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Abstract: Understanding the interfaces in heterostructures at an atomic scale is crucial in enabling the
possibility to manipulate underlying functional properties in correlated materials. This work presents
a detailed study on the atomic structures of heterogeneous interfaces in La0.7Sr0.3MnO3 (LSMO)
film grown epitaxially on c-Al2O3 (0001) with a buffer layer of MgO. Using aberration-corrected
scanning transmission electron microscopy, we detected nucleation of periodic misfit dislocations at
the interfaces of the large misfit systems of LSMO/MgO and MgO/c-Al2O3 following the domain
matching epitaxy paradigm. It was experimentally observed that the dislocations terminate with
4/5 lattice planes at the LSMO/MgO interface and with 12/13 lattice planes at the MgO/c-Al2O3

interface. This is consistent with theoretical predictions. Using the atomic-resolution image data
analysis approach to generate atomic bond length maps, we investigated the atomic displacement in
the LSMO/MgO and MgO/c-Al2O3 systems. Minimal presence of residual strain was shown at the
respective interface due to strain relaxation following misfit dislocation formation. Further, based
on electron energy-loss spectroscopy analysis, we confirmed an interfacial interdiffusion within
two monolayers at both LSMO/MgO and MgO/c-Al2O3 interfaces. In essence, misfit dislocation
configurations of the LSMO/MgO/c-Al2O3 system have been thoroughly investigated to understand
atomic-scale insights on atomic structure and interfacial chemistry in these large misfit systems.

Keywords: scanning transmission electron microscopy; lanthanum strontium manganese oxide;
heterointerfaces; domain matching epitaxy; large misfit systems

1. Introduction

The nature of epitaxial growth and the control of defects in the thin film heterostruc-
ture are considered of significant importance for tuning next-generation electrical, optical,
and magnetic devices [1,2]. Unlike their bulk counterparts, oxide thin films have a hetero-
geneous structure suitable for these applications [3]. The coupling states such as charge,
orbitals, and lattice strain are susceptible to heterostructure perturbation leading to the
emergence of new properties [4]. Studies on oxide thin film confirm that the presence of dis-
location in heterostructure can alter the film properties [5,6]. The lattice strain and defects
at the interface control the quality of the thin film and its associated functionalities [6,7].

A particularly intriguing correlated metal–oxide material is Lanthanum strontium
manganese oxide (La0.7Sr0.3MnO3 or LSMO) with a Curie temperature of 370 K [8,9].
Studies show that the presence of the strain in epitaxial film can greatly affect the properties
of LSMO [10–13]. It is well established that the misfit present at the interface introduces
strain in the system and is gradually relieved after a few hundred monolayers. This
result ensures the thin film properties are directly influenced by the interfacial defects.
Although LSMO is typically grown on SrTiO3 (STO) or MgO, the lattice misfit differs
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between LSMO/MgO and LSMO/STO. LSMO and STO share similar crystal structures
with a fractional lattice misfit of ~0.79%. Notably, the reported lattice misfit between the
LSMO and MgO is greater than ~7% [10]. In both cases, the lattice parameter of LSMO is
smaller and expands the film along the in-plane direction, resulting in compression in the
out-of-plane direction. It has been reported that STO affects titanium–oxygen octahedral
rotations that influence LSMO growth [10]. In addition, STO induces electronic softening of
the Mn-O bond, which scatters the spin and negatively affects the properties of LSMO thin
film [14–16]. Contrarily, MgO does not exhibit these types of phenomena. Substrates such as
MgO have large lattice misfits with film and are energetically favorable to containing misfit
dislocations that accelerate film relaxation. The misfit dislocations are nucleated on the film
surface at a critical thickness and then relocate towards the interface. Therefore, complete
film relaxation can be achieved within a few monolayers, thus allowing the subsequent
film to grow relaxed or strain free. This process can be explained by domain-matching
epitaxy (DME), where integral multiples of lattice constants match across film–substrate
interfaces [17,18]. Studies show that many systems with large lattice misfits can be grown
successfully on MgO (001) following the DME process [19–23]. In essence, the coupling
effect, film–substrate thermal expansion difference, and the step terrace may increase
difficulty in understanding the interfacial structure [4,24].

The development of aberration-corrected electron microscopy made it possible to
collect atomic resolution images [25]. An important characteristic of scanning transmission
electron microscopy (STEM) is its capability of efficiently recording image contrast depend-
ing upon the lattice atomic number (Z). Interestingly, the atomic contrast does not vary with
alterations in film thickness and imaging focus [26]. It is therefore simple to distinguish
the atomic column and interfaces from the system. In this study, a detailed investigation
of the interfacial structure was performed on the oxide heterostructure LSMO/MgO/c-
Al2O3 utilizing aberration-corrected scanning transmission electron microscopy (STEM)
together with electron energy-loss spectroscopy (EELS) measurements. Particularly, this
study focuses on the misfit dislocations observed at the LSMO/MgO and MgO/c-Al2O3
interfaces. A detailed examination of the interface shows the additional misfit strain can be
accommodated within the DME framework by changing the periodicity of the dislocations.
Therefore, strain is relieved from the system within a couple of monolayers following the
application of DME concepts. This allows the misfit strain to be confined and engineered
near the interface. As a result, the remaining film can grow defect and strain free. In
addition, the execution of atomic bond length mapping ensures the strain-free growth of
the film with exception to a small number of monolayers near the interface. Finally, EELS
was performed for investigation and clarification of the interfacial chemistry between the
subsequent film and substrate. This study signifies the importance of misfit dislocations in
thin film, thus representing a promising pathway in the improvement of film quality and
its associated properties.

2. Experimental Methodology

The LSMO and MgO thin films were grown epitaxially on the (0001) c-Al2O3 sub-
strate using pulsed laser deposition technique with a KrF (wavelength 248 nm) excimer
laser. Base pressure inside the vacuum chamber prior to the deposition and sample-target
distance were maintained at ~5 × 10−7 Torr and ~4.5 cm. Thin films of MgO and LSMO
were deposited at laser energy densities ~3.1 J/cm2 and ~1.7 J/cm2, respectively, while
maintaining a substrate temperature of ~680 ◦C (MgO) and ~800 ◦C (LSMO). The estimated
thickness of deposited MgO and LSMO were ~25 nm and ~15 nm, respectively. During
the deposition, the oxygen partial pressure was maintained at ~1 × 10−3 Torr. The films
were grown over c-cut sapphire (0001) with epitaxial MgO growing in (111) out-of-plane
direction followed by LSMO in (110) growth direction. A detailed description of thin film
synthesis is provided elsewhere [10,27]. The atomic-resolution electron microscopic inves-
tigations were performed using a fifth-order aberration-corrected scanning transmission
electron microscope (STEM) (Nion UltraSTEM 200) operated at 200 KeV. The high-angle
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annular dark field (HAADF) imaging was acquired with an inner collection semi-angle
of 65 mrad at a probe current of 18 ± 2 pA. The convergence semi-angle of the electron
probe was 30 mrad. The EELS data were acquired with a collection angle of 48 mrad. The
samples for STEM analysis were prepared by conventional mechanical thinning, precision
polishing, and ion-milling in a liquid N2 environment [28,29].

3. Results and Discussion

Figure 1a presents an overview HAADF image of the LSMO thin film grown on the
c-Al2O3 substrate with a MgO buffer layer using pulsed laser deposition. The LSMO film
of thickness ~15 ± 1 nm is grown uniformly on the MgO buffer layer (~25 nm). Figure 1b,c
subsequently illustrates the interface between LSMO/MgO and MgO/c-Al2O3 illustrating
the epitaxial film growth. The verification of epitaxial growth was performed by x-ray
diffraction (θ–2θ and Φ-scan) studies on these films [10,27]. Figure 1b shows the atomic-
resolution HAADF image consisting of LSMO film on MgO. Since the intensity of the
HAADF image is proportionally related with the atomic number of the elements with a
dependence of Zn, where n= 1.5 to 2 [30], the atoms with the brightest intensity presents
the La/Sr atoms columns in the Figure 1b and the less bright atoms in between them are
the Mn atoms. On the other hand, the Mg atoms show the least intensity. The atomic
arrangement, here, is viewed in LSMO (110) and MgO (112) surface normal directions.
Figure 1c exhibits the atomic resolution HAADF image of the interface between the MgO
buffer layer on the c-Al2O3 substrate. The Mg atoms appear less luminous than the c-Al2O3
atoms. The interface between MgO and c-Al2O3 is well distinguished based on the atomic
column intensity as well as the crystal structure orientations.
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Figure 1. (a) A representative HAADF image of LSMO thin film grown on the c-Al2O3 substrate where MgO is the buffer
layer. Atomic resolution HAADF image showing the interface between the (b) LSMO thin film and the MgO buffer layer, (c)
the MgO buffer layer, and c-Al2O3 substrate.

Subsequent investigations were performed focusing on understanding the highly
resolved atomic arrangement and electronic structure insights of individual interfaces
of LSMO/MgO and MgO/c-Al2O3. Figure 2a shows the HAADF image revealing the
interface between the LSMO and MgO films. Figure 2b–d represent electron diffraction
spots from the respective film and interface. The electron diffraction spots show epitaxial
matching of (220)LSMO‖(220)MgO. Figure 2e further illustrates an atomic-resolution HAADF
image of the LSMO/MgO interface indicating the formation of dislocations with periodicity.
It is evident from the Figure 2e that the dislocation terminates at the LSMO/MgO interface
with the 4/5 lattice plane periodically which confirms the heterostructure following the
DME paradigm in this study. It is important to note here that the lattice mismatch between
the matching planes of MgO and LSMO is estimated to be ~7.7%, given the d-spacing of
(110)MgO and (110)LSMO is 0.297 nm and 0.2739 nm. The epitaxial growth of such a large
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lattice misfit (>7%) between two materials, such as MgO and LSMO, is explained by DME,
which illustrates that the large mismatch favors the dislocation formation at the periodic
interval at a critical film thickness. These dislocations glide to the interface and allow
the formation of relaxed epitaxial film growth [18,31–34]. In addition, a Burger circuit
formation has been constructed at the LSMO/MgO interface to identify the dislocation
core, as shown in Figure 2e along with inverse fast Fourier transform (IFFT) analysis. The
Burger vector shows the displacement of half a unit in the MgO buffer layer. Figure 2f
shows the corresponding IFFTs along with the magnified HAADF images of the dislocation
cores. It is clear from the images that the four lattice planes of LSMO are aligned with
the five lattice planes of MgO periodically at the interface. The observed extra half plane
in MgO causes the lattice distortion keeping the LSMO atomic column at equidistance.
Additionally, it is observed that interdiffusion between Mg atoms from MgO and Mn atom
from LSMO takes place to facilitate the lattice relaxation as there is an extra atom counted in
the first LSMO layer at the dislocation core of these misfit dislocations. Based on the atom
intensity in the HAADF image, one could eliminate the possibility of La atom diffusion
across the interface. This is an important finding as such atomic rearrangement could alter
the density of states, providing the traps or recombination centers for electrons and holes,
thus directly affecting the electronic properties of the system [35]. The change in the density
of states is directly correlated with the energy-loss function seen in the electron energy-loss
spectroscopy which will be subsequently discussed in this study. These observations have
been previously seen in other heterostructure systems such as ZnO/c-Al2O3 where the Zn

atoms were rearranged at the core of misfit dislocations and diffused into c-Al2O3 substrate
lattice [36].
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Figure 2. (a) HAADF image of LSMO over MgO showing the defined La-La and Mg-Mg bond length, (b–d) shows electron
diffraction spots for the respective film, (e) HAADF image showing a 4/5 planes lattice matching and the dislocation
periodicity, and (f) IFFTs along (110) with the magnified images of dislocation cores. Vertical arrows of different colors point
to the extra-half planes at each dislocation core. The corresponding matching domains were bracketed with their sizes
noted by the number of the LSMO and MgO lattice planes, respectively. A Burgers circuit is applied on a dislocation core to
identify the Burgers vector along the edge dislocation.
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To estimate the atomic displacement at/near the interface of LSMO and MgO, a
script-based computational quantification is subsequently performed on the HAADF
image data that identifies the atomic position coordinates based on the intensity of the
atoms [37–40]. This quantification analysis provides a two-dimensional array of atomic
positions. Figure 3a–c reveals the atomic displacement maps of DLa-La and DMg-Mg along
the in-plane and out-of-plane directions, respectively. Atomic spacing along the horizontal
axis is termed as “in-plane” direction, whereas atomic spacing along the vertical axis
is termed as “out-of-plane” direction. The change in the atomic bond length of La-La
(DLa-La) and Mg-Mg (DMg-Mg) has been calculated with respect to the atomic positions of
Mg atoms in MgO to understand the pseudomorphic growth of LSMO film at the interface.
The atomic displacement map in the in-plane direction shows the presence of residual
strain at the interface after the formation of misfit dislocations. The maximum atomic
displacement is obtained along the in-plane direction is ~0.006 nm, whereas the maximum
atomic displacement in the out-of-plane is ~0.002 nm, which appears more relaxed.
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Figure 3d–f further displays the atomic displacement mapping that is directly related
to the increase/decrease in the bond length of La-La atoms in the LSMO thin film. The
HAADF image in Figure 3d shows a region in LSMO thin film containing an antiphase
boundary which is a planar defect with a (220) plane missing in the ordered arrangement.
The nucleation of antiphase boundaries has been seen at the step on the substrate/film. For
a single step, generated antiphase boundary tends to be perpendicular to the interface, as
is seen in the LSMO film [41]. Figure 3e shows the decrease in the bond length between
La-La atoms in the in-plane direction at the antiphase boundary. On the other hand, there
is no observable change in the out-of-plane direction.

Figure 4 further shows the plane-by-plane EELS analysis to determine the interdiffu-
sion of atoms across the LSMO/MgO interface and to understand the interfacial chemistry.
Figure 4a again shows a HAADF image of LSMO film grown epitaxially on MgO. In
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Figure 4b, one can observe a region of interest over which atomic-resolution EELS analysis
is performed. Figure 4c,d exhibit the EELS spectra for Mn and O-K edge, respectively, from
each defined plane in Figure 4b. It is evident from Figure 4c that the Mn in the LSMO
region (layers 1–3) has a characteristic L32 absorption edge that diminishes in the MgO
substrate (lasers 6–7) [27]. The intensity of the Mn-L32 peak decreases by 10-fold in MgO;
however, it still weakly appears due to possible minor diffusion or delocalization of EELS
signal. Contrarily, the O-K edge behavior transforms from the LSMO to MgO according to
its known characteristic nature as shown in Figure 4d. In O-K spectra, a pre-peak at 526 eV
is observed in the LSMO region (layers 1–4), whereas no pre-peak is observed in the MgO
region (layers 6–7). The evident pre-peak in the LSMO region indicates the stronger Mn-O
hybridization. An additional observation worth noting is that the LSMO region (layers
1–3) has no post-peaks at 555 eV, as indicated in the Figure 4d whereas the MgO region
has noticeable post-peak (layers 6–7). Both LSMO and MgO contribute to the O-K edge in
close proximity at the interface (layers 4–5) due to interdiffusion, resulting in layers 4–5
displaying both pre-peaks and post-peaks.
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Mn and O-K edge within the LSMO and MgO corresponding to planes shown in (b).

We further analyzed the interface between MgO and c-Al2O3 substrate to appreciate
the atomic-scale characteristics of this interface. The atomic-resolution HAADF image
reveals the sharp interface between MgO and c-Al2O3, as shown in Figure 5a. Figure 5b–d
demonstrate fast Fourier transform (FFT) from the respective film and the interface illus-
trating the diffraction spots from the individual crystal structures. The electron diffraction
spots show epitaxial matching of (220)MgO‖

(
330

)
Al2O3

(in Figure 5d). The d-spacing of
(220) in MgO and

(
330

)
in c-Al2O3 are 0.1491 nm and 0.1374 nm give rise to a lattice misfit

of ~8.5% in the MgO film. This leads to the nucleation of misfit dislocations with a 12/13
plane matching between MgO and c-Al2O3 following the DME paradigm. As shown in
Figure 5e, these results are consistent with the experimental finding where periodic misfit
dislocations are indicated with an average 12/13 lattice plane matching, confirming the
validity of DME in this system. Figure 5f presents the respective inverse FFT images of
various dislocation cores. The presence of an extra half plane in the c-Al2O3 causes lattice
distortion, whereas the MgO buffer layer atomic columns maintain an equidistant column
with relaxed lattice planes. The HAADF image reveals the step with atomic scale height at
both interfaces rather than maintaining the same starting plane. This represents possible
interdiffusion along the incident beam directions. The rise in the atomic step can shift
the interfacial contact which changes the dislocation core configuration accordingly. The
change in the configuration of the dislocation core contributes to the possible interfacial
interaction between the film, buffer layer, and substrate. In addition, interdiffusion induces
the compositional disparity at the interface, thus hampering the dislocation core spacing in
addition to the periodicity. Interestingly, the interdiffusion most seemingly occurred at a
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position slightly away from the dislocation cores. Despite having the dislocation core at the
LSMO/MgO and MgO/c-Al2O3 interface, the absence of defects such as pores confirms
the excellent quality of deposited LSMO film and the MgO buffer layer.
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Script-based computational quantification is performed on the HAADF image as
shown in Figure 6a. This computational quantification approach bears similarity with
the analysis shown in Figure 3. Here, the atomic bond length of DxMg-Mg/DAl-Al, and
DzMg-Mg/D’Al-Al is investigated. These atomic bond length maps are shown in Figure 6b,c,
respectively. The relative color uniformity of the pixels, in Figure 6b,c, indicates relaxation
of the deposited MgO film, maintaining the epitaxial matching of (220)MgO‖

(
330

)
Al2O3

.
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Figure 7a shows a HAADF image of the MgO buffer layer film grown epitaxially on
c-Al2O3. Figure 7b shows a magnified HAADF image revealing possible interdiffusion at
the interface of MgO and c-Al2O3. To further investigate the interface, a detailed plane-by-
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plane EELS analysis observing the nature of O-K edge is performed, as shown in Figure 7c.
The main peak of O-K edge broadens as it transfers from MgO to c-Al2O3. Based on
the nature of the O-K absorption edge, it is evident that layers 1–2 are characteristic of
MgO and layers 5–7 of c-Al2O3. The arrows marked at 543 eV indicate the characteristic
O-K post-peak in the MgO region, whereas there is no evidence of this post-peak in the
c-Al2O3 region. Layers 3–4 indicate the interdiffusion between the MgO and c-Al2O3, as
the spectrum shows characteristics of both MgO and c-Al2O3 in O-K edge. Overall, the
investigations suggest that, in the large misfit system of MgO/c-Al2O3, strain is relaxed
by the formation of misfit dislocations; however, we observe an interdiffusion within two
monolayers at the interface.
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4. Conclusions

In this research, we have utilized atomic-resolution STEM imaging together with EELS
analysis to recognize the characteristics of the heterogeneous interface of the LSMO/MgO
and MgO/c-Al2O3 system. Each system shows excellent consistency with the DME
paradigm accompanied by misfit dislocations configurations. In both cases, periodic
misfit dislocations were observed with 4/5 and 12/13 plane matching, respectively, for
LSMO/MgO and MgO/c-Al2O3 interfaces. Further investigation of the heterogeneous in-
terface reveals geometrical (atomic height step) and compositional (interdiffusion) changes,
thus affecting the interface chemistry and dislocation core structure. The characterization
and experimental observations bolster a clearer understanding of the heterogeneous inter-
face and defects in structures on an atomic scale. These findings support an opportunity to
tune the next generation of devices.
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