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Abstract: A new noncentrosymmetric cadmium indium borate, Cd4InO(BO3)3 (CIBO) has been
successfully developed via a standard solid-state reaction. Its crystal structure was confirmed by
the single crystal X-ray diffraction, which shows that CIBO belongs to the non-centrosymmetric
and polar space group Cm. Its structure contains the distorted InO6 and CdOn (n = 6, 8) polyhedra,
which link together by sharing an edge or corner to build a three dimensions framework with BO3

triangles accommodated in tunnels. Benefiting from the approximately parallel configuration of
BO3 triangles, CIBO exhibited a strong second harmonic generation (SHG) effect (3 × KDP), and
moderate birefringence of 0.077@1064 nm. Further optical and thermal characterizations suggest
that CIBO possesses a wide transparent window and good thermal stability. Theoretical calculation
reveals that the macroscopic SHG coefficients of CIBO results from the synergistic effect of the parallel
arrangement of BO3 groups and d10 Cd2+ cation.

Keywords: borates; crystal growth; birefringence; nonlinear optical crystal

1. Introduction

Nonlinear optical (NLO) crystals that can expand the wavelength of a solid-state laser
by second-harmonic generation (SHG) have been applied at the forefront of scientific and
technological research, such as medicine, scientific research, civil industries, etc. [1–4].
However, an available NLO crystal must satisfy some structure and performance require-
ments. Structurally, only non-centrosymmetric (NCS) crystalline materials can exhibit
the SHG response [5,6]. As for the properties, NLO crystals also need to possess a large
SHG response and moderate birefringence, which are essential to realize phase-matching
(PM) in the desired wavelength range and obtain high laser conversion efficiency [7–9].
However, it was exceptionally challenging to simultaneously maximize these two optical
parameters [10,11]. For example, BPO4 [12], LiGeBO4 [13], and SrB4O7 [14] all exhibited
strong SHG responses, originating from the aligned arrangements of tetrahedral BO4 units,
but they suffered from a too-small birefringence to achieve a PM condition in transmittance
regions. On the contrary, Li2B4O7 and KB5O8·4H2O possessed moderate birefringence and
wide transmission range, unfortunately, their weak SHG responses hindered practical ap-
plications [15,16]. Therefore, exploring new NLO materials with a large SHG response and
moderate birefringence were consequently of enormous current academic and commercial
interest.

Traditionally, inorganic planar π-conjugated systems, including borates [17–19], cya-
nurates [20,21], carbonates [22,23], and nitrates [24,25], were excellent candidates for NLO
materials because their delocalized π-conjugated groups, such as (BO3)3−, (C3N3O3)3−,
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(CO3)2−, and (NO3)−. Generally, these units possessed high NCS possibility, strong SHG
responses, wide transmittance window, and strong anisotropy [26–28]. For instances,
KBe2BO3F2 (KBBF) [29], Ca3(C3N3O3)2 [30], and β-Sr3(C3N3O3)2 [31], etc. all exhibited
a large birefringence and/or strong SHG coefficients due to the π-conjugated of anionic
groups [32,33]. However, it should also be noted that most cyanurates, carbonates, and
nitrates were not thermally stable [34]. They often tended to decompose at a high tempera-
ture. Therefore, π-conjugated (BO3)3− groups were preferred as the most ideal structural
motif for the design of new NLO materials, and a wide range of compounds with the
π-conjugated (BO3)3− groups as the basic building units have been synthesized, including
KBe2BO3F2 [29], Pb2Ba3(BO3)3Cl [35], Cd4BiO(BO3)3 [18], Li4Sr(BO3)2 [36], Bi3TeBO9 [37],
and BaYBO4 [38], etc.

Beyond the π-conjugated systems, introducing some polar distorted polyhedra were
also favorable for a large SHG response and birefringence, including the polyhedra with the
canter of d10 cations (such as Zn2+, Cd2+, and Hg2+) [11,17,39,40], d0 cations (such as V5+,
Mo6+, W6+, Ti4+, etc.) [41–44], and stereo-chemical active lone pair (SCALP) cations (such
as, Bi3+, Te4+, Sn2+ Pb2+, I5+, etc.) [18,35,42,45–47]. These cations with second-order Jahn–
Teller (SOJT) effects could enhance the birefringence and SHG effect of NLO materials. For
example, Sn2B5O9Cl [48] exhibited lager birefringence (0.168@546 nm) than Ba2B5O9Cl [49]
(0.010@546 nm) due to the unique [SnO7Cl2] polyhedra with SCALP. Cd4BiO(BO3)3 [18]
(6.0 × KDP) and Bi3TeBO9 [37] (20.0 × KDP), displayed extremely strong SHG responses
due to the synergistic effects of the BiO6, CdOn (n = 6, 7)/TeO6 polyhedra and the π-
conjugated BO3 groups. Thus, the incorporation of the above asymmetric chromophores
into borates was a fruitful strategy for designing high-performance NLO crystals.

Inspired by the above ideas, we assembled the π-conjugated BO3 triangles with
polar displacement of d10 Cd2+ cations to explore new NLO materials, and successfully
synthesized a new NLO crystal, Cd4InO(BO3)3 (CIBO), which exhibited a strong SHG
effect (3.0 × KDP), moderate birefringence (0.077@1064), suitable band gap, and wide
transparent range. Herein, the synthesis, crystal structure, thermal behavior, spectrum, and
NLO properties of CIBO were reported. Theoretical calculations have also been carried to
elaborate the relation between its structure and performance. It manifested that CIBO was
a promising candidate as new NLO material.

2. Experiment Sections
2.1. Syntheses and Crystal Growth
2.1.1. Reagents

The raw materials of In2O3 (Aladdin Chemistry Co., Ltd., 99.9%), CdO (Tianjin Fu
Chen Chemical Co., Ltd., 99%), PbO (Tianjin Fu Chen Chemical Co., Ltd., 99%), and H3BO3
(Aladdin Chemistry Co., Ltd., 99%) were used.

2.1.2. Single Crystal Preparation

Single crystals of CIBO were prepared using the high-temperature solution method. A
mixture of In2O3, H3BO3, CdO, and PbO at a molar ratio of 0.25:3.5:4:2 was placed into a
Φ 20 × 20 mm platinum (Pt) crucible. Then, the crucible was placed in the center of the
furnace, and heated slowly to 300 ◦C in order to release H2O. Then, the temperature was
slowly raised to 960 ◦C and maintained 24 h to form a homogeneous melt. Subsequently,
the homogeneous melt was cooled to 860 ◦C at a rate of 3 ◦C/h, and then cooled to room
temperature by turning off the furnace. Thus, some colorless and transparent single crystals
were obtained for the structure determination.

2.1.3. Polycrystalline Synthesis

The powder sample of CIBO was prepared by conventional solid-state reactions. A
mixture of CdO, In2O3, and H3BO3 with a molar ratio of 4:0.5:3 was grounded homoge-
neously in an agate mortar and transferred into a crucible placed into a programmable
furnace. The mixtures were preheated at 350 ◦C for 10 h to decompose the boron acid, then
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sintered at 850 ◦C and maintained for 72 h with several intermediate grindings. The pure
phase of CIBO was obtained and characterized by a powder X-ray diffraction method.

2.1.4. Powder X-ray Diffraction

The Smart Lab 9 KW X-ray diffractometer was used to collect the Powder-XRD (PXRD)
at room temperature. Data were collected in the 2θ ranging from 10◦ to 70◦ using monochro-
matized Cu-Kα radiation (λ = 1.5418 Å) with a step size of 0.02◦ and a step time of 2 s. The
theoretical XRD patterns were well agreement with experimental PXRD patterns. Mercury
software was used for the simulation of the CIBO PXRD pattern.

2.1.5. Single Crystal X-ray Diffraction

A colorless single crystal suitable for the determination of the CIBO compound was
mounted on a Bruker D8 Venture APEX II CCD diffractometer with Mo Kα (λ = 0.71073 Å)
radiation at 298(2) K. The dates were integrated by the SAINT program [50]. The crystal
structure was solved by direct methods SHELXs and refined on F2 by full-matrix least-
squares techniques using the program SHELXTL [51]. The structure was checked for
missing symmetry elements using PLATON [52]. Details of crystal parameters, data
collection, and structure refinement were listed in Table S1. The atom coordinates, the
related anisotropic displacement parameters, and bond valance sums (BVSs) are listed in
Tables S2 and S3 [53], and the selected bond lengths and angles are presented in Table S4.

2.1.6. Thermal Behaviors

The NETZCH STA 449F3 simultaneous analyzer was used to collect the thermal
gravimetric (TG) and differential scanning calorimetry (DSC) data of CIBO. About 10 mg
of CIBO samples was placed in the Pt crucibles, and heated at a rate of 5 ◦C/min in the
range of 40–1100 ◦C under a nitrogen atmosphere.

2.1.7. UV-Vis-NIR Diffuse Reflectance Spectrum

The UV-Vis-NIR diffuse-reflectance data of the sample was obtained on a Hitachi
UH4150 UV-vis-NIR spectrophotometer with BaSO4 as the standard of 100% reflectance
in the wavelength of 240–2500 nm. The reflectance spectra were converted to absorbance
using the Kubelka–Munk function F(R) = (1 − R)2/2R = K/S, where R, K, and S are the
reflectance, absorption, and scattering, respectively [54].

2.1.8. Infrared Spectrum

The Fourier transform infrared (FTIR) spectra of CIBO were measured in the range of
4000–400 cm−1 using a Nicolet iS50 Fourier transform infrared spectrometer with a smart
orbit attenuated total reflectance (ATR) accessory.

2.1.9. Birefringence Measurement

Birefringence of CIBO was captured on a Nikon Eclipse polarizing microscope E200MV
POL with a visible light filter. On the basis of the crystal optics, the birefringence was
calculated from the following formula:

R = (|Ne − No|) d = ∆n × d (1)

where R, ∆n, and d are retardation, birefringence, and thickness, respectively [55].

2.1.10. Powder SHG Measurement

The powder second-harmonic generation (SHG) responses of CIBO were carried out
on a Kurtz-NLO system with a 1064 nm Q-switched Nd: YAG laser. According the method
of Kurtz and Perry, the SHG intensity was strongly dependent on the particle size of
the samples, so the polycrystalline samples of CIBO and KH2PO4 (KDP) were ground
and sieved into different particle size ranges (54–75, 76–106, 107–120, 121–150, and 151–
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180 µm) and KDP served as the reference. The measurements were performed on a 1064 nm
Q-switched Nd: YAG laser under the same voltage. [56]

2.1.11. Computational Method

To investigate the relationship between the electronic-structure and optical properties
of CIBO. The calculations of the band structure and density of state (DOS) of CIBO were
performed by CASTEP based on density functional theory (DFT) [57]. During the calcula-
tion, the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof
(PBE) function was selected to describe the exchange correlation energy. Under the norm-
conserving pseudopotentials (NCP) [58], the valence electrons were set as follows: Cd-
4d105s2, In-5s25p1, B-2s22p1, and O-2s22p4. The kinetic energy cutoff of 850 eV and the
Monk-horst Pack k-point meshes with a density of (4 × 4 × 7) points in the Brillouin zone
were adopted. The cell parameters and atomic positions are optimized using the quasi-
Newton method. The linear optical properties of CIBO were calculated by the dielectric
function ε(ω) = ε1(ω) + iε2(ω). The ε2(ω) were deduced from the matrix elements that
describe the electronic transitions between the occupied and unoccupied states in the CIBO
compound. Accordingly, the refractive indices and birefringence (∆n) can be calculated.

3. Results and Discussion
3.1. Crystal Structure of CIBO

CIBO crystallizes in the monoclinic crystal system with an acentric and polar space
group of Cm. In the asymmetric unit, CIBO contains one independent In, two Cd, six O,
and two B atom(s), respectively. Two different B atoms, B(1) and B(2), coordinated three
oxygen atoms to form planar BO3 triangles with B–O bond lengths ranging from 1.330(2)
to 1.390(2) Å. The B(1)O3 and B(2)O3 groups were almost oriented parallel to the ab plane,
which contributed a large SHG effect and birefringence, as shown in Figure 1. The In(1)3+

cations were six-fold coordinated to form an In(1)O6 octahedra with bond lengths in the
range of 2.110(2)–2.226(14) Å. The two types of Cd2+ ions, Cd(1)2+ and Cd(2)2+ cations,
were six-fold and eight-fold coordinated to form distorted Cd(1)O6 and Cd(2)O8 polyhedra,
respectively. For the Cd−O bonds, their bonds lengths in the range of 2.248(10)–2.801(3) Å.
In the structure, Cd(1)O6 and Cd(2)O8 polyhedra interconnect to construct a 1D [Cd2O12]
double-chains via edge-sharing and corner-sharing. The In(1)O6 polyhedra also linked with
each other via corner-sharing to form the 1D [InO6] single-chain, as shown in Figure 1a.
Furthermore, the 1D [Cd2O12] double-chains and [InO6] single-chain connect together by
sharing common oxygen atoms to form a 3D framework with the BO3 triangles filled in the
tunnels (Figure 1b).

Figure 1. The structure of the CIBO: (a) The Cd−O double-chains, In−O single-chain, and the BO3

units arrangement viewed along the c axis. (b) The whole 3D framework.

Structurally, CIBO was isostructural with the Cd4ReO(BO3)3 (Re = Y, Gd, Lu), its
structure can be considered as the Re3+ cation in Cd4ReO(BO3)3 is replaced by the In3+

cations, and they all presented the classical apatite-like structure [59]. These indicated the
feasibility of the substitution of In3+ for rare-earth cations during synthesizing new NLO
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crystals. Besides, the bond valence sums results [53] were 1.871 to 2.124 for O2−, 2.230 and
1.971 for Cd2+, 3.031 for In3+, and 2.920 and 3.124 for B3+, (Table S2), which were very close
to the ideal oxidation, indicating the correctness of the structure.

3.2. UV-Vis-NIR Diffuse Reflectance Spectrum

UV–vis–NIR diffuse reflectance spectrum of the synthesized polycrystalline samples
was measured in the range of 240–2500 nm. It reveals that CIBO has a cut-off edge of
approximately 313 nm (Figure S1), which is comparable with its isostructural compounds
Cd4ReO(BO3)3 (Re = Y, Gd, Lu) whose cut-off edges were approximately 320 nm [59].
Absorption (K/S) data were calculated from the Kubelka–Munk function and manifested
that the optical band gap for CIBO was about 3.40 eV (Figure S1).

3.3. Infrared Spectrum

The Infrared Spectrum of CIBO is shown in Figure S2. The peaks at 1174 cm−1 and
933 cm−1 can be assigned to the asymmetric stretching vibrations of the BO3 group [60,61].
The peaks located at 707 cm−1 and 583 cm−1 were assigned as the bending vibrations of
BO3 groups. The assignments matched well with those of reported solids containing BO3
groups in the literature [18,35].

3.4. Thermal Analysis

Thermal property of CIBO was performed on a TG−DSC instrument, as shown
in Figure 2a. There was one endothermic peak observed at 963 ◦C on the DSC curve.
Meanwhile, the weight loss can also be observed on the TG curve, indicating the CIBO
should be an incongruently melting compound. In addition, the powder samples of CIBO
were sintered at 1100 ◦C and cooled down to 900 ◦C with the rate of 10 ◦C/h, following
a cooled to room temperature by turning off the furnace. The sample was analyzed by
the XRD as shown in Figure 2b, which was completely different form the simulated one,
further indicating that the compound melts incongruently around 963 ◦C. Thus, the CIBO
single crystals must be grown using the flux growth technique.

Figure 2. (a) Thermal gravimetric (TG) and differential scanning calorimetry (DSC) curves of CIBO
(b) XRD patterns of simulation, experiment, and after melting for CIBO.

3.5. Birefringence Measurements

The birefringence of CIBO was performed on a cross-polarizing microscope. As shown
in Figure 3a, the observed interference color in cross-polarized light were the III-order green.
According to the Michel–Levy chart, the retardation (R value) for CIBO was 1350 nm and its
crystal thickness was measured as 18.1 µm [62,63]. Thus, the birefringence of CIBO in the
visible region can be calculated as 0.075 based on Equation (1) [55]. Furthermore, the bire-
fringence of CIBO was also executed based on the theoretical calculation and the calculated
result shows that CIBO exhibited a relatively large birefringence of about 0.077@1064 nm
(Figure 3b). The experimental value was consistent with the calculated one and greater
than that of Cd5(BO3)3Cl (0.054@1064 nm) [64], Ca4YO(BO3)3 (0.043@589 nm) [65], and



Crystals 2022, 12, 266 6 of 10

Ca5(BO3)3F (0.043@589 nm) [65]. The large birefringence of CIBO was beneficial to phase
matching in the transparent region.

Figure 3. (a) The interference color observed for CIBO. (b) Birefringence curve of CIBO.

3.6. Nonlinear Optical Properties

CIBO crystallizes in the NCS space group of Cm, so its NLO properties at 1064 nm
fundamental light irradiation were also performed. As shown in Figure 4, the SHG effects
become larger with the increasing particles size of the CIBO powders, which suggested that
the CIBO is phase-matching according to the rule proposed by Kurtz and Perry [56,66,67].
CIBO has a powder SHG effect about three times of KDP. According to the anionic-group
theory [68], the SHG response of NLO materials primary attributes to the anionic group, so
the BO3 groups play a key role in the structure [69]. As show in Figure 1b, the arrangement
of the BO3 units is approximately parallel to the (001) plane, which contributed to the large
SHG effect. Additionally, the number density of BO3 triangles (n/V) was 0.0144 per unit
volume for CIBO, which was comparable to those of the reported Cd borates nonlinear
optical material, such as CdZn2(BO3)2 (0.0082 per unit volume) [70], and Zn3Cd3(BO3)4
(0.016 per unit volume) [71].

Figure 4. (a) Phase−matching curves for CIBO at 1064 nm and KDP (KH2PO4) serving as a benchmark
sample. (b) The SHG (second harmonic generation) signals at 150–180 µm particle sizes.

The dipole moment calculation of CIBO was also calculated by the bond valence
model [72]. The CdOn (n = 6, 8) polyhedra and BO3 units were performed, respectively. As
shown in Table S5, the total net dipole moment of BO3 groups in the unit cell yield 1.025
Debey (D), which is approximately 54.45% of its optimal value. Meanwhile, the Cd−O
polyhedra also contributes to the dipole moment of 0.878 D. Therefore, the synergistic effects
of the NLO-active BO3 groups and the d10 Cd2+ cations in CIBO endowed the material with
a large SHG effect, which is comparable with LiB3O5 [60] and Cd5(BO3)3F [73].

3.7. Electronic Structure

Theoretical calculations of CIBO were carried out by the plane-wave pseudopotential
method performed on the CASTEP package based on the density functional theory [57].
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CIBO exhibited an indirect band gap of 1.68 eV, as shown in Figure 5a, which was smaller
than the experimental values because of the limitation of the GGA−PBE function [74].
Figure 5b shows that the density of states (DOS) and partial DOS of CIBO, which presented
that the top of the valence band was mainly made up of the Cd-4d, O-2p orbitals with a
mix of B-2p orbitals. The bottom of the conduction band mainly originates from the B-2p
and O-2p orbitals. Therefore, the optical properties of CIBO mainly originate from the
synergistic effect of BO3 groups and the d10 cation Cd2+.

Figure 5. Electronic properties of CIBO: (a) Band structure; (b) total and partial DOS (density
of states).

4. Conclusions

In conclusion, a new NLO material CIBO was reported. The title compound exhibited
a 3D framework composed of CdO6, CdO8, and InO6 polyhedra where the B atoms are
located in the tunnels. CIBO exhibits a large SHG response about three times that of KDP
and a moderate birefringence of 0.077@1064 nm, which mainly originated from the well
arrangement and high density of BO3 groups, as well as the d10 Cd2+ cation. The IR and
UV−Vis−IR diffuse reflectance spectra indicated that CIBO possess BO3 groups and a
wide transparent region, respectively. TG−DSC manifests that the CIBO has good thermal
stability up to 963 ◦C. We hope that these findings will shed valuable information on the
development of new NLO materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst12020266/s1. Figure S1: UV−Vis−NIR diffuse reflectance spectroscopy of CIBO. Figure
S2: IR Spectroscopy of CIBO. Table S1: Crystal data and structure refinement for CIBO. Table S2:
Atomic coordinates and equivalent isotropic atomic displacement parameters (Å2) for CIBO. Table S3:
Bond lengths (Å) for CIBO. Table S4: Bond angles (◦) for CIBO. Table S5. Dipole moments of BO3 and
CdOn (n = 6, 8) polyhedra in the unit cell. Table S6: The assignments of the Infrared absorption peaks
for CIBO.
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