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Abstract: Owing to its unique properties, silver (Ag) in the form of nanoparticle (NP) ink promises to
play a vital role in the development of printed and flexible electronics. Once printed, metal NP inks
require a thermal treatment process called sintering to render them conductive. Among the various
methods, electrical sintering is a highly selective and rapid sintering method. Here, we studied
the electrical sintering of inkjet-printed Ag NP lines via a stepwise current increment sintering
(SCIS) technique. In the SCIS technique, the supplied electric current was gradually increased in
multiple steps from low electric currents to higher electric currents to avoid thermal damage to
the printed Ag NP ink lines. In less than 0.15 s, a line resistivity as low as 6.8 µΩcm was obtained
which was comparable with furnace sintered line resistivity of 6.13 µΩcm obtained at 250 ◦C in 600 s.
Furthermore, a numerical model was developed for the SCIS process temperature estimation. The
results enabled us to elaborate on the relationship between the Ag NP line resistivity and the process
temperature under various electric currents. Under the applied SCIS technique, a stable sintering
process was carried out avoiding the conductive ink line and substrate damage.

Keywords: electrical sintering; stepwise current increment; silver nanoparticles; numerical modeling; resistivity

1. Introduction

The progress in the patterning of electronic devices via photolithography led us to
the world of the 4th industrial revolution. This lithographic technique was a revolutionary
invention by Joseph Nicéphore Niépce in 1820, which led to the fabrication of the first
transistor in 1947 [1]. Since then, photolithography has been playing a vital role in the
advancement of the electronic industry. However, it is a complex, expensive, and slow
process and not suitable for large-scale fabrication. Moreover, the high amount of haz-
ardous chemicals used in the process [2] makes photolithography extremely dangerous
both for the industrial employees and the outside environment. During the process, the
photoresist materials are applied that enable the formation of the desired electronic pat-
terns. However, these materials are hazardous chemicals that cause fatal diseases [3–6]
for industry employees. In addition, the edge beam removal of the undesired photoresist
by heating and the chemical change in the photoresist by the ultraviolet light produces
additional by-products [2,7]. The disposal of such waste is an environmentally dangerous
chemical process [3,8]. On the other hand, conductive inks used for direct metal printing
and sintering are much safer. The triethylene glycol monomethyl ether (TGME) is used
as a binder in the nanoparticle (NP) ink which simply decomposes to water and carbon
dioxide during the sintering process. Furthermore, in the direct metal printing technique,
the patterning of the metal interconnects can be realized in a single step, reducing the time,
cost, and waste production [9,10]. The most common metal nanoparticles used for direct
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metal printing in printed electronics are silver (Ag) [10], gold (Au) [11], and copper (Cu)
nanoparticles [12] particularly due to their high electrical conductance.

The direct metal printing technique involves the ink materials, either in the form of
metalorganic precursors [11] or metal nanoparticles suspended in dispersants (particle-
based conductive inks containing organic shells). The dispersants are adopted to prevent
the agglomeration of the nanoparticles in the ink. Secondly, organic binders are used to
assure mechanical integrity and adhesion to the substrate by Van der Waals forces after
drying [12]. However, these organic binders need to be removed in a process called sin-
tering to render the ink conductive. Multiple sintering techniques have been reported
throughout the years, such as oven sintering [12], laser sintering [13,14], microwave sin-
tering [15], infrared sintering [16], room temperature sintering [17], intense pulsed light
sintering [18], and plasma sintering [19]. As an alternative to the above methods, electrical
sintering, which sinters the conductive ink line via Joule heating, is a facile choice [10,20,21].
Besides the high selectivity, electrical sintering offers an extremely rapid sintering process.
Allen et al. [21] studied the constant voltage method to sinter a 5 mm × 60 ± 10 µm Ag NP
line within 4 ms and obtained a very low resistivity value. During the sintering process,
the majority of the resistance drop occurred within 2 µs, which indicated the extremely fast
nature of the electrical sintering process.

During a single step constant voltage method, the current is not increased when a
voltage is less than a certain threshold voltage. After the voltage reaches a threshold voltage,
there is a sudden surge of electric current through the NP line. The sudden surge of the
electric current can be detrimental to NP line and cause thermal damage, especially at high
initial line resistances [22]. To overcome this problem, a two-step input voltage method
was suggested by Jang et al. (2013) [22]. However, the voltage input method’s drawback
is the lack of control over the current regulation once the percolation network is formed
among the nanoparticles [23]. Secondly, large input voltage is required to overcome the
initial line resistance [21] even in a two-step voltage supply [22]. Whereas less than 1 A of
constant current is enough to effectively generate thermal energy to sinter the printed line
within milliseconds. Therefore, we devised the stepwise current increment sintering (SCIS)
method, which enabled the control of current regulation and hence, provided control over
the process temperature and the final resistance of the conductive lines. Within 0.15 s we
obtained around 6.8 µΩcm in a electrical current sintering process without thermal damage
to the printed conductive lines. Conventionally, about 7 µΩcm resistivity is regarded to
be sufficient for a thin conductive line [24]. The SCIS sintering method using various
electric currents was demonstrated and in situ resistivity during the sintering process was
measured. For the temperature analysis during the SCIS method, a numerical model was
developed to estimate the sintering process temperature.

2. Materials and Methods
2.1. Experimental Setup

A commercial silver nanoparticle ink dispersed in TGME (Advanced Nano Products,
DGP 40LT-15C) with ~34 wt% and an average size of ~50 nm was used in this study. The
recommended curing temperature for the ink was 120–150 ◦C. The surface tension and
viscosity of the ink were 35–38 mNm−1 and 10–17 mPa·s, respectively. Samples were
prepared as follows: Initially, glass substrates (Samsung-Corning, Eagle XG 2000) were
ultrasonically cleaned in acetone and Isopropyl Alcohol (IPA) for 10 min each. Afterward,
the residual moisture was removed by hotplate heating of the substrates at 110 ◦C for 30 min.
The ink lines were printed onto the substrates by a DMP-2831 ink-jet printer (Dimatix,
Santa Clara, CA, USA). Initially, two identical pads were printed on the substrates and
sintered at 250 ◦C for half an hour to prevent the error in measuring the electrical resistivity.
Afterward, the sample lines (3000 µm × 130 µm × 0.308 µm) were printed in a manner that
connected the two pads [22]. After the lines were printed, the cross-sectional information
of the printed lines was measured using Alpha-Step IQ (KLA-Tencor, CA, USA.) in order
to regulate the structure geometry. To minimize the high initial resistance, the samples
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were dried on a hotplate at 55 ◦C for 300 s because the high initial resistance prevents the
electrical current flow through the Ag NP lines. During the electrical sintering process,
the stepwise current was controlled by a power supply (Kikusui, PBZ 40–10). Figure 1
illustrates the schematic setup of the SCIS method.
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Figure 1. Schematic diagram of the electrical sintering setup for the SCIS technique.

2.2. Temperature Calculation

Heat is the driving force during the sintering process, which directly translates to a rise
in the temperature during the process. This rise in process temperature during sintering
and its control is the deciding factor behind the applicability of the sintering technique. For
example, typically higher temperatures provide much better sintering results [17,25,26].
However, this restricts the use of temperature-sensitive substrates [16,27]. Therefore, the
measurement of the process temperature during sintering is essential. As the electrical
sintering completes within milliseconds, in situ temperature monitoring of the process
is not feasible. Hence, we estimated the process temperatures via numerical modeling
in COMSOL Multiphysics. This computer-aided simulation was carried out by solving a
two-dimensional heat conduction equation as follows.
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where ρi, cp,i, and ki are the density, heat capacity, and thermal conductivity of each
material, respectively. For each material the subscript i states: 1 for ink, 2 for glass substrate.
Si stands for the heat source term for the applied Joule heating, where I, R, A1, and l1, stand
for the applied current, resistance, cross-sectional area, and line length of the conductive
ink. The initial condition was set at 22 ◦C. Furthermore, the convective and radiative
heat transfer boundary conditions were applied on the top and bottom surfaces of the
conductive ink line and the glass substrate, and thermal insulation was applied across the
sides of the glass substrate by the symmetrical cross-section as shown in Figure 2.
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Finally, continuous heat flux and temperature were adopted as the interface conditions.
Table 1 displays the parameters adopted in solving the two-dimensional model of Figure 2.
The thermal conductivity of the ink was determined with in situ resistance measurement
to reflect the variations caused by temperature change [17].

Table 1. Parameters used in the numerical calculations.

Parameters
(Silver NP Ink) Symbol Values Parameters

(Glass Substrate) Symbol Values

Density ρ1 5400 kg/m3 Density ρ2 2600 kg/m3

Emissivity ε1 0.01–0.02 Emissivity ε2 0.92
Heat Capacity cp,1 245 J/kg·K Heat Capacity cp,2 840 J/kg·K

Convective Heat Transfer Coefficient h 10 W/m2·K Stephan-Boltzmann Constant σ 5.67 × 10−8 W/m2·K4

Thermal Conductivity k1 429 W/m·K Thermal Conductivity k2 1.05 W/m·K
Width w1 130 µm Width w2 2.4 cm

Thickness t1 308 nm Thickness t2 0.5 cm

3. Results and Discussion

In Figure 3, the applied electric current step configurations in the SCIS method are
displayed. All the configurations were composed of five steps. The currents were supplied
for a total of 0.15 s. The current supply started from low currents and then increased with
small steps. As the maximum temperature during the sintering process affects the final
sheet resistance of the sintered lines, the final step was regulated for 0.15 s with electric
currents steps of 0.22, 0.33, 0.46, and 0.57 A, respectively. For the case of 0.57 A, a surge
in the electric current from 0.041 to 0.0432 s was caused due to the sudden reduction in
the electrical resistance of the Ag NP line allowing the flow of a large amount of electric
current. This can be confirmed from Figure 4 where at the same period we noticed a sharp
reduction in the electrical resistivity. Although the constant electric current was supplied
at each step, the reduction in the line resistance was too fast compared to the response time
of the power supply. Therefore, during this period, the voltage drop was not compensated
as a result there was a surge in the electric current, and in less than 1 ms the electric current
dropped back to the supplied 0.1 A. Similar behavior for 0.33 and 0.46 A is presented in
Figure 3, resulting in a sharp drop in the electrical resistivities from 0.06 to 0.064 s as shown
in Figure 4.
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Figure 3. Stepwise electric current supply during the electrical sintering of the Ag NP lines.
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Figure 4 displays the transient resistivity of the silver nanoparticle ink during the
stepwise current increment sintering with various applied current configurations. The final
resistivities of 18.6, 11.7, 8.6, and 6.8 µΩcm were obtained with the final-step currents of
0.22, 0.33, 0.46, and 0.57 A, respectively. The step current increment decreased the resistance
of printed ink lines, and higher electric currents produced the lower line resistivities. The
stepwise increase in the electric current indicated the stepwise increase of the electron flow
per unit area of the conductive ink line. The increase in the current corresponds to the
increase in the kinetic energy of the electrons. The electrons with high kinetic energy collide
with the surrounding atoms inducing heat that sinters the NPs. The higher the initial NP
line resistance, the larger the number of collisions of the electrons with the surrounding
atoms. These collisions raise the process temperature. Consequently, high temperatures
can be detrimental to the printed conductive ink line with high initial resistance causing
thermal damage. Therefore, it is crucial to reduce the resistance of the NP line in a stepwise
manner to avoid thermal damage.

Figure 5 depicts the estimated temperature profiles corresponding to the stepwise
increment in the electric currents. The stepwise increase in the process temperature helped
a smooth thermal sintering process. At different steps, we observed the trend of a decrease
in the temperature followed by the attained peak temperature. This was due to the smooth
flow of electrons as a result of a decrease in resistivity. However, the sharp increase in
the temperature profiles for the 0.57, 0.46, and 0.33 A at different periods was caused as
a result of the surge in the electric current in such periods as discussed in the previous
section. The maximum estimated temperatures were 270, 342, 441, and 584 ◦C with the
final step currents of 0.22, 0.33, 0.46, and 0.57 A, respectively. Comparing the temperature
plot to the resistivity plot as shown in Figure 3, the estimated temperature profile indicated
that the higher electric currents provided higher process temperatures and comparatively
lower resistivity.

As shown in Figure 6, the temperature rise of the substrate was restricted to the direct
vicinity of the silver line. This reflects the fact that one of the assets of the electrical sintering
method is the preservation of the substrate damage. The magnitude of the supplied current
correspondingly depicts the electrical sintering process temperature. As the current supply
increased, an increase in the process temperature was observed. The increase in the process
temperature drives the high energetic Ag NPs to agglomerate in an attempt to increase
their surface area to accommodate for the obtained access energy. Hypothetically, if the
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heat generation is too fast (corresponding to a large current supply in a single step) the
NPs fail to increase their surface area by joining with other NPs subsequently melting or
even evaporating [28]. The stepwise supply of the electric current helps the process of NP
agglomeration to develop in multiple steps i.e., from initial neck formation to a complete
coalescence. Consequently, the NP line resistivity is reduced in the form of steps.
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Figure 6. The estimated temperature of the substrate in the (a) vertical and (b) parallel directions from the printed line after
electrical sintering using SCIS techniques. The figures show the case with final-step current of 0.57 A, which produced the
highest temperature.

Figure 7 shows the surface morphology of the printed conductive ink line after sintered
with the stepwise current increment configurations. As the final step current increased
from 0.22 to 0.57 A and the maximum temperature increased from 270 to 584 ◦C, the
resistivity dramatically decreased from 18.6 to 6.8 µΩcm. Figure 7a shows grainy surface
morphology with relatively smaller grain sizes. The grainy surface morphology indicated
that 0.22 A could not generate enough heat to cause a high degree of NP coalescence.
Moreover, a considerable surface porosity was observed. Thus, the combined effects of the
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grainy structure and a porous surface resulted in the high final resistivity of 18.6 µΩcm.
As the supplied current was increased to 0.33 A, the higher induced temperature (342 ◦C)
resulted in a significantly higher degree of NP coalescence as compared to the 0.22 A case
in Figure 7b. However, the surface was highly porous, which restricted the final resistivity
of 11.7 µΩcm. As the current was increased to 0.46 A, the significantly higher induced
temperature of 441 ◦C resulted in a surface structure with elongated NPs (Figure 7c), which
was observed in another laser sintering study as well [26]. To find out the explanation
for this elongation further work may be necessary. The NP elongation was believed to
be a consequence of a high degree of NP coalescence forming long percolation networks.
A minimum resistivity of 8.6 µΩcm was obtained with 0.46 A final-step current. From
Figure 7a–c higher temperatures caused better NP coalescence. This resulted in NP line
resistivity drop. Finally, at 0.57 A final-step current we observed the highest degree of
NP coalescence as shown in Figure 7d. Longer elongated NPs were obtained in 0.57 A
final-step current as compared to the 0.46 A case. Even though very large pores were
observed in the SEM image, but the degree of the NP coalescence was large enough to
produce a minimum resistivity of 6.8 µΩcm.
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Figure 8 presents the variation of resistivities with sintering temperatures for compar-
ing the furnace sintering and the electrical sintering via the SCIS technique. The furnace
sintering times were 1, 10, and 50 min at furnace temperatures of 150, 200, and 250 ◦C,
respectively. The maximum furnace temperature of 250 ◦C was selected because the best
resistivity results were reported at this temperature in previous studies [27,28] without any
thermal damage. The resistivity of the Ag NPs sintered in a furnace for longer durations
was decreased. After the furnace sintering at 250 ◦C for 1, 10, and 50 minutes, the obtained
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Ag NP line resistivities were 17.6, 6.13, and 3.8 µΩcm, respectively. The minimum resistiv-
ity of 6.28 µΩcm was achieved in 0.15 s by the SCIS technique with 0.57 A final-step and
this value was close to the Ag NP line resistivity sintered for 600 s at 250 ◦C via furnace
sintering. The induced high temperatures with the application of the final-step current for
only 0.15 s were high enough to enhance the high degree of mass diffusion for building the
electron percolation network from the better neck connectivity among Ag NPs. The above
observations indicated that high and locally induced Joule heating of the Ag NPs in a
stepwise fashion as proposed in our study can match the performance of furnace sintering
at much longer sintering durations. Nevertheless, the SCIS technique is paramount for
achieving low resistivities at extremely short sintering durations and high locally induced
temperatures without thermal damage to the Ag NP lines.
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4. Conclusions

In this work a stepwise current increment sintering (SCIS) technique was developed
during a rapid electrical sintering of inkjet-printed Ag NP lines. Line resistivity as low as
6.8 µΩcm was obtained in within as low as 0.15 s with the help of the stepwise current
supply avoiding thermal damage to the sintered NP line. Comparatively, a 6.13 µΩcm
line resistivity was achieved in 600 s via the conventional furnace sintering at 250 ◦C. In
addition, the SCIS process temperatures were estimated via computer-aided simulation,
which displayed a peak temperature of 584 ◦C for the obtained minimum resistivity case.
As attaining lower resistivity values at lower temperatures are highly dependent on the
size of the nanoparticles, chemical dispersants used in the inks, and the substrates, the
results obtained via our SCIS method have room for improvement. Furthermore, the
correspondence between the electric current and temperature can be utilized to provide
smoother current variations such as a continuous ramp or parabolic signals before the final
current step.
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