x FOR PEER REVIEW 9 of 29 
 

 

imental results have revealed the modulation bandwidth of violet-blue InGaN/GaN 
quantum-well VCSEL beyond GHz, confirming that GaN-based VCSELs have great po-
tential for high-speed VLC transmitters [78]. 

 
Figure 7. A schematic of a VSCEL. Reprinted from [79], Copyright 2020, with permission from 
Elsevier. 

However, a laser diode could be a possibility for a Li-Fi light source; Nobel Laureate 
in Physics Nakamura Shuji anticipated that laser illumination would eventually replace 
LED lighting, but the current lighting technology is led by the rather established and 
low-cost LED. The development of high-brightness, high-efficiency, high-speed modula-
tion micro-LED modules and laser diodes, among other features, may accelerate Li-Fi 
technology’s commercialization. We summarize the recent research achievements in LED 
and laser-based VLC in Table 2. 

Table 2. Recently proposed high-speed LED and LD-based VLC systems. 

Light Source Data Rate (Gbps) Modulation Meth-
od 

Distance (m) Suitable of Light-
ing 

Ref. 

white phosphor 1.1 MIMO OFDM 1 1 Yes [80] 

RGB LED 3.4 WDM OFDM 0.3 Maybe [81] 

RGB LED 6.36 MIMO OFDM 1 Maybe [82] 

RGB LED 3.375 PAM8 1 Maybe [83] 

RGBYC LED 2 10.72 MIMO OFDM 1 No [84] 

GaN μ-LED 5 OFDM 0.05 No [85] 

GaN violet μ-LED 11.95 OFDM N/A No [86] 

DUV μ-LED 3 1 OFDM 0.3 No [87] 

InGaN/GaN μ-LED 1.5 OOK N/A No [61] 

GaN Blue LD 2.5 OOK 0.5 No [20] 

Red VSECL 12.5 OFDM 5 No [88] 

Blue LD 9 OFDM 5 No [22] 

GaN Blue LD 4 OOK 0.15 No [89] 

Blue LD 18 OFDM 16 No [90] 

Violet LD 26.4 DMT 0.5 No [91] 

Red VSECL 11.1 OFDM 1.2 No [92] 

Red VSECL 10.6 OFDM + OOK 3 No [93,94] 

Blue LD + phosphor 4 OFDM 0.5 Yes [24] 

Blue LD + phosphor 2 OOK 1 Yes [23] 

Figure 7. A schematic of a VSCEL. Reprinted from [79], Copyright 2020, with permission from Elsevier.

Table 2. Recently proposed high-speed LED and LD-based VLC systems.

Light Source Data Rate
(Gbps)

Modulation
Method Distance (m) Suitable of

Lighting Ref.

white phosphor 1.1 MIMO OFDM 1 1 Yes [80]
RGB LED 3.4 WDM OFDM 0.3 Maybe [81]
RGB LED 6.36 MIMO OFDM 1 Maybe [82]
RGB LED 3.375 PAM8 1 Maybe [83]

RGBYC LED 2 10.72 MIMO OFDM 1 No [84]
GaN µ-LED 5 OFDM 0.05 No [85]

GaN violet µ-LED 11.95 OFDM N/A No [86]
DUV µ-LED 3 1 OFDM 0.3 No [87]

InGaN/GaN µ-LED 1.5 OOK N/A No [61]
GaN Blue LD 2.5 OOK 0.5 No [20]
Red VSECL 12.5 OFDM 5 No [88]

Blue LD 9 OFDM 5 No [22]
GaN Blue LD 4 OOK 0.15 No [89]

Blue LD 18 OFDM 16 No [90]
Violet LD 26.4 DMT 0.5 No [91]

Red VSECL 11.1 OFDM 1.2 No [92]
Red VSECL 10.6 OFDM + OOK 3 No [93,94]

Blue LD + phosphor 4 OFDM 0.5 Yes [24]
Blue LD + phosphor 2 OOK 1 Yes [23]
Blue LD + phosphor 1.25 OOK 1 Yes [95]

NUV LD + phosphor 4 1.25 OOK 0.15 Yes [96]
Blue LD + phosphor 2.705 OFDM 1.5 Yes [97]
Blue LD + phosphor 5.2 OFDM 0.6 Yes [25]
Blue LD + phosphor 6.915 OFDM 1.5 Yes [98]

RGB LD 8 OFDM 0.5 Maybe [27]
RGB LD 20.231 OFDM 1 Maybe [99]

RGBV LD 5 26.228 OFDM 2 Maybe [100]
1 MIMO: Multiple-input multiple-output. 2 RGBYC LED: Red-green-blue-yellow-cyan LED. 3 DUV µ-LED:
Deep-ultraviolet µ-LED. 4 NUV LD: Near-ultraviolet LD. 5 RGBV LD: Red-green-blue-violet LD.

3. VLC Receiver Technology

The following are the basic requirements of photodetectors in a visible light communi-
cation system:

1. The wavelength has a sufficiently high responsivity. For a certain incident optical
power, the output photocurrent can be as large as possible.

2. Fast enough response speeds to be implemented to a high-speed broadband system.
3. A sufficiently fast response speed can be applied to high-speed broadband systems.

The noise level must be as low as possible to reduce the impact on the device’s signal.
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4. According to a good linear relationship, the signal conversion process has been
guaranteed to spread without distortion.

5. Small size and has a long service lifetime.

There are three critical parameters for photodetector: responsivity, bandwidth, and
dark current [101]. Responsivity is a wavelength-dependent metric that measures the gain
of an output electrical signal per unit of incident optical power incident on the detector. The
responsivity, R, shown in Equation (3) where incident optical power is P, output electrical
signal current is I, is usually given in amperes per watt (A/W):

R =
I
P

(3)

The quantum efficiency η, which is relative to the maximum possible current, is also
comparable to responsivity. When the photodetector picks up every electron-hole pair
generated by the incident photons, the quantum efficiency will be denoted as 100%. Hence,
Equation (3) can be rewritten into Equation (4), where q is the electron charge, λ is the
wavelength of the incident light, h is the Plank constant, and c is the speed of light.

R = η
qλ

hc
(4)

The bandwidth (BW) corresponds to the rise time (tr) of the photodetector, which is
shown in Equation (5):

BW =
0.35

tr
(5)

Two crucial parameters influence the bandwidth of a detector: the transit time and the
RC parasitic response. Transit time is the time it takes for carriers generated by an optical
signal to be swept out of the detector’s active region. The velocity of the carriers is given
by the following Equation (6):

v = µE (6)

where µ is the carrier mobility and E is the electric field. When biased with a high enough
electric field, the carriers will reach a saturation velocity, vsat. The mobility is thus modified
to be as Equation (7):

µsat =
µ√

1 +
(

µE
vsat

)2
(7)

The bandwidth is then given by Equation (8) [102]:

ftransit = 0.38
vsat

hPD
(8)

where hPD is the full height of the photodetector.
Another parameter in determining the bandwidth of a detector is the electrical

impedance characteristic of the detector circuit, also known as the RC parasitic response.
The bandwidth due to RC limitations is shown in Equation (9):

fRC =
1

2πRC
(9)

The total bandwidth, which includes both RC and transit time effects, is given by
Equation (10):

BW =

(
1

f 2
RC

+
1

f 2
transit

)−1/2

(10)

DC current may occur in the detector, even with the absence of the photons, which
is known as dark current. Sufficient levels of dark current can result in a decrease in
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the signal-to-noise ratio. Bulk generation and surface generation are considered when
calculating the total dark current. Bulk generation is a volume-dependent mechanism
in which a significant lattice mismatch between germanium and silicon causes threading
dislocations, allowing for mid-bandgap states, and results mainly from the Shockley-Read-
Hall process [103]. Although the bulk current density is relatively constant at a low electric
field, as the electric field increases, band bending will result in a higher bulk current density
that increases exponentially with the applied electric field. Surface generation is another
factor that leads to dark current, and results from surface defects such as dangling bonds.
Surface passivation is more difficult with germanium than silicon as germanium is not
fully passivated by silicon dioxide. Other materials such as germanium oxide have been
used for passivation with some success [104].

The total dark current is given by Equation (11):

Idark = Jbulk A + Jsur f
√

4π
√

A (11)

where A is the junction area. Suppose we assume that bulk current dominates; then, the
dark current scales with detector area. There is an approximately linear increase of dark
current with the area of the detector.

The shot noise is usually the dominant noise factor in germanium on silicon photode-
tectors. The shot noise due to the dark current is given by Equation (12):

In =
√

2qIdarkBW (12)

The avalanche photodiode (APD), PIN photodetector, metal-semiconductor-metal
photodetector (MSM-PD), superlattice avalanche photodetector (SL-APD), waveguide
photodetector (WGPD), and cavity-enhanced photodetector (CE-PD), are the most used
photodetectors in optical communications. The free-space VLC receiver with large-area
APD has a −3 dB modulation bandwidth of 420 MHz [105]. With a data rate of 56 Mbps,
triple cationic perovskite solar cells can also be used as VLC receivers [106].

The bandwidth is limited by the RC time constant in the perovskite solar cell receiver.
A high-performance surface-absorbing semipolar InGaN/GaN PIN-based micro-PD demo
a −3 dB modulation bandwidth of 347 MHz, suggesting its promising performance for
VLC applications [107]. A black silicon photodetector is developed that shows high gain in
the visible-NIR regime (400–1200 nm). A high responsivity of 1097.60 A/W at 1080 nm is
reported, indicating its advantages for weak light detection. Table 3 summarizes the recent
research achievements in receiver technology for VLC.

Table 3. Recently proposed receiver for VLC system.

Year Receiver Type Bandwidth
(MHz)

Data Rate
(Gbps)

Responsivity
(A/W) Chip Material Ref.

2018 PD 0.82 N/A 1.2 1 Triple-cation perovskite [108]

2019 scintillating-fibers
photoreceiver 86.13 0.25 (OOK) N/A N/A [109]

2019 SL-APD N/A 0.5 (PAM4) N/A silicon [110]
2019 APD 155 N/A 0.35 2 silicon [105]
2020 Micro-PD 300 7.4 (OFDM) 0.11 3 Semipolar InGaN/GaN PIN [111]
2020 PD Rise/fall time: 0.65/2.13 ms ~100 3 Black silicon [112]
2020 Micro-PD 347 1.55 (OOK) 0.191 3 Semipolar InGaN/GaN PIN [107]

2020 Solar cell 0.114~0.586 0.056
(DCO-OFDM) N/A Triple-cation perovskite [106]

2021 APD 890 2 (OOK) 0.45 4 silicon [113]
1 At 500 nm; 2 at 450 nm; 3 at 400 nm; 4 at 675 nm.
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4. Modulation Technology in VLC System

Due to the low bandwidth of the light-emitting diodes (LEDs) used in visible light
communication (VLC), complex modulation schemes are a potentially attractive approach
to offer high-speed data transmission. Different from other types of communication, the
modulation scheme of VLC must achieve a higher rate and meet the requirements of human
perception of light. The following two attributes can characterize these requirements for
perceiving light.

• Dimming:

Performing different types of activities that require different levels of illuminance.
For example, the illuminance in the range of 30–100 lux is sufficient to perform simple
visual tasks in most public places. If the LED can be adjusted to any level, it is necessary to
understand the impact of human perception of light, meaning that the human eye expands
to adapt to a lower illuminance at the pupil to allow more light to enter the eye. The
characteristics of the perceived light of the human eye are shown in Figure 8.
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• Flicker reduction:

The VLC modulation scheme requires that humans should not perceive the brightness
of the flicker. The flicker can cause harmful and severe physiological changes in the human
body, as shown in [115]. Therefore, it is necessary to change the light intensity faster than
the human eye can perceive the flicker or change the light intensity faster than 200 Hz to
avoid any harmful effects, according to the IEEE 802.15.7 standard [116]. This means that
the VLC Modulation scheme should reduce flicker while providing a higher data rate.

After preprocessing, encoding and modulation, a binary bitstream drives the LD
(or LED), and the electrical signal implemented the intensity modulation to convert into an
optical signal. Each modulation technique has a finite number of symbols in which data
can be encoded. Having more symbols allows the representation of more bits by a single
symbol. For example, if an eight-symbol modulation technique is used, each symbol can
represent a set of three bits because each set can have one of eight possibilities. In general,
each symbol of an M-symbol scheme can represent k 1⁄4 log2 M bits, and these k bits are
mapped such that adjacent symbols differ by only one bit (gray encoding). Therefore, the
incorrect selection of adjacent symbols results in a single bit error. However, the use of such
techniques comes with an increase in the power required or a decrease in the immunity
of error.
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The five common modulation schemes of VLC are:

1. Multilevel pulse amplitude modulation (M-PAM)
2. Phase shift keying (PSK) modulation
3. M-ary quadrature amplitude modulation (M-QAM)
4. Orthogonal frequency division modulation (OFDM)
5. Color shift keying (CSK) modulation

4.1. Multilevel Pulse Amplitude Modulation (M-PAM) Technique

Multilevel pulse amplitude modulation (M-PAM) is a conventional multilevel modu-
lation scheme and is the generalization of non-return-to-zero (NRZ) on-off keying (OOK)
from a set of two symbols to a set of M symbols, as illustrated in Figure 9. For example,
when the LED/Laser is turned off, the light intensity will not be completely switched off,
but the optical intensity will be diminished. Where Q(.) is the Q function, the BER and
SNR relation of M-PAM can be determined by Equation (13) [117]:

BERM−PAM =
M− 1

M
2

log2 M
Q

(√
SNR

M− 1

)
(13)
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4.2. Phase Shift Keying (PSK) Modulation Technique

Phase shift keying (PSK) is a digital modulation scheme that conveys data by changing,
or modulating, the phase of a reference signal (the carrier wave). Although Binary-PSK
(BPSK) is the simplest form of PSK, which uses two phases separated by 180◦, it can only
modulate at 1 bit/symbol. The motivation behind M-ary PSK (MPSK) is to increase the
bandwidth efficiency of the PSK modulation scheme. Figure 10 illustrated the constellation
diagrams for BPSK, QPSK and 8PSK. Gray encoding was also used to map the sets of bits
to the appropriate symbol. Where er f c(.) is the error function, the BER and SNR relation of
BPSK and QPSK can be determined by Equations (14) and (15) [118], respectively:

BERBPSK =
1
2

er f c
(√

SNR
)

(14)

BERBPSK = er f c
(√

SNR
)
= 2BERBPSK (15)
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4.3. M-Ary Quadrature Amplitude Modulation (QAM) Technique

QAM combines both PSK and amplitude-shift keying by changing the two parameters
of the carrier. For that reason, this method is also known as amplitude phase keying [120].
With the same average signal strength, the number of symbols can be raised to represent
more bits by a single symbol, resulting in improved bandwidth efficiency compared to
MPSK. The constellation diagrams of 8-QAM and 16-QAM are shown in Figure 11. The
BER and SNR relation of M-QAM can be determined by Equation (16) [121]:

BERM−QAM ∼=
√

M− 1√
M

4
log2 M

Q

(√
3

M− 1
SNR

)
(16)
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4.4. Orthogonal Frequency Division Modulation (OFDM) Technique

OFDM uses multiple subcarriers with orthogonal frequencies to utilize the avail-
able bandwidth efficiently. The OFDM diagram transmission and reception is shown in
Figure 12 [119]. The serial data stream is converted to a parallel stream and mapped using
a modulation scheme, such as PSK or QAM. The data flow is then imposed with Hermite
symmetry to ensure that the inverse fast Fourier transform (IFFT) output in the following
block is true valued. The use of PSK or QAM is therefore possible when OFDM is employed.
If the size of the IFFT is N, N/2 symbols going into the IFFT will represent the data to be
transmitted, and the other N/2 symbols will be their conjugates. This ensures that the IFFT



Crystals 2021, 11, 1098 15 of 28

generates only real values. The analytical expression between the BER and SNR of M-QAM
OFDM can be determined by Equation (17) [122]:

BER =
4
√

M− 1√
M log2(M)

Q

(√
3 log2(M)

(M− 1)
SNR

)
+

4
√

M− 2√
M log2(M)

Q

(
3

√
3 log2(M)

(M− 1)
SNR

)
(17)
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4.5. Color Shift Keying (CSK) Modulation Technique

The blue LED chip excites the yellow phosphor to produce white light, but its switch-
ing speed capability slows down. Therefore, green, blue, and red are used to achieve white
light through light mixing technology. CSK is mentioned in IEEE 802.15.7 and lower data
rate is used in other modulation schemes [123]. The modulation of CSK is performed using
the intensities of the three colors of RGB LED. CSK is sampled in the color space chromatic-
ity diagram [114]. It maps the eye-perceivable color to two chromaticity factors, x and y.
Table 4 illustrates the seven bands of human-visible wavelengths, the centers of which are
marked in Figure 13. Where k is the number of bits (k = log2 M), M is the modulation order
and N0 is one-sided noise power spectral density, the bit error probability (BEP) of a 4-CSK
three color LEDs (Trichromatic LEDs, TLED) can be determined by Equation (18) [124]:

BEP4−CSK =
1
2k

Q
(

0.8157√
2N0

)
+

1
2k

Q
(

0.817√
2N0

)
(18)

Table 4. CSK in code and chromaticity coordinates. © 2015 IEEE. Reprinted, with permission, from [114].

Wavelength (nm) Code Center (nm) (x, y)

380~478 000 429 (0.169, 0.007)
478~540 001 509 (0.011, 0.733)
540~588 010 564 (0.402, 0.597)
588~633 011 611 (0.669, 0.331)
633~679 100 656 (0.739, 0.271)
679~726 101 703 (0.734, 0.265)
726~780 110 753 (0.734, 0.265)
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4.6. Power Requirements and Spectrum Efficiency

The power requirement for an OWC system is proportional to the square root of the
SNR, as shown in Equation (19) [117]:

P =
1
R

√
σ2

NSNR (19)

where R is the responsivity of the photodetector and σ2
N is the total noise power in the

detector current.
Hence the normalized average power requirement of M-PAM, BPSK, QPSK is shown

in Equations (20)–(22), respectively:

PM−PAM
PNRZ−OOK

=
M− 1√
log2 M

(20)

PBPSK
PNRZ−OOK

=
1

2
√

2
(21)

PQPSK

PNRZ−OOK
=

1
2
√

2
er f c−1(BER)
er f c−1(2BER)

(22)

Nowadays, the most commonly used modulation schemes are the M-QAM OFDM,
NRZ-OOK, and M-PAM. Among them, M-PAM has better spectral efficiency but requires
higher SNR to maintain targeted BER, as illustrated in Figure 14.
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5. Optical Wireless Communication Standards

VLC is the most promising technology for communications. Due to LED lighting’s
rapid development, the cost is rapidly falling; however, some of the challenges that must
be addressed are listed as follows:

1. Integration of VLC system with existing communication standards.
2. Ambient light source interference problem.
3. VLC should properly consider mobility issues such as handover.
4. Specification of a forward error correction plan to improve communication system

performance.

As the number of VLC devices increases, there will be interference between different
VLC devices. The Electronic Information Technology Industry Association developed the
standard 802.15.7, which is a standard established by the IEEE for the physical layer and
the MAC layer [123]. Objectives of this standard are:

1. Establish access to hundreds of terahertz frequency bands.
2. Establish anti-electromagnetic interference capability.
3. Communication of additional services that supplement the current visible light equipment.
4. VLC communication that specifies a forward error correction (FEC) scheme, modula-

tion form, and transmission rate.
5. Channel access mechanism, as visibility support also describes channel access, and

contention access period (CAP) and contention-free period (CFP).
6. Physical layer specifications, such as optical mapping, TX-RX, RX-TX turnaround

time, flicker, and dimming relief. IEEE 802.15.7 is new product development standard.

Three different types of devices used by VLC are vehicles, mobile equipment, and
infrastructure, as shown in Table 5 [125].

Table 5. Classification of IEEE 802.15.7 devices.

Mobile Vehicle Infrastructure

Fixed coordinator No No Yes
Power supply Limited Moderate Ample

Form factor Constrained Unconstrained Unconstrained
Light source Weak Intense Intense

Physical mobility Yes Yes No
Range Short Long Short/Long

Data rate High Low High/Low

6. VLC Application

VLC provides many applications from high-speed internet chains with LED bulbs to
interplanetary communication and quantum communication. VLC also brings a new per-
spective to computing that is considered ubiquitous. In this section, we discuss the potential
of visible light communications, focusing on these applications: indoor VLC [2,10,12,88],
ID and position systems [6,126], in-vehicle communications [127], and underwater commu-
nication [6,128].

6.1. Li-Fi

Li-Fi is similar to Wi-Fi, but it is a bidirectional, visible light wireless communication
system. In 2011, Harald Haas first created Light Fidelity (Li-Fi). Wi-Fi signals have the
problem of interference with other radio signals, such as interfering with the airplane navi-
gation equipment. Hence, Li-Fi can be a better solution in areas sensitive to electromagnetic
radiation, such as airplanes and hospitals, which is illustrated in Figure 15.
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6.2. Vehicle to Vehicle Communication

Front-end collision warning, pre-collision sensing, emergency stop lights, lane change
warning, parking movement assistance, left turn assist, signal violation warning, and
corner speed limit warning are among the most important vehicle safety communication
initiatives [129]. A Li-Fi high-speed visible light communication system can be employed
for these, since all high-priority applications require extremely low latency reachability
and the permissible delay of vehicle safety communication is ultra-low.

6.3. Underwater Communication

Due to the extremely high attenuation of radio frequency waves in water, RF or near-
infrared OWC cannot propagate well in sea water [130]. Therefore, an underwater optical
communication (UWOC) network should adopt VLC communication as shown in Figure 16.
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For underwater application, the attenuation of the light can be evaluated through
Equation (23) [132]:

Pd = P0e−c(λ)d (23)

where P0 is the output power of the light source, Pd is the received power over certain
distance d, and c(λ) is coefficient of water associated with attenuation. By evaluating
Equation (23) and by assuming the output power to be 1 mW we can obtain the propagation
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distance of visible light in ocean water, as illustrated in Figure 17. In clear ocean water, blue
and green light are usually preferable to red light, as illustrated in Figure 17a; however, the
attenuation and scattering of red light are lower for certain environments such as a highly
turbid harbor [133], as illustrated in Figure 17b.
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6.4. Information Displaying Signboards

LEDs are utilized as light sources on signboards set in a specific order at airfields, bus
stations, and other locations where information must be broadcasted. In venues such as
airports, museums, and hospitals, signs are utilized to transfer data and can also be used
for instructions [134], as shown in Figure 18.
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6.5. Visible Light ID and Position System

Visible light can be used as an identification system and to determine indoor position,
similar to a global position system (GPS). For instance, if we were standing in room
15 of a certain building, the system could be used to identify the room number and its
building [6,126].
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6.6. Wireless Local Area Networks (WLANs)

In Figure 19, an ultra-high-speed full-duplex local area network with star topology is
shown, with LED visible light communication set up for the LAN, using VLC to provide
speeds exceeding 10 Gb/s, and is tested by a large number of users.
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7. Challenges

While VLC has many advantages over RF communication, it also faces unprecedented
challenges that need to be mitigated. One of these challenges is commercialization, in
which lighting companies and phone manufacturers have to develop their future devices
to accommodate the current VLC technologies for use in future applications. Another
challenge is creating new VLC standards and developing the current ones by considering
the latest technological evolutions in the field [126]. In addition, the performance of VLC
can be degraded or distorted due to background noise. Manchester coding mitigates this
background noise [6]. Moreover, to cater for dual-functionality LD- or SLD-based SSL-VLC
applications, the quality of the produced white light still needs to be improved using stable
light converters that can be used for prolonged periods of time. The use of LDs as data
transmitters also faces issues with misalignment and outages because there are many ways
in which the line-of-sight link between the transmitter and the receiver might be lost or
blocked. A critical concern is the hazards related to eye safety, as long-term exposure to
high-intensity light is potentially harmful to human vision and circadian rhythm. In the
case of using conventional LEDs as transmitters, the limitation in allowable bandwidths
would potentially limit the transmission rate in Li-Fi systems; thus, micro-LEDs and
LDs are more promising alternatives, offering higher bandwidths and transmission rates.
Another updated modulation technology, quantum communication, which is also being
applied to the VLC system, will introduce the principle of quantum communication.

The following section discussed the state of the art of OWC systems and potential
techniques for improving the performance or the data rate. The possible solutions for
solving problems of the current VLC system mention in [136] are discussed, such as:

1. Bandwidth limitation of the light source.
2. Si-based detectors are mainly sensitive to infrared waves.
3. Point-to-Point communication based on a single transmitter and detector.
4. Transmission and reception antennas require a large lens group.

7.1. Bandwidth Limitation of the Light Source

Since the limited bandwidth suppressed the speed of the VLC systems, in 2020,
Huang Chen et al. successfully demonstrated a semipolar (20–21) 525 nm µ-LED that
achieved 3 dB bandwidth up to 756 MHz and 1.5 Gbit/s under a current density of
2.0 kA/cm2, through several improved approaches on epitaxy and chip processes, such
as the introduction of atomic layer deposition (ALD) [61]. Furthermore, in 2021, Gong-Ru
Lin et al. achieved beyond 5 Gbit/s OWC with a 2 × 2 high-contrast grating (HCG) green
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µ-LED operated under low current density, decreasing the power consumption of the
transmission system [137].

7.2. Si-Based Detectors Are Mainly Sensitive to Infrared Waves

In 2020, Huang et al. demonstrated a black silicon-based photodetector with high
responsivity up to 100 A/W at 400 nm and broad response spectrum from 400 to 1600 nm.
In their work, the broad-bandgap responsivity and SNR increase, and the dark current,
are mitigated through the utilization of rapid thermal annealing and hydrogenated sur-
face passivation [112], which may be a promising candidate for Si-based detectors for
VLC systems.

7.3. Point-to-Point Communication Based on a Single Transmitter and Detector

Multiple light sources are needed to accomplish uniform lighting and elevate the
data rate in a mesh multiple-point network. Nevertheless, spatial multiplexing (SMP) is
the most commonly used MIMO scheme that is restricted by channel correlation, causing
difficulties for receivers to distinguish a single data stream. In 2020, a novel odd-order 32-
QAM constellation scheme for 2 × 2 MIMO VLC systems by superposing two independent
signals modulated with 4-QAM and 8-QAM was illustrated by Guo et al. as a promising
candidate for mitigating the channel correlation of SMP MIMO VLC system [138].

7.4. Transmission and Reception Antennas Require a Large Lens Group

This problem could be solved via the combination of a Fresnel lens and an optical
antenna that is capable of radiating directionally and switching to wide-angle rapidly. In
2018, Sabouri et al. proposed a SiN-based optical phase antenna (OPA); the performance of
such a design is estimated to have a ±12.7◦ beam steering in Azimuth angle, 15.6◦ in polar
angle using wavelength tuning in a range of 60 nm [139]. OPA is a promising candidate due
to the advantages of its small size, light-weight, rapid switching speed, and multi-beam
steering [140].

8. Quantum Communication

Quantum communication is a way to transfer quantum states from the transmitter
(Alice) to the receiver (Bob). Quantum Key Distribution (QKD) is a well-known case of
quantum cryptography, first proposed by Bennett and Brassard in 1984 [141,142], also
known as the BB84 protocol, and was first experimentally demonstrated in 1991 [143].
Different photon states, such as polarization, period, frequency, phase, and space, can
realize various QKD protocols. The essence of BB84 is to pressure eavesdropper (Eve) to
perform a quantum measurement that will expose her existence, by sending a series of
individual photons to Bob; many of the photons never arrive or are not detected. Of the
resulting bits, some are kept and used as key material, the remaining are used to hunt
for Eve.

A schematic of a polarization-based BB84 QKD protocol and the four polarization
states that were applied are shown in Figure 20. A polarization-based BB84 QKD protocol
is often used in free-space optical (FSO), since when used over optical fiber the polarization-
dependent loss, polarization mode dispersion, and the fiber loss restricted the transmission
distance [144]. The beam steering system allows Alice to direct the beam to Bob without
physically moving the system, and can be realized by a liquid crystal spatial light modulator
(LC-SLM), LCoS-SLM, and micro-electromechanical systems (MEMs) [7,145]. The single
photon source required by the BB84 protocol is realized by a high attenuation laser, which
can generate weak coherent state (WCS) pulses [146].
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The weak coherent state output by the highly attenuated laser source can guarantee
that the coherent state has a high probability that there is no more than one photon. The
number state |n〉 can be expressed in terms of the ground state (|0〉) with the creation
operator by Equation (24):

|n〉 =
(
a†)n|0〉
(n!)1/2 (24)

where a is the annihilation operator. The density operator of a coherent state is given by
Equation (25):

ρ = |α〉〈α| = e−|α|
2 +∞

∑
n=o

+∞

∑
m=0

(n!)−
1
2 (m!)−

1
2 αn(α∗)m|a〉〈m| (25)

where a is a complex eigenvalue of the annihilation operator, and |α〉 is the coherent state
vector. The probability that n-photons can be found in coherent state |α〉 follows the Poisson
distribution shown in Equation (26):

P(n) = |〈n|α〉|2 = e−µ µn

n!
(26)

where µ = |α|2 is the photon number. Considering that the chance of more than one photon
is sent is not zero, by applying a photon number splitting (PNS) attack, it is possible for
Eve to obtain information. To solve the problem above, Hoi-Kwong Lo et al. proposed a
decoy-state-based quantum key distribution in 2005 [147]. In decoy-state QKD, Alice and
Bob can detect whether Eve is capturing photons when more than one photon is sent since
the average number of photons sent is increased during random timeslots.

The quantum mechanics laws guarantee QKD’s security. According to the method
utilized on Bob’s side, there are two common QKD schemes: discrete variable (DV)-QKD
and continuous variable (CV)-QKD, which utilize a single-photon detector (SPD) and
homodyne/heterodyne detection to measure field quadrature on Bob’s side, respectively.
Different QKD schemes can also be classified as entanglement assist or preparation and
measurement types. For DV-QKD, the unclonability theorem and in distinguishability
theorem of arbitrary quantum states make absolute security possible. The unclonability
theorem declares that any quantum state is unique and cannot be copied, which means
that even with the help of the most powerful computer in the world, Eve cannot clone a
non-orthogonal quantum state [148]. Furthermore, the distinguishability theorem states
that non-orthogonal states cannot be distinguished clearly. That is to say, it is inevitable
that constancy of the quantum states will be disturbed when Eve is attempting to gain
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information on transmitted bits and this will be detected by Bob. The CV-QKD applies
the uncertainty principle and states that the in-phase and quadrature components of the
coherent state cannot be measured completely and accurately at the same time. Recently, the
development of QKD has greatly improved not only theoretically but also experimentally;
an LED-based decoy-state QKD was proposed recently by Jian-Wei Pan et al. in 2019 [146].
By replacing the WCS laser source with an LED, they lower the cost of the QKD system,
providing a tolerable price and sufficient security.

9. Conclusions

Here, we present the recent advances in high-speed visible light communication:
transmitter, modulation technology, receiver standard, and application. Micro-LED/laser-
diode-based VLC are promising approaches towards next-generation wireless data com-
munication networks, which have caught the attention of both academia and industry.
VLC technology provides many advantages over RF and has become an alternative to RF
communication, despite the disadvantage of blind spots due to light spacing and line-of-
sight blocking. The successful development of the VLC system addresses the immediate
multi-billion-dollar markets in beyond-5G optical wireless communication. Empowering
the Internet of Underwater and Underground things (IoU2T), VLC will unfold many new
ideas and enable future applications related to energy, connectivity, and the environment.
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