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Abstract: Herewith, we report for the first time the crystal structure of tetrapeptide FwKT (Phe-
D-Trp-Lys-Thr), which is considered to represent an epitope for biomedically relevant hormone
somatostatin. The target molecule was successfully crystalized, solved and refined as a conjugate of
the tetrapeptide moiety bearing a protective group DOTA at the N-terminus and methylated at the
O-terminus. The combination of a hormone active site and a powerful chelator make the substance
a highly prospective targeted drug delivery system, especially for peptide receptor radionuclide
therapy (PRRT) applications.
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1. Introduction

This work is a continuation of our research on the search and synthesis of new analogs
of the hormone somatostatin, which is secreted mainly in the pancreas and the anterior
pituitary gland. Somatostatin has a wide spectrum of biological activity and inhibits many
physiological functions in the hypothalamus, gastrointestinal tract and pancreas [1–3].
Currently, somatostatin analogs are used in medicine in the therapy of hormone-active
tumors in order to suppress the secretory activity of tumor tissue. There are a large number
of drugs on the pharmaceutical market based on various somatostatin fragments [4]. A
widely used radiopharmaceutical in nuclear medicine is a somatostatin analog—a com-
plex of octreotide conjugate and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
(DOTA) with 177Lu-“Lutathera”; this drug is used for radiation therapy of neuroendocrine
tumors [5]. Note that most of the therapeutic analogues of somatostatin are developed on
the basis of its pharmacophore sequence: -Phe-Trp-Lys-Thr-, which is responsible for their
binding to somatostatin receptors (sstr), the overexpression of which is observed in tumor
cells. According to the literature data, somatostatin and drugs based on it in the most stable
conformation take the structure of a β-hairpin closed at the base by a disulfide bridge (S-S),
which is responsible for higher selectivity to sstr and stabilization of the structure. It is the
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conformation of the β-hairpin that is the fundamental factor for the stabilization of their
structure and high selectivity of action to somatostatin receptors [6].

Previously, we have synthesized chimeric molecules containing in their structure the
pharmacophore sequence -Phe-D-Trp-Lys-Thr-OMe, which selectively acts on human lung
adenocarcinoma (A549) (IC50(Human embryonic fibroblasts (HEF))/IC50(A-549) > 9) [7].
In addition, we studied the labeling of the conjugate described in this work with Sc3+, Bi3+

and Eu3+ cations and showed the stability of these complexes in solutions with biologically
relevant ions and in bovine serum at 37 ◦C [8]. In this work, we attempted to study the
conformation of the -DOTA-Phe-D-Trp-Lys-Thr-OMe conjugate to understand the structure–
activity relationship using X-ray structural analysis (XRD) data and quantum chemistry
methods. Note that currently few crystal structures of somatostatin hormone analogues
studied by XRD have been described [9,10], as obtaining a crystal of a peptide conjugate
and further studying the crystal structure of peptide molecules is a non-trivial task and an
important factor in the development and targeted design of peptide inhibitors. This article
is the very first structural report on a peptide linear analogue somatostatin molecule.

2. Experimental
2.1. Synthesis

The peptide Phe-D-Trp-Lys(ε-Boc)-Thr-OMe (I) in this work was synthesized accord-
ing to the previously described method [11]. Below is a scheme for preparing a conjugate
of peptide I with a DOTA chelator. When creating an amide bond in conjugate II, the car-
bodiimide method was used. The crude product III was obtained with a purity of over 90%,
which facilitated its purification by preparative high performance liquid chromatography
(HPLC) to a purity of 98.6%. Compound III was characterized by mass spectrometry and
X-ray diffraction analysis (Scheme 1).
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Scheme 1. Synthesis scheme for (I)—H-Phe-D-Trp-Lys(ε-Boc)-Thr-OMe; (II)—DOTA-Phe-D-Trp-
Lys(ε-Boc)-Thr-OMe; (III) DOTA-Phe-D-Trp-Lys-Thr-OMe.

2.2. Crystallization

The functionalized FwKT tetrapeptide was crystallized by the “hanging drop” vapor
diffusion method in 24-well VDX plates (Hampton research, Aliso Viejo, CA, USA). A load
of 1.5 µL of the tetrapeptide sample was mixed with 1.5 µL of precipitant also containing
100 mM of HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer to maintain
pH at 7.5 and 25–31% w/v PEG 3350. The crystallization liquor was set up over 500 µL of
the precipitant in a sealed reservoir. The crystallization plates were incubated for a week
at 15 ◦C. After that they were regularly inspected for the crystal growth by a remotely
controlled digital camera. Crystals suitable for a crystallographic study grew in 8–12 days.
The crystals were characterized by rod-like shapes and maximum linear size of 100–200 µm.
Immediately before the diffraction data collection, the crystals were briefly soaked with the
precipitant solution supplemented with 25% glycerol as a cryoprotectant and flash-frozen
in liquid nitrogen.

2.3. X-ray Diffraction Data Acquisition and Analysis

Single-crystal diffraction datasets for DOTA-Phe-D-Trp-Lys-Thr-OMe were acquired
at the BELOK beamline of the Kurchatov Synchrotron Radiation Source (NRC “Kurchatov
Institute”, Moscow). X-ray radiation with λ = 0.80246 Å was used; the distance between the
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crystal and a Rayonix SX-165 CCD detector was set to 43 mm at normal orientation [12,13].
The temperature was kept at 100(2) K during the measurements using an Cryostream-type
LT-device, (Oxford Cryosystems Ltd., Oxford, UK). Diffraction frames were collected in
the ϕ-scanning mode with an oscillation range of 1◦. The frames were indexed, integrated
and scaled using the XDS, 5 February 2021 version; MPI for Medical Research: Heidelberg,
Germany, 2021 [14]. The apparent resolution is 0.78 Å.

The structure was solved by the intrinsic phasing modification of direct methods as
implemented in SHELXT, 2018/2 version; Georg-August Universität Göttingen: Göttingen,
Germany, 2018 [15] and refined by the full-matrix least-squares refinement against F2 with
the SHELXL, 2017/1 version; Georg-August Universität Göttingen: Göttingen, Germany,
2017 [16]. For molecular visualization and crystallographic analysis, the OLEX2, version
1.3; OlexSys Ltd., Durham, UK, 2020 [17] was used. All non-H atoms were refined in the
anisotropic approximation. Hydrogen atoms were placed onto calculated positions and
refined isotropically within the riding model. The crystal structure contained an appreciable
fraction (29%) of disordered hydrate water molecules that cannot be localized and refined
using difference Fourier maps. They were taken into account in the refinement procedure
using the Solvate Mask function of OLEX2 [18].

Thus main crystallographic parameters for DOTA-Phe-D-Trp-Lys-Thr-OMe (M = 980.10 g/mol):
tetragonal, space group P43212 (no. 96), a = 20.335(3) Å, c = 27.105(5) Å, V = 11208(4) Å3, Z = 8, T
= 100(2) K, µ(0.80246 Å) = 0.12 mm−1, Dcalc = 1.344 g/cm3, 163,239 reflections measured (3.198◦

≤ 2Θ ≤ 61.826◦), 12,317 unique (Rint = 0.1580, Rsigma = 0.0542) which were used in all calculations.
Number of restraints—53, number of parameters—710, ∆ρmax, ∆ρmin (e Å−3)—0.47, −0.41. The
final R1 was 0.096 (I > 2σ(I)) and wR2 was 0.1986 (all data). CCDC deposition number—2121101.

3. Results and Discussion
3.1. Structure Solution and Refinement

The preliminary choice of space group for the experimental diffraction set was not
obvious. According to the systematic absences statistics shown in Table 1, we first tried
to solve the structure in the P42 space group using SHELXT [15] in the mode of extended
search for an appropriate space group within the given Laue class. A reasonable solu-
tion was obtained in the P43 space group with two symmetrically independent peptide
molecules. At later stages of the structure refinement, we have run the ADDSYMM search
as implemented in the PLATON, version 100419; University Of Glasgow, Glasgow, UK [19]
software and converted the dataset to the P43212 space group with only one symmetry
independent molecule. No obvious signature of twinning was identified.

Table 1. Systematic absences statistics.

41/43 42 n- -b- -c- -n- -21- -c

N 93 59 1754 5254 5162 5192 87 3158

N·I > 3 s 28 7 1005 2469 2347 2276 25 1604

<I> 81.9 30.0 247.2 224.6 216.7 181.4 70.8 218.4

<I/σ> 2.5 1.3 4.7 3.9 3.9 3.6 2.4 4.1

The refinement of the molecular geometry of the peptide fragment was relatively
stable but best-fit values of R1/wR2 remained rather high about 13/27%. This observation
was assigned to the presence of an appreciable fraction of poorly ordered hydrate water
molecules. The Solvent Mask procedure of OLEX2 [18] identified the total volume of
solvent accessible voids of 3269 Å3 and 520 e− per unit cell, which amounts approximately
29% of the unit cell volume. Before using the Solvent Mask, two water molecules were
isolated. Their positions were unambiguously determined from difference electron density
maps. The occupancy of oxygen positions was fixed and equal to 1; this did not negatively
affect the quality parameters of the model. In addition, hydrogen bonds between the
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tetrapeptide and water were clearly observed. The final estimate for hydrate water content
was approximately 8.5 molecules per tetrapeptide molecule. Alternatively, we tried to
reveal water molecules in difference Fourier maps during refinement and finished up
with a model containing nine H2O molecules with occupancies ranging from 1 to 0.38
summing up to 6.64 molecules per asymmetry part of the unit cell. The difference in 1.86
water molecules between the two models of the tetrapeptide structure may be because we
could not determine all the positions of water in the second model, due to their strong
disorder. Nevertheless, best results in terms of R1/wR2 were reached using the Solvate
Mask procedure.

All hydrogen atoms were refined using a riding model with appropriate instructions
AFIX 23 for -CH2 group C-H = 0.99 Å, AFIX 43 for N-H = 0.88 Å and C-H = 0.95 Å
(aromatic), AFIX 13 for C-H = 1.00 Å and N-H = 1.00 Å (DOTA), and a rotating model—FIX
137 -CH3 group C-H = 0.98 Å, AFIX 147 for -OH = 0.84 Å. The Uiso(H) = 1.5Ueq(parent
atom) for the methyl and −OH groups, and 1.2Ueq(parent atom) otherwise. For the water
molecules the instruction AFIX 6 was used, −OH = 0.87 Å. The distances C45B-C44, C45B-
O11B, C45B-O10B, O11B-O10B of only one carboxyl group of DOTA and C10-C11B, C11B-N2B,
C10-H10A of Lys were restrained by DFIX instruction: C-C and C-O = 1.5 Å, O-O = 2.3 Å,
C-H = 1.0 Å with σ = 0.02 Å, C-N = 2.5 Å with σ = 0.04 Å. In addition, FLAT, SIMU, DELU
and EADP instructions were used. Please see refinement description in .cif file from our
Supplementary Materials, which can be downloaded use 2121101 CCDC number.

3.2. Structure Description and Crystal Structure Analysis

After determining the structure of the tetrapeptide DOTA-Phe-D-Trp-Lys(ε-Boc)-Thr-
OMe, the similar structures containing the sequence—-Phe-Trp-Lys-Thr- were searched in
a Cambridge Structural Database (CSD), February 2021 version; Cambridge Crystallographic
Data Centre: Cambridge, UK, 2021 [20] and in a RCSB PDB (https://www.rcsb.org/, 16
December 2021) [21] databases. The search for structures in CSD was done using the
Crystal packing feature of Mercury, 2021.1 version; Cambridge Crystallographic Data
Centre: Cambridge, UK, 2021 [22]. Thus, the structures of two octreotides were found [9,10]
(Table 2).

Table 2. The structures of other somatostatin analogues containing the sequence -Phe-D-Trp-Lys-Thr.

CCDC Ref. Code RMS (Main Chain), Å

GOGZOU [9] 1.50

YICMUS [10] 1.46

PDB Ref. Code RMS (Main Chain), Å

1SOC [23] 1.21

2SOC [23] 0.896

2MI1 [24] 0.946

6VC1 [25] 1.23

The search in the PDB database was performed using the keywords “somatostatin
analog” with further sorting of the results in the presence of the Phe-Trp-Lys-Thr sequence
in the sequence of the found peptides. Thus, four structures [23–25] were found (Table 2),
the sequences of the remaining somatostatin analogues did not contain the Phe-Trp-Lys-Thr
sequence. One of these structures was determined by XRPD, three others by NMR.

The found structures were compared with the tetrapeptide using Structure Overlay
of Mercury by atomic alignment of the peptides’ main chains. The comparison results are
shown in the Table 2.

In addition, 206 structures with the DOTA group were found in CCDC; RMS varied
from 0.195 to 2.053 Å.

https://www.rcsb.org/
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The molecular structure of DOTA-Phe-D-Trp-Lys(ε-Boc)-Thr-OMe is shown in Figure 1.
The side chain of the Lys residue and carboxylate groups of DOTA are disordered over
at least two orientational positions. Occupancy of disordered parts are 0.740/0.260,
0.609/0.391, 0.587/0.413 for carboxylate groups of DOTA and 0.708/0.292 for amino group
of Lys, respectively (Figure 1b). The occupancy of all disordered groups was determined
using a free variable; moreover, for each group, a free variable was its own. Probably, this
is the main reason for the intrinsic disorder of the network of hydrate water molecules.
The asymmetric carbon atom C13 corresponds to the unnatural D-configuration of the
Trp residue, which was deliberately introduced at the stage of synthesis to increase the
proteolytic stability of the DOTA-Phe-D-Trp-Lys-Thr-OMe epitope.

Crystals 2021, 11, x FOR PEER REVIEW 5 of 10 
 

 

1SOC [23] 1.21 
2SOC [23] 0.896 
2MI1 [24] 0.946 
6VC1 [25] 1.23 

The molecular structure of DOTA-Phe-D-Trp-Lys(ε-Boc)-Thr-OMe is shown in Fig-
ure 1. The side chain of the Lys residue and carboxylate groups of DOTA are disordered 
over at least two orientational positions. Occupancy of disordered parts are 0.740/0.260, 
0.609/0.391, 0.587/0.413 for carboxylate groups of DOTA and 0.708/0.292 for amino group 
of Lys, respectively (Figure 1b). The occupancy of all disordered groups was determined 
using a free variable; moreover, for each group, a free variable was its own. Probably, this 
is the main reason for the intrinsic disorder of the network of hydrate water molecules. 
The asymmetric carbon atom C13 corresponds to the unnatural D-configuration of the Trp 
residue, which was deliberately introduced at the stage of synthesis to increase the prote-
olytic stability of the DOTA-Phe-D-Trp-Lys-Thr-OMe epitope. 

 
(a) 

 
(b) 

Figure 1. The molecular structure of DOTA-Phe-D-Trp-Lys-Thr-OMe: (a) three intramolecular H-
bonds are observed in the tetapeptide molecule between DOTA atoms, but the presence of these
H-bonds does not significantly affect the DOTA conformation. Protons at amino groups of the DOTA
moiety are half occupied; (b) the molecular structure with ellipsoids, 50% level of probability. Two
disordered orientations of carboxylate groups in the DOTA moiety and side chain with the terminal
amino group of Lys are shown. The parts with less occupancy are colored green. Protons have been
removed for clarity.
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Three intramolecular H-bonds are observed in the DOTA fragment of a conjugate
atoms: N9-H9...O11A and N10-H10...O11A, besides the occupancy of oxygen O11A is 0.391,
and N8-H8...O11B, the occupancy of O11B is 0.609 and of protons H8, H9, H10 was fixed
at 0.5 (Figure 1a). The presence of these H-bonds does not significantly affect the DOTA
conformation. Four symmetrically located intermolecular hydrogen bonds are more im-
portant in the structure of the tetrapeptide: between the amino and carboxyl groups of the
D-Trp residue N5-H5...O5 and between the amino group of the Thr residue and the carboxyl
group of DOTA N1-H1...O7. These H-bonds form the dimer (Figure 2). Two dimers bind
to each other through H-bonds between two disordered groups: the amino group of Lys
and the carboxyl group of DOTA (N2A-H2AC...O10A); the indole nitrogen of D-Trp and the
carboxyl group of DOTA (N4-H4...O10B). These H-bonds form the crystal package shown
in the Figure 3. In addition, one strong hydrogen bond O3-H3...O9A can be distinguished,
which connects two other dimers. It was mentioned before that the positions of oxygens
of two water molecules are clearly determined from difference electron density maps, but
the positions of hydrogen atoms can be assumed only from supposed H-bonds with the
tetrapeptide molecule. One water molecule (H14C-O14-H14D) has three H-bonds with the
tetrapeptide: O14-H14C...O8A (DOTA), O14-H14D...O4 (Lys), and the other water molecule
(H15A-O15-H15B) has two hydrogen bonds: N2B-H2BA...O15 (Lys), N3-H3A...O15 (Lys). All
H-bonds present in the structure are shown in Table 3.
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Table 3. H-bonds are present in the structure of DOTA-Phe-D-Trp-Lys-Thr-OMe. Symmetry code(s):
(i) −y + 3/2, x + 1/2, z − 1/4; (ii) −y + 3/2, x + 1/2, z + 3/4; (iii) y − 1/2, −x + 3/2, z + 1/4; (iv) −x
+ 3/2, y − 1/2, −z + 3/4; (v) y, x, 1 − z; (vi) 1 − x, 2 − y, z + 1/2.

D–H...A D–H H–A D–A DHA

O3–H3...O9A
iv 0.84 1.90 2.738 (8) 179.8

O3–H3...O9B
iv 0.84 2.12 2.87 (2) 147.3

N1–H1...O7
v 0.88 1.95 2.812 (7) 165.0

N3–H3A...O15 0.88 2.04 2.922 (8) 175.6

N4–H4...O10B
vi 0.88 1.95 2.791 (15) 159.5

N5–H5...O5
v 0.88 2.16 3.017 (7) 163.7

N6–H6...O14 0.88 2.09 2.934 (6) 159.3

N8–H8...O11B 1.00 2.26 3.003 (14) 129.8

N9–H9...O11A 1.00 2.08 2.739 (15) 121.4

N10–H10...O11A 1.00 2.14 3.036 (18) 148.2

N2A–H2AC...O10A
vi 0.91 2.14 2.728 (17) 121.9

N2B–H2BA...O15
iii 0.91 1.98 2.72 (3) 136.7

N2B–H2BC...O11B
ii 0.91 2.13 3.01 (4) 161.0

O14–H14C...O8A 0.85 2.02 2.667 (9) 132.1

O14–H14D...O4
i 0.85 1.91 2.731 (7) 161.8

O15–H15A...O14
iii 0.87 2.02 2.731 (8) 138.1
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3.3. Computational Analysis of the Peptide Backbone Conformation

Notably, in the solved crystal structure, the peptide chain appears in an “open” con-
formation, which is held by numerous intermolecular interactions. At the same time, in the
NMR-resolved solution-state structure of octreotide it adapts a β-hairpin structure [24]. To
determine the peptide chain conformation of the synthesized DOTA-Phe-D-Trp-Lys-Thr-
OMe in an application-ready complex with a lanthanide ion in solution, we have performed
conformational search for the corresponding associate with Lu3+ using MacroModel [26,27]
(force field: OPLS3, permittivity: 81, optimization method: optimal). The conformers
within 6 kcal/mol from the lowest-energy one (15 items) were optimized in Gaussian16 [28]
at PBE0 [29]-D3BJ [30,31]/def2SVP [32,33]/PCM [34] (H2O) level of theory. Optimized
structures with corresponding energies are provided as SI in Structures.xyz.

Figure 4 shows molecular structure of the lowest-energy conformation of Lu3+-DOTA-
Phe-D-Trp-Lys-Thr-OMe complex according to quantum chemical calculations (left), as
well as its overlay (red) with NMR-resolved structures of octreotide [25] (red) and somato-
statin [24] (blue). Notably, all three compounds have very similar backbone structures,
with remarkable resemblance between tetrapeptide chains of the computed compound and
octreotide, having RMSD of only 0.2 Å between the four alpha-carbons.
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Figure 4. (a) Lowest-energy conformation of Lu3+-DOTA-Phe-D-Trp-Lys-Thr-OMe according to PBE0-
D3BJ/def2SVP/PCM(H2O) level of theory; coloring: gray—carbon, blue—nitrogen, red—oxygen,
white—hydrogen, pink—lutetium. (b) The same conformation (green) overlaid with NMR-resolved
structures of octreotide (ref. code of PDB 1SOC) (red) and somatostatin (ref. code of PDB 2MI1) (blue);
hydrogen atoms are omitted for clarity.

Thus, although DOTA-Phe-D-Trp-Lys-Thr-OMe adopts an open conformation in crys-
tal, its complex with Lu3+ in water prefers a β-hairpin structure identical to that in oc-
treotide. This result signifies that, unlike for protein structures which are held together by
tens-to-hundreds hydrogen bonds and other noncovalent interactions, X-ray diffraction
studies cannot be regarded as a reliable source of native (i.e., biologically relevant) struc-
tures of small peptides. This makes molecular modeling an essential tool for studying the
native conformations of crystallized peptides.

4. Conclusions

A conjugate of a short somatostatin analog of high purity has been synthesized and
successfully crystallized. The crystal structure of the conjugate was determined by X-
ray diffraction analysis, which is the first structural report for a vector molecule for a
radiopharmaceutical and for short peptide somatostatin analogs. The crystal structure and
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all H-bonds were fully described in this work. In addition, the structure of tetrapeptide
was compared with other somatostatin analogs containing the sequence Phe-D-Trp-Lys-
Thr. Only three structures of the found somatostatin analogs were determined by X-ray
diffraction method.

While in the solved crystal peptide chain appears in an unnatural “open” conformation
interacting with the surrounding molecules, quantum chemical modeling has shown that
upon solvation and lanthanide cation (Lu3+) binding it adopts the β-hairpin structure,
identical to that of octreotide and other cyclic peptide analogs of somatostatin. This result
is one of the fundamental factors for the use of the synthesized epitope in nuclear medicine.
It also signifies that, unlike for protein structures which are held together by tens to
hundreds of hydrogen bonds and other noncovalent interactions, X-ray diffraction studies
cannot be regarded as a reliable source of native (i.e., biologically relevant) structures of
small peptides. This makes molecular modeling an essential tool for studying the native
conformations of crystallized peptides.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst12010012/s1, FWkT.xyz file contain optimized atomic coordinates of molecular models
predicted by quantum chemical simulation as energy minima together with respective absolute
energies; crystallofrafic information file (.cif) of DOTA-Phe-D-Trp-Lys-Thr-OMe can be downloaded
from CSD use 2121101 CCDC number.
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