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Abstract: Three functionalized chalcones containing combinations of nitro functional groups have
been synthesized via Claisen-Schmidt condensation between 2-nitroacetophenone and nitrobenzalde-
hyde, and the crystal structures obtained ((E)-1,3-bis(2-nitrophenyl)prop-2-en-1-one, 1a, (E)-1-(2-
nitrophenyl)-3-(3-nitrophenyl)prop-2-en-1-one, 1b and (E)-1-(2-nitrophenyl)-3-(4-nitrophenyl)prop-
2-en-1-one, 1c), C15H10N2O5, are reported. Compounds 1a and 1c crystallized in the triclinic cen-
trosymmetric space group P1, whereas compound 1b crystallized in the orthorhombic space group
Pbca. The X-ray analysis reveals that structures 1a and 1b exhibits s-trans conformation, whereas
structure 1c exists in s-cis conformation, concerning the olefinic double bonds. In addition, the
results show that the position of the nitro substituent attached to the aromatic B-ring has a direct
effect on the molecular coplanarity of these compounds. The Hirshfeld surface analysis suggests
that the non-covalent π-π stacking interactions are the most important contributors for the crystal
packing of 1a and 1b. In 1c, the crystal packing is mainly stabilized by weak intermolecular C—H···O
interactions due to the planar nature of the molecule.

Keywords: nitro chalcone; crystal structure; Hirshfeld surface; NMR-spectroscopy

1. Introduction

Chalcones (systematic name 1,3-diphenyl-2-propen-1-one) are unique structures found
in a wide range of natural and synthetic compounds and are considered one of the privi-
leged scaffolds in the field of medicinal chemistry for drug discovery. Naturally occurring
chalcones are multisubstituted in the aryl rings by different groups, mainly hydroxyl,
methoxy and alkenyl functions, while their synthetic analogs contain one or more aryl
substituents such as halogens, alkyl, amine-, nitro-, nitril-, acetamide-, carboxylic groups,
heterocyclic, benzene and condensed rings, etc [1–4]. Among these synthetic derivatives,
the nitrochalcones have generated continuous interest among chemists and biochemists,
mainly because of their applications in medicinal chemistry as potential antimicrobial, anti-
hyperglycemic, antinociceptive, antitumor tools [5–13]. In this sense, in a previous report,
we synthesized three nitro-substituted chalcones and evaluated their anti-inflammatory
activity. We found that the chalcone with the nitro group at the ortho position develops
the strongest anti-inflammatory protective effect, whereas the chalcone with the nitro
group at the para position, showed the smallest effect [14]. Another important aspect of
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some nitro chalcones is that they can be used as intermediates for synthesizing various
heterocyclic compounds like indoles, thioaurones, carbazoles, sultams, benzothiophenes,
quinolines and indolin-3-ones [15–23]. On the other hand, the nitro chalcones also find
application as chemosensors for anion sensing [24]. Additionally, the use of nitrochalcones
as organogelators has also been reported [25].

Base on the above, it is of our interest to synthesize nitro-substituted chalcones due to
their potential properties. Therefore, we herein report the synthesis, X-ray crystal structure
studies and Hirshfeld surface analysis of three nitrochalcone derivatives.

2. Materials and Methods
2.1. General

All chemicals were purchased from Sigma Aldrich (Toluca, Mexico). All manipula-
tions were carried out at room temperature with no special solvent and reagent purification.
Melting points were determined on a Stuart SMP10 apparatus by the open capilar tech-
nique and are uncorrected. 1H NMR and DEPTQ NMR spectra were recorded at 600 MHz
and 150 MHz, respectively, in DMSO-d6 using a Bruker AscendTM Spectrometer. Chemical
shifts are given in ppm and reported to the residual solvent peak (DMSO-d6: 2.50 ppm for
1H and 39.51 ppm for 13C). Data are reported as follows: chemical shift (δ), multiplicity
(s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant(s) (J, Hz) and integra-
tion. Analytical TLC was performed on silica gel 60 F254 plates. IR spectra were obtained
using an FT-IR spectrometer, Spectrum One, Perkin Elmer.

2.2. X-ray Crystallography

Single crystals of 1a–1c, suitable for X-ray study, were purified by a two-solvent recrys-
tallization technique at room temperature. Data collection was performed using the Stoe
Stadivari diffractometer equipped with an Axo microfocus source Ag-Kα (λ = 0.56083 Å)
and a Dectris Pilatus-100K detector. The absorption correction for the three compounds
was realized using measurements of symmetry-related intensities (X-AREA [26]). Structure
solutions were obtained using direct methods implemented in SHELXS [27], and the final
refinement was performed with full-matrix least-squares on F2 using SHELXL [27]. In
the case of 1c, a positional disorder was resolved for the carbonyl atom O7, which was
split over two positions, O7a and O7b, with refined occupancies 0.41(4) and 0.59(4). The
programs ORTEP-3 [28] SHELXS/SHELXL [27] were used within the WinGX [28] soft-
ware package. All hydrogen atoms were placed in calculated positions and refined as
riding on their parent C atoms, with C—H = 0.95 Å (1a) or C—H = 0.93 Å (1b–c). All H
atoms were refined isotropically, with Uiso(H) = 1.2Ueq(carrier C). Geometric parameters
of 1a–1c were validated and studied through the Mercury [29] and Platon [30] software.
Crystal data, data collection and structure refinement details are summarized in Table 1.
Crystallographic information files for the three chalcone derivatives were deposited in
the Cambridge Structural Database [31] under codes 2036696, 2036697 and 2036695, re-
spectively. Copies of data can be obtained free of charge at https://www.ccdc.cam.ac.uk/
(accessed on 29 October 2021).

Table 1. Single crystal data and structure refinement details for compounds 1a, 1b and 1c.

1a 1b 1c

Empirical formula C15H10N2O5 C15H10N2O5 C15H10N2O5
Formula weight 298.25 298.25 298.25
Crystal system Triclinic Orthorhombic Triclinic
T (K) 123(1) 295(1) 295(1)
Space group P1 Pbca P1
CCDC-Numbers 2036696 2036697 2036695

https://www.ccdc.cam.ac.uk/
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Table 1. Cont.

1a 1b 1c

Conformation s-trans s-trans s-cis
a [Å] 7.6303(4) 11.1553(4) 7.6817(9)
b [Å] 7.8424(5) 14.1772(5) 7.8867(7)
c [Å] 12.5262(8) 17.6747(8) 12.4081(13)
α (deg) 94.327(5) 90 84.587(8)
β (deg) 90.696(5) 90 74.210(9)
γ (deg) 117.716(4) 90 69.877(8)
V (Å3) 660.72(7) 2795.27(19) 679.20(13)
Z 2 8 2
Radiation type 0.56083 Å 0.56083 0.56083
θ range 2.430 to 23.000◦ 2.320 to 21.498◦ 2.553 to 21.497◦

Dcalc. (g/cm3) 1.499 1.417 1.458
µ (mm−1) 0.070 0.067 0.068
Transm. factors 0.572–1.000 0.428–1.000 0.429–1.000
Reflections collected 16132 61499 14368
Independent reflections 3743 3270 3166
Parameters 199 200 209
Rint 0.0241 0.0527 0.0429
Goodness-of-fit on F2 1.086 1.012 0.892
Final R index [I > 2σ(I)] 0.0354 0.0386 0.0424
wR2 (all data) 0.1002 0.1119 0.1199
Largest diff. peak and hole (e/Å3) 0.341, −0.235 0.166, −0.174 0.230, −0.187

2.3. General Procedure: Synthesis of Nitro Chalcones Derivatives (1a–1c)

To a stirred solution of 2-nitroacetophenone (10 mmol) in ethanol (10 mL) was added
a solution of sodium hydroxide (6 mL, 1.0 M) in an ice-salt bath. After stirring for 15 min,
the appropriate nitrobenzaldehyde was added and the reaction mixture was stirred for
3 h at room temperature. The progress of the reaction was monitored by TLC. The
product obtained was filtered, washed with water and recrystallized by a solvent pair
(dichloromethane/n-hexane), which gave the desired nitro chalcone 1.

(E)-1,3-bis(2-nitrophenyl)prop-2-en-1-one 1a. Obtained in 42% yield as a white solid; mp:
140–142 ◦C [lit. 136–137 ◦C] [32]; 1H NMR (600 MHz, DMSO-d6) δ = 8.25 (d, J = 8.1 Hz, 1H),
8.08 (d, J = 8.1 Hz, 1H), 8.01 (d, J = 7.7 Hz, 1H), 7.95 (t, J = 7.3 Hz, 1H), 7.85–7.80 (m, 2H),
7.75 (d, J = 7.4 Hz, 1H), 7.70 (t, J = 7.9 Hz, 1H), 7.66 (d, J = 16.1 Hz, 1H), 7.24 (d, J = 16.1 Hz,
1H); DEPTQ NMR (150 MHz, DMSO-d6) δ = 192.6, 148.8, 146.9, 141.6, 135.3, 135.1, 134.4,
132.2, 131.8, 130.0, 129.8, 129.7, 129.6, 125.3, 125.1. FTIR: νmax/cm−1: 1658 (C=O), 1516
(C=C), 1333 (N—O), 977 (C=C trans).

(E)-1-(2-nitrophenyl)-3-(3-nitrophenyl)prop-2-en-1-one 1b. Obtained in 90% yield as a
white solid; mp: 145–147 ◦C [lit. 143–145 ◦C] [32]; 1H NMR (600 MHz, DMSO-d6) δ = 8.58
(s, 1H), 8.25–8.22 (m, 3H), 7.92 (t, J = 7.4 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.74 (d, J = 7.4 Hz,
1H), 7.70 (t, J = 7.9 Hz, 1H), 7.57 (d, J = 16.3 Hz, 1H), 7.51 (d, J = 16.3 Hz, 1H); DEPTQ NMR
(150 MHz, DMSO-d6) δ = 192.6, 148.7, 147.0, 143.6, 136.3, 135.6, 135.0, 134.9, 132.0, 130.8,
129.5, 128.6, 125.4, 125.0, 123.9. FTIR: νmax/cm−1: 1650 (C=O), 1523 (C=C), 1345 (N—O),
983 (C=C trans).

(E)-1-(2-nitrophenyl)-3-(4-nitrophenyl)prop-2-en-1-one 1c. Obtained in 81% yield as a
yellow solid; mp: 175–177 ◦C [lit. 168–169 ◦C] [32]; 1H NMR (600 MHz, DMSO-d6)
δ = 8.24–8.22 (m, 3H), 8.01 (m. 2H), 7.93 (t, J = 7.4 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.76 (d,
J = 7.4 Hz, 1H), 7.53 (d, J = 16.2 Hz, 1H), 7.48 (d, J = 16.2 Hz, 1H); DEPTQ NMR (150 MHz,
DMSO-d6) δ = 192.5, 148.7, 147.0, 143.1, 140.8, 135.4, 135.0, 132.1, 130.3, 129.7, 129.5, 125.1,
124.3. FTIR: νmax/cm−1: 1667 (C=O), 1511 (C=C), 1334 (N—O), 983 (C=C trans).
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3. Results and Discussion
3.1. Chemistry

The synthetic route of the proposed compound 1a–1c is shown in Scheme 1. The
nitro chalcone derivatives were obtained by the reaction of 2-nitroacetophenone with the
appropriate nitrobenzaldehyde in the presence of an alcoholic basic medium [14]. All the
compounds were recrystallized using a solvent pair. The yield of the compounds after
recrystallization ranged from 42 to 90%. In 1H NMR spectra, the values of the coupling
constants between Hα and Hβ (J = 16.1–16.3 Hz) confirm that, for this reaction, the products
generated were only E-isomers. The 1H (600 MHz) and DEPTQ (150 MHz) NMR. Spectra
are presented in Supplementary Materials (Figures S1–S6). The infrared spectra of the
synthesized compounds 1a–1c exhibited similar spectral patterns (Figure S7). The IR peaks
observed are consistent with the functional groups present in the compound and hence,
support the structure of 1a–1c. Table S1 shows the assignments of the main bands [33].
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Scheme 1. The synthesis of compounds.

It is important to mention that the behavior observed in the melting points values for
the isomers reported as 1a–c can be described as follows: the isomers 1a and 1b present
very similar melting points, but in the case of isomer 1c, this physical constant is higher.
We can attribute this difference in the melting points values to the fact that the latter isomer
presents the flattest conformation, which allows a better packing in the crystalline lattice,
thereby increasing the melting point.

3.2. Structural Description

Compound 1a crystallized triclinic with the space group P1 (Table 1). The asymmetric
unit contains two nitro-substituted aromatic rings in the ortho position, joined by a three-
carbon α,β-unsaturated carbonyl system (Figure 1). The molecule adopts the most stable
s-trans conformation with respect to the C8=C9 [1.336(14) Å] and C7=O7 [1.217(12) Å]
functional groups, located in the enone moiety [34]. The structure is twisted around the
C1′—C7 and C9—C1 single bonds with torsion angles of 79.82(13)◦ and 142.81(11)◦ for
C8—C7—C1′—C2′ and C2—C1—C9—C8, respectively. The molecule adopts a conforma-
tion in which the —NO2 groups are closer to each other, generating a slightly more compact
asymmetric unit compared to compounds 1b and 1c, which have a more extended molecu-
lar backbone (see below). Therefore, this structure can be considered thermodynamically
less stable compared with compounds 1b and 1c.
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A quick analysis in Mogul geometry check [29] confirms the deviation of the torsion an-
gles, C8—C7—C1′—C2′ [79.82(13)◦] and O7—C7—C1′—C6′ [72.54(13)◦], from the typical
values found in chalcone derivatives. Out of 48 crystal structures analyzed from the Mogul
library of the CSD [35], only three crystal structures (CSD refcodes: CNCHAL, BRNICH
and NIPFUP) with at least one nitro-substituted aromatic ring have torsion angles similar
to those of compound 1a [36,37]. From these data, we can deduce that nitro groups have a
direct effect on the degree of torsion of the molecule. This is more evident in this compound
due to the electro-withdrawing groups that are in the ortho position in both aromatic sys-
tems [38]. As we shall see, as long as the aromatic B-ring changes its substitution pattern,
the molecules assume a greater planar character. On the other hand, the two aromatic
systems related by the enone group form a dihedral angle of 63.21(4)◦. Finally, the nitro
groups slightly deviate from the main planes of the aromatic rings with torsion angles of
13.35(14)◦ and −9.86(15)◦ for O2—N1—C2′—C1′ and O3—N2—C2—C1, respectively.

Compound 1b crystallizes orthorhombic with space group Pbca (Table 1). Unlike com-
pound 1a, the aromatic rings are nitro-substituted in ortho and meta-positions, which are con-
nected through the —C=C—C=O planar system (Figure 2). Both NO2-substituents are copla-
nar with the aromatic rings [O2—N1—C2′—C1′ =−1.3(2)◦ and O3—N2—C3—C2 = −9.0(2)◦].
The change in the substitution pattern (from ortho-to-meta) in the aromatic B-ring causes the
molecule to adopt a planar moiety, and both the central enone group and the C1—C6 aromatic-
ring are nearly coplanar, with a torsion angle C8—C9—C1—C2 of −163.35(15)◦. In contrast,
the aromatic A-ring makes a torsion angle C6′—C1′—C7—C8 with the —C=C—C=O central
group of 90.33(19)◦. The distancing of the aromatic rings makes the nitro groups tend to
be far apart from each other, minimizing the repulsive van der Waals forces. The torsion
angles formed between the enone unit and the aromatic rings are also outside typical
values; however, this is expected, considering the effect of the NO2-substituent on the
geometric parameters of the molecule. Compound 1b exists in the stereoselective s-trans
conformation with respect to the C8=C9 [1.324(2) Å] and C7=O7 [1.217(18) Å] double
bonds. Apparently, this conformation is the predominant form in crystallized chalcone
derivatives molecules with low planarity [39–42].
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Figure 2. The molecular structure of compound 1b, with displacement ellipsoids drawn at the 50%
probability level. H atoms are shown as small spheres of arbitrary radius.

Compound 1c crystallized triclinic with space group P1 (Table 1). The geometry of the
molecule is imposed by the change of position of the nitro substituent bonded to the C4,
which is in para position to the α, β-unsaturated carbonyl system (Figure 3). The aromatic
A-ring retains the ortho substitution pattern in a similar way to compounds 1a and 1b. The
torsion angles between the atoms C8—C9—C1—C6 and C8—C7—C1′—C2′ are 177.6(2)◦

and 165.62(15)◦, respectively, indicating that the substituted aromatic systems and the
central enone unit are coplanar. Therefore, the molecule adopts the s-cis conformation
with respect to the C8=C9 [1.321(2) Å] and C7=O7B [1.214(7) Å] double bonds, with a
torsion angle C1′—C7—C8—C9 of −178.78(17)◦. In contrast to compounds 1a and 1b, the
planarity of compound 1c favors the s-cis conformation, which is present in crystallized
chalcone derivatives with a planar backbone [43–45].
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On the other hand, the dihedral angle formed between the main planes from the
aromatic rings is 11.38(18)◦, which is comparatively smaller than those found in 1a and 1b.
In the molecule, the nitro substituent attached to C4 is coplanar with the aromatic system,
with a small torsion angle O4—N2—C4—C5 of 3.5(3)◦, while the nitro group attached to
C2′ rotates out of the aromatic plane with a torsion angle of 69.1(2)◦ in order to minimize
electrostatic repulsions with the C7=O7B carbonyl functional group.
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3.3. Supramolecular Features

Through the molecular packing diagram of compound 1a, we can observe that both
aromatic rings are involved in attractive stacking interactions with neighboring molecules
placed around inversion centers from the crystallographic space group. These noncovalent
interactions seem to dominate the supramolecular structure of this compound due to the
lack of conventional hydrogen bonds. In this sense, the C1′—C6′ aromatic rings are stacked
in a parallel-displaced fashion along the [1] direction, and the separation between the
centroids of this π-systems is 3.647(2) Å, while the C1—C6 aromatic rings are stacked in
the same conformation with a centroid-to-centroid distance of 3.729(2) Å (Figure 4). In this
scheme, the C1′—C6′ aromatic ring seems to establish two shorth C—H···O contacts with
the carbonyl and nitro-group as acceptors, with intermolecular distances of 2.680(7) Å and
2.579(8) Å for C5′—H5′···O7 and C4′—H4’···O2, respectively, but with angles (D—H···A)
less than 154◦.
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Figure 4. Part of the crystal structure of 1a, showing the main intermolecular interactions. The inset
shows the Hirshfeld surface mapped with the shape index property (−1.0 to 1.0 a.u) highlighting
blue regions around bright-red spots within compound 1a. The aromatic-rings involved in stacking
interactions are highlighting by dashed blue circles.

It must be considered that the main supramolecular feature of 1a is the π-stacking
between the chalcone molecules; we have calculated the Hirshfeld surface with Crystal-
Explorer 17.5 [46], but instead of using the dnorm function (commonly used to characterize
N—H···O or O—H···O hydrogen-bonds), we use the shape index property to identify planar
stacking arrangements [47–49]. In a shape index function mapped on a Hirshfeld surface,
the red hollows indicate noncovalent forces such as weak hydrogen bonds or aromatic
interactions, while the blue bumps indicate spaces between neighboring molecules with
little or no interaction [48].

In compound 1a the red hollows are located on electronegative regions, which are
involved in short contacts via C—H···O hydrogen bonds. In other words, the C6′ from
aromatic ring (outside the surface) establishes a weak aromatic hydrogen-bond with O7
atom from carbonyl group as an acceptor with distance C6′—H6′···O7 of 2.60(7) Å (inside
the surface). This weak interaction is represented in the shape index as a small red depression
(Figure 4). On the other hand, the pattern of blue and red triangles over both aromatic
systems is strong evidence for close C···C interplanar contacts, while the green and yellow
regions surrounding the aromatic rings are caused by the symmetrical effect of the nitro-
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groups (Figure 4, inset). The C···C stacking interactions represent 6.2% of the all interactions
contained in the crystal according to the 2D-fingerprint plot (Figure S11) [50,51].

In the crystal of compound 1b, the molecules also are held together via short C—H···O
contacts, where the O atoms from carbonyl and nitro groups serve as acceptor groups. In
a similar way to compound 1a, the π-stacking interactions seem to dominate the crystal
packing. The molecules are packing in dimers, favoring the interaction between the planar
moieties. In this way, the C1—C6 aromatic rings are stacked in a parallel-displaced fashion
with a distance of 3.862(13) Å between the centroids of two inversion-related aromatic rings
(Figure 5). The blue and red triangular region on the C1—C6 aromatic ring in the shape index
surface confirms the C···C stacking interactions between these systems (Figure 5, inset).
The supramolecular assembly is additionally supported by weak C—H···π interactions,
implicating the phenyl rings. According to the shape index property, these contacts are
observed as a large red depression caused by the proximity of the C1′—C6′ aromatic ring
to the C1—C6 system.
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Due to the planar geometry of compound 1c, the crystal structure is characterized by
a sheet-like alignment of molecules running parallel to the [101] direction. Each layer is
formed by inversion-related molecules interacting through C—H···O short contacts, form-
ing R2

2(16) and R4
4(20) graph-set motifs according to Etter´s nomenclature (Figure 6) [52,53].

These infinite layers are stacked on each other, showing additional intermolecular π-π
stacking interactions between the C1′—C6′ aromatic rings with a centroid-to-centroid
distance of 3.80(4) Å, stabilizing the crystal packing in direction of the crystallographic
a-axis. The Hirshfeld surface mapped over dnorm shows red spots where the contacts are
shorter than vdW separations [48–54]. Regarding compound 1c, these spots are related to
regions occupied by the nitro and carbonyl groups, which are involved in weak C—H···O
hydrogen bonds with neighboring molecules (see inset, Figure 6). These noncovalent inter-
actions represent ca. 50% of all interactions in the crystal, considering reciprocal contacts,
according to the 2D fingerprint plot (Figure S12).
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4. Conclusions

In summary, we have successfully prepared chalcones containing the —NO2 group.
Crystal structures show that 1a and 1b exhibit s-trans conformation, while 1c isomer
crystallized in the s-cis conformation. Varying the position of the nitro group on the
aromatic B-ring produces a direct effect on the molecular coplanarity and consequently, on
the crystal packing. The chalcone 1c with the nitro group at the para position showed better
molecular coplanarity between aromatic rings and the enone moiety. Intermolecular close
contacts in the crystal structures of 1a–1c by Hirshfeld surface analysis were visualized
and quantified. Intermolecular π-stacking (in 1a–1b) and C—H···O (in 1c) interactions are
the most important contributors to the crystal packing.
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(600 MHz, DMSO-d6) of compound 1c, Figure S6: DEPTQ NMR (150 MHz, DMSO-d6) of compound
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A view of the crystal packing down a axis for compound 1c, Figure S11: The two-dimensional
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