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Abstract: Herein, we report a facile synthesis of ethyl-2-(4-aminophenoxy)acetate 4 as a building
synthon for novel dual hypoglycemic agents. This building template was synthesized by alkylation
of 4-nitrophenol with ethyl bromo-acetate followed by selective reduction of the nitro group. This
reduction methoddoes not require nascent hydrogen or any reaction complexity; it goes easily via
consecutive reaction in NH4Cl/Fe to yield our target synthon as very pure crystals. This product
was characterized by 1HNMR, 13CNMR, COSY, NOESY NMR spectroscopy, and elemental analysis.
Additionally, its structure was studied and approved by X-ray single crystal structure determina-
tion. The unit cell parameters are a = 8.2104(6)Å, b = 10.3625(9)Å, c = 11.9562(9)Å, α = 101.787(7),
β = 91.849(6), and γ = 102.755(7)◦, indicating that 4 was crystallized in the triclinic crystal system. The
cooperative non-covalent interactions are also discussed with the aid of Hirshfeld surface analysis.
The H . . . H, H . . . C, and O . . . H interactions have a major contribution in the molecular packing
of 4. Moreover, different quantum chemical parameters were computed and discussed based on
DFT calculations. The experimental UV/Vis spectra showed two bands at 299 and 234 nm, which
were calculated using the TD-DFT method at 286 (f = 0.068) and 226 nm (f = 0.294), respectively.
These bands were assigned to HOMO→LUMO (95%) and HOMO→LUMO+2 (86%) transitions,
respectively.

Keywords: aminophenoxy; consecutive reaction; hypoglycemic; X-ray; Hirshfeld analysis

1. Introduction

The more rampant type 2 diabetes (T2D) is a category of metabolic diseases distin-
guished by hyperglycemia resulting from a flaw in insulin secretion, insulin action, or both.
The chronic hyperglycemia of diabetes is affiliated with long-term impairment, dysfunc-
tion, and collapse of many organs, particularly the kidneys, heart, eyes, nerves, and blood
vessels [1,2].

Glucokinase (GK), a glucose-phosphorylating enzyme, is predominantly expressed in
the liver and pancreatic b-cells. This glucokinase enzyme are considered as a prospective
therapeutic target for T2D [3,4]. Compound I reported by Prosidion/OSI is an activator
of GK and not only boosts glycogen synthesis, but also escalates insulin secretion from
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pancreatic b-cells. Consequently, the progress of GK sensitizer to reduce blood glucose
and normalize insulin secretion is an encouraging area of ongoing research for treating
T2D.Compound II reported by Sumitomo, a Peroxisome proliferator-activator PPARγ,
ameliorates insulin activity in the muscle and liver, which puts forward an auspicious
remedial perspective for metabolic syndrome [5,6] (Figure 1).
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discovery [7–9]. Based on previous findings, it was of interest to prepare ethyl 2-(4-ami-
nophenoxy) acetate, a building synthon for multiple-target hypoglycemic action (c.f. high-
lighted in Figure 2). This newly synthesized building synthon was characterized using the 
NMR spectral technique and its structure was confirmed by single-crystal X-ray diffrac-
tion. The cooperative non-covalent interactions are discussed based on Hirshfeld surface 
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with 6–31G (d,p) basis sets implemented in Gaussian 09 using the crystallographic infor-
mation files (cif) obtained from the X-ray diffraction measurement. 

Figure 1. Reported antidiabetic agents.

As the single drug available in the market just addresses the specific platform of T2D
and can persuade drug resistance, it is necessary to advance multiple-target hypoglycemic
drugs with a more prevalent medicinal effect. In this regard, the assemblage of ligand-based
pharmacophores (colored blue) was accomplished (Figure 2) [6]. Based upon this template,
a series of phenyl-urea linked to modifiable nitrogen heteroaromatic groups were evaluated
for their ability to activate both GK and PPAR gamma. Interestingly, compounds III–V
showed high capacity to activate both GK and PPARγ concurrently [6].
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Figure 2. Reported dual activators of GK and PPAR.

Over the past decade, the usage of active pharmaceutical ingredients (APIs) has
acquired built-up interest thanks to their extensive practice in medicinal chemistry and
drug discovery [7–9]. Based on previous findings, it was of interest to prepare ethyl 2-
(4-aminophenoxy) acetate, a building synthon for multiple-target hypoglycemic action
(c.f. highlighted in Figure 2). This newly synthesized building synthon was characterized
using the NMR spectral technique and its structure was confirmed by single-crystal X-ray
diffraction. The cooperative non-covalent interactions are discussed based on Hirshfeld
surface analysis. Moreover, quantum chemical descriptors were computed by the B3LYP
method with 6–31G (d,p) basis sets implemented in Gaussian 09 using the crystallographic
information files (cif) obtained from the X-ray diffraction measurement.
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2. Materials and Methods
2.1. Materials and Equipments

The details regarding materials, glassware, and instrumentations are presented in the
Supplementary Materials.

2.2. Synthesis of Ethyl-2-(4-Aminophenoxy) Acetate (4)

A mixture of p-nitrophenol (1.39 g, 0.01 mol) in dry acetone (20 mL) and anhydrousK2CO3
(2.76 g, 0.02 mol) was refluxed for 20 min with stirring. Then, ethyl 2-bromoacetate (1.7 g,
0.01 mol) and potassium iodide (10 mg) were added, the mixture was refluxed for 8 h,
and the reaction was monitored by TLC. After completion of the reaction, heating was
stopped and the mixture was filtered on hot and washed with acetone. Then, the solvent
was evaporated under reduced pressure at 40 ◦C, and the pale yellow solid of ethyl 2-(4-
nitrophenoxy) acetate was used directly for the next step, where ammonium chloride (1.6 g,
0.03 mol) in a solution of mixture ethanol and distilled water (30 mL, 1:1) was added to the
crude product. The mixture was refluxed for 30 min with stirring, the magnetic bar was
removed, and then Fe powder (1.68 g, 0.03 mol) was added separately and the mixture
was refluxed for a further 4h. The mixture was filtered on hot and washed with hot water.
Then, the filtrate was left to cool to room temperature was then extracted by ethyl acetate
(3 × 30). The organic layers were then collected and dried over anhydrous sodium sulfate,
and filtered. The filtrate was left for 1 week at room temperature to give the reddish brown
crystals of ethyl 2-(4-aminophenoxy)acetate (4), (1.22 gm, 62%); m.p.= 56−58 ◦C; 1H NMR
(500 MHz, DMSO-d6)δH: 6.62 (d, J = 9.0 Hz, 2H, Ar-H), 6.47 (d, J = 9.0 Hz, 2H, Ar-H), 4.65 (s,
2H, NH2), 4.55 (s, 2H, ArO-CH2-CO), 4.12 (q, J = 7.0 Hz, 2H, O-CH2CH3), 1.18 (t, J = 7.0 Hz,
3H, O-CH2CH3) (Supplementary Materials Figure S1); 13C NMR (125 MHz, DMSO-d6) δC:
169.3, 148.9, 143.1, 115.5, 114.7, 65.6, 60.4, 14.1 (Supplementary Materials Figure S2); Anal.
Calcd for C10H13NO3: C 61.53, H 6.71, N 7.18; found C 61.50, H 6.72, N 7.21.

2.3. X-ray Structure Determination

The crystal structure measurement details are summarized in Table S1 (Supple-
mentary Materials) and further experimental details are depicted in the Supplementary
Materials [10–13].

2.4. Computational Methods

The computational details for the Hirshfeld analysis and [14] DFT calculations are
presented in the Supplementary Materials [15–17].

3. Results and Discussion
3.1. Chemistry

Reduction of nitro aromatic compounds could be achieved by miscellaneous reagents
differing in efficiency, selectivity and safety. Herein, we highlighted the consecutive synthe-
sis of ethyl-2-(4-aminophenoxy)acetate (4). The direct alkylation of p-nitrophenol 1 using
ethyl bromoacetate 2 in the presence of potassium carbonate and traces of potassium iodide
afforded ethyl p-nitrophenoxy acetate 3. Then, the reduction of 3 without separation or
further purification accomplished by adding NH4Cl/Fe in a mixture of ethanol/water and
then reflux for 4 h, hot filtration, followed by extraction using EtOAc (3 × 30). After which
it was left to stand to afford the reddish-brown crystals of (4) (Scheme 1). Reduction of 3
to the ethyl 2-(4-aminophenoxy) acetate (4) using NH4Cl/Fe is safer as well as cheaper
than the previously reported reaction using (H2 and Pd/C 10%) [18]. The structure of (4)
was confirmed by X-ray single crystal structure, elemental analysis, and NMR spectra. The
1HNMR showed significant signals at δH: 6.62 and6.47 ppm, revealed to two doublets
sets of four protons for p-substituted aromatic system, in addition to three sets of signals
at 4.65, 4.55, and 4.12, representing three types of protons equivalent to NH2, ArO-CH2,
and O-CH2CH3 respectively. Moreover, 13C NMR exhibited one type of carbonyl carbon
at δC: 169.3 and three isolated signals at δC 65.6, 60.4, and 14.1 ppm corresponded to
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two CH2 carbons and one CH3. From COSY NMR spectra, it is clearly shown that protons
type 1 (CH3) and type 2 (CH2) are attached to adjacent carbon and have a clear correlation.
Similarly, aromatic proton 5 and 6 are also adjacent to each other, which means both type of
protons are attached to adjacent aromatic carbon. Protons type 3 and 4 are not associated to
any other protons (see Figure S3A–D; Supplementary Data). NOESY NMR spectra show
weak NOE correlations (see Supplementary Materials Figure S4A,B).
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3.2. X-ray Structure

The reported X-ray structure of 4 showed good agreement with its spectral charac-
terizations (Figure 3A). It crystallized in the triclinic crystal system and the P-1 space
group with Z=2 and two molecular units as asymmetric formula. The unit cell param-
eters are a = 8.2104(6)Å, b = 10.3625(9)Å, c = 11.9562(9)Å, α = 101.787(7), β = 91.849(6),
γ = 102.755(7)◦, and V = 968.02(14)Å3. Some selected geometric parameters are listed in
Table 1.
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Table 1. Selected geometric parameters [Å, ◦] for 4.

Atoms Distance Atoms Distance

O1–C3 1.3301(15) O1B–C3B 1.3381(14)
O1–C2 1.4534(16) O1B–C2B 1.4566(15)
O2–C3 1.2037(16) O2B–C3B 1.2052(16)
O3–C5 1.3822(15) O3B–C5B 1.3801(15)
O3–C4 1.4123(15) O3B–C4B 1.4143(14)
N1–C8 1.3961(17) N1B–C8B 1.4050(17)

Atoms Angle Atoms Angle

C3–O1–C2 115.59(10) O3–C4–C3 106.98(10)
C5–O3–C4 117.06(9) O3–C5–C6 125.35(11)
O1–C2–C1 107.47(10) O3–C5–C10 115.33(10)
O2–C3–O1 124.80(12) C6–C5–C10 119.32(11)
O2–C3–C4 125.26(12) C5–C6–C7 119.82(11)
O1–C3–C4 109.94(10) C8–C7–C6 121.22(11)

The molecules of 4 are packed in the crystal by N–H···O hydrogen bond contacts
shown in Figure 3B. The shortest donor–acceptor distances are 3.1130(14) and 3.1706(16)Å,
corresponding to N1–H1A···O2B and N1B–H1BA···O2#1 hydrogen bond contacts, respec-
tively (Table 2). The packing of the molecular units is shown in Figure 3C.

Table 2. Hydrogen bonds for 4 [Å and ◦].

D–H···A d(D–H) d(H···A) d(D···A) <(DHA)

N1–H1A···O2B 0.930(19) 2.234(19) 3.1130(14) 157.2(16)
N1–H1A···O3B 0.930(19) 2.549(19) 3.2622(15) 133.8(14)

N1B–H1BA···O2#1 0.89(2) 2.32(2) 3.1706(16) 157.9(17)
N1B–H1BA···O3#1 0.89(2) 2.55(2) 3.2487(14) 135.7(16)

Symm. Code: #1 x + 1, y, z − 1.

3.3. Hirshfeld Surface Analysis

The dnorm is defined by Equation (1), where the terms de and di represent the distances
from a point at the map surface to the nearest atom internal (di) or external (de) to the map.
rvdW

i and rvdW
e are the van der Waals radii of the interacting atoms, respectively [19,20].

dnorm =
di − rvdW

i

rvdW
i

+
de − rvdW

e
rvdW

e
(1)

Decomposition of the different intermolecular contacts in 4 was performed using
Hirshfeld calculations (Figure 4). All possible contacts among molecular units in the
crystal of 4 are presented in Figure 5. The total in the fingerprint plot represents the whole
intermolecular contacts occurring in the crystal. Hence, decomposition of this plot gave the
percentages of each contact. Moreover, the sharp spike in this plot refers to interactions
occurring at short contact distances, and those are considered strong [19–21]. Analysis of
these interactions using fingerprint plot and dnorm maps is given in Figure 6. The major
contacts are H···H, H···C and O···H interactions. Their percentages are 52.7, 18.0, and 22.2%
in molecule A and 54.3, 13.8, and 22.3% in molecule B, respectively. In addition, some
significant short N···H contacts were observed. Their percentages are 3.5% and 3.2% in
molecules A and B, respectively. Moreover, the O···H and H···C (C–H···π) interactions are
generally short and appeared as red regions in dnorm map. Details regarding the important
short contacts and the corresponding interaction distances based on Hirshfeld calculations
are listed in Table 3.
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Table 3. Contact distances of the most important intermolecular interactions.

Contact Distance Contact Distance

O3B . . . H1A 2.494 O1 . . . H17 2.555
O2B . . . H1A 2.163 N1B . . . H2B 2.572

O2 . . . H9 2.42 N1 . . . H4B 2.573
O2B . . . H4B 2.459 C10B . . . H4A 2.627
O3 . . . H1BA 2.467 C5 . . . H1C 2.7
O2 . . . H1BA 2.219 H1D . . . H9B 2.279
O2 . . . H9B 2.418 H1C . . . H10B 2.456

Significant contacts appeared as red spots while weak less significant contacts ap-
peared as blue and white regions. Red, white, and blue indicated a shorter, equal, and
longer distance than van der Waals radii sum of the interacting elements. On the other
hand, the curvedness map gave a great idea about the flatness of the molecular surface.
The large green area indicates a relatively flat surface, while the dark blue edges are for
large positive curvature [21]. On the other hand, shape index gave an indication of the
presence of complementary hollows (red) and bumps (blue) where two molecular surfaces
touch one another. These characteristics are important for deciding the presence of π-π
stacking interactions, which is absent in the studied system.

3.4. DFT Studies

The X-ray geometry of 4 was optimized using the B3LYP/6-31G(d,p) method and the
resulting minimum energy structure, which has no any imaginary frequency, is shown in
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Figure 7 (upper part).For structure comparison, the experimental and calculated structures
are overlaid (Figure 7; upper part). As can be seen, there is very good structure matching
between the optimized and experimental structures. Some very small deviations could be
attributed to the crystal packing effects (Supplementary Materials Table S2). Moreover, the
optimized and experimental parameters correlated very well and the correlation coefficients
are close to 1 (Figure 8).
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Natural population analyses were performed and the results are shown in Figure 9
and Table S3 (Supplementary Materials). Generally, the O, N, and the majority of C atoms
are electronegative. The oxygen sites have natural charges in the range from −0.5257 to
−0.5748 e, while the amino group N-site has a natural charge of −0.7827 e. In addition, the
most negative C-site is the methyl carbon (−0.5847 e). In contrast, the carbonyl carbon has
the highest positive natural charge of 0.8225 e. Moreover, all hydrogen atoms are positively
charged, where the NH2 protons are the most positively hydrogen sites (0.3592–0.3596 e).
Presentation of electron density along with the map of electrostatic potential (MEP) is
shown in the left part of Figure 10. The net dipole moment is calculated to be 3.0327 D,
indicating polar molecule (Figure 10).
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Among electronic parameters that have significant role in the molecular reactivity
of compounds are the HOMO and LUMO levels and their energies (Figure 10). The
HOMO and LUMO levels are generally distributed over the aryl group aromatic π-
system, indicating HOMO→LUMO excitation based on π-π* transition. The energies
of HOMO and LUMO are calculated to be −5.2648 and −0.2876 eV, respectively. Hence,
the HOMO→LUMO excitation required 4.9808 eV. Based on these electronic descriptors,
the reactivity indices [22–28] such as ionization potential (I), electron affinity (A), hardness
(η), electrophilicity index (ω), and chemical potential (µ) are calculated to be 5.2684, 0.2876,
4.9808, 0.7747, and −2.7780 eV, respectively.

In addition, the UV/Vis electronic spectra of 4 were calculated and the results were
used to assign the experimental UV/Vis spectra (Figure 11). Obviously, two spectral bands
were detected experimentally at 299 and 234 nm. Moreover, the TD-DFT results revealed
two spectral bands at 286 and 226 nm, respectively. The oscillator strength values (f) of
these bands are 0.068 and 0.294, respectively. The calculated band at 286 nm was assigned
to HOMO→LUMO (95%) excitation, while the shorter wavelength band was assigned to
HOMO→LUMO+2 (86%) transition. Both bands are mainly π-π excitation, as indicated
from the presentation of the MOs included in these transitions (Figure 12).
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3.5. NBO Analysis

It is well known that the electron delocalization processes play an important role in the
stability of molecular systems. In this regard, we investigated these electron delocalization
processes using NBO calculations [29,30]. The compound is stabilized by different π→π*,
n→σ*, and n→π* electron delocalization processes. The stabilization energies (E(2)) of the
π→π* electron delocalization processes (EDP) are in the range of 18.22–20.66 kcal/mol. The
LP(2)O1→BD*(2)O2-C12 (45.95kcal/mol) n→π* electron delocalization process from the
second lone pair NBO (LP(2)O) of oxygen has higher interaction energies (E(2)) than the
corresponding LP(1)O1→BD*(1)O2-C12 (6.69 kcal/mol) n→σ* EDP from the first lone pair
NBO (LP(1)O). Detailed electron delocalization processes that stabilize the structure of 4via
conjugation effect are listed in Table 4.
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Table 4. NBO electron delocalizations in 4.

(NBO)i
a (NBO)j

b E(2) (NBO)i
a (NBO)j

b E(2)

BD(2)C19–C21 BD*(2)C16–C17 20.60 LP(1)O1 BD*(1)O2–C12 6.69
BD(2)C19–C21 BD*(2)C22–C24 18.37 LP(2)O2 BD*(1)O1–C12 32.42
BD(2)C16–C17 BD*(2)C19–C21 18.22 LP(2)O2 BD*(1)C12–C13 21.13
BD(2)C16–C17 BD*(2)C22–C24 19.13 LP(1)O3 BD*(1)C16–C17 6.87
BD(2)C22–C24 BD*(2)C16–C17 18.73 LP(2)O1 BD*(2)O2–C12 45.95
BD(2)C22–C24 BD*(2)C19–C21 19.80 LP(2)O3 BD*(2)C16–C17 27.10

LP(1)N4 BD*(2)C19–C21 24.28
a Donor NBO; b BD*: acceptor NBO. c E(2): Second order perturbation energy.

4. Conclusions

A safe, low-cost, and rapid procedure was used for the synthesis of ethyl-2-(4-aminop-
henoxy) acetate (4) as a building synthon for novel dual hypoglycemic agents via selective
and consecutive reduction of p-nitrophenoxy acetate using NH4Cl/Fe protocols. The
target synthon was obtained in good yield and its structure was confirmed using elemental
analysis, NMR spectra, and X-ray diffraction of single crystal. The supramolecular structure
of (4) is analyzed using Hirshfeld calculations. Its electronic and molecular structure aspects
were investigated at the molecular level using DFT calculations. The TD-DFT calculation
assigned the experimentally detected bands at 299 and 234 nm, which mainly belong to
π-π transition. This work may provide an opportunity for the chemists to design new
phenyl-urea derivatives as anti-diabetics agents activating dual-targets, GK and PPARγ.
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