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Abstract: Utilizing conformal transformation, a screw dislocation interacting with two unequal
interface cracks emanating from an elliptical hole in a one-dimensional hexagonal piezoelectric
quasicrystal bi-material was studied. The analytic expressions of the interface stresses, electric
displacement and stress intensity factors were obtained. With the help of the generalization of
the Peach–Koehler formula for quasicrystals, the image force acting on the dislocation due to the
presence of the interface was then determined. Numerical examples are given to show the effects of
the coupling elastic constants of the phonon field and phason field on the field intensity factors.
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1. Introduction

As new functional and structural materials, quasicrystals (QCs) have been extensively
used in many fields due to their special structures and excellent properties. Since qua-
sicrystals were discovered by Shechtman et al. [1], the generalized elasticity theory of
quasicrystals has been explored by many researchers [2,3]. Lubensky et al. [4] studied
the motion of dislocation in quasicrystals, which revealed a close relationship with hy-
drodynamic equations. Jarić and Mohanty [5] developed a density-functional method for
calculating the elastic moduli of icoshedral quasicrystals. Widom and Phillips [6] inves-
tigated the atomic structure of model decagonal quasicrystals. Fan and Sun [7] studied
the problems with moving screw dislocations and straight dislocations in one-dimensional
(1D) hexagonal QCs. Using the Stroh method, Radi and Mariano [8] studied the crack
problem in two-dimensional (2D) QCs. Rogowski [9] studied the mode III fracture problem
of cracks originating from an elliptical hole and obtained the exact analytical solutions of
the field intensity factors and energy release rate. Li [10] considered the elasticity problem
of one-dimensional hexagonal quasicrystals with planar cracks. Lazar and Agiasofitou [11]
provided fundamental quantities for the generalized elasticity and dislocation theory of
quasicrystals. Gao et al. [12] studied some of the defects in cubic QCs. Liu et al. [13], Wang
and Zhong [14] studied the interactions between dislocations and cracks in 1D QCs and
2D QCs, respectively. Li and Liu [15] studied the interactions between dislocations and
elliptical holes in three-dimensional (3D) QCs.

Quasicrystalline materials with piezoelectric effects have been widely investigated [16–19].
Guo et al. [20,21] studied the elliptical hole problem in QC piezoelectric materials based on
the conformal mapping method. Tupholme [22] considered the anti-plane crack problem
in 1D hexagonal piezoelectric quasicrystal materials through the continuous dislocation
layer method. Zhou and Li [23] investigated the Yoffe-type moving crack problem in
1D hexagonal piezoelectric quasicrystal materials. These are very helpful to understand
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the mechanical properties of quasicrystal piezoelectric materials. However, there are few
reported results on the interaction of defects in piezoelectric QCs materials.

The interaction between a screw dislocation and two unequal interface cracks em-
anating from the elliptical hole in one-dimensional hexagonal piezoelectric quasicrystal
bi-material is considered in this paper. The analytical expressions for the stress intensity
factors are presented in detail.

2. Basic Formulation

For point group 6 mm 1D hexagonal piezoelectric QC, supposing its polarized direc-
tion and quasi-periodic direction are along the z axis in the 3D space coordinate system
with an isotropic xoy plane, the basic equations for the anti-plane problem can be written
as follows [18].

Constitutive equations:
σzβ = 2C44εzβ + R3ωzβ − e15Eβ

Hzβ = 2R3εzβ + K2ωzβ − d15Eβ

Dβ = 2e15εzβ + d15ωzβ + λ11Eβ

(1)

Geometry equations:

εzβ =
1
2

uz,β, ωzβ = wz,β, Eβ = −φ,β (2)

Equilibrium equations (regardless of body force):

σzβ,β = 0, Hzβ,β = 0, Dβ,β = 0 (3)

where the commas represent partial differentiation and the repeated indices denote sum-
mation; σzβ, εzβ and uz denote the stress, strain and displacement of the phonon field,
respectively; β = x, y; Hzβ, ωzβ and wz refer to the stress, strain and displacement of
phason the field, respectively; Dβ, Eβ and φ represent the electric displacement, the electric
field and the electric potential, respectively; C44, K2 and R3 are the elastic constants of
the phonon field, phason field and coupling elastic constant of the phonon-phason field,
respectively; e15 and d15 stand for the piezoelectric constants of the phonon field and the
phason field, respectively; λ11 denotes the dielectric permittivity.

According to Equations (1)–(3), the governing equations can be obtained as

B∇2u = 0 (4)

where u = (uz, wz, φ)T, ∇2 = ∂2

∂x2 +
∂2

∂y2 is the 2D Laplace operator and

B =

 C44 R3 e15
R3 K2 d15
e15 d15 −λ11

 (5)

According to the properties of the analytic function, the analytic function vector u can
be expressed by the imaginary part of the analytic function vector f(z) with the complex
variable z = x + iy, i.e.,:

u = Imf(z) (6)

where Im denotes the imaginary part of a complex function.
After introducing the generalized strains Zx = [εzx, ωzx,−Ex]

T, Zy = [εzy, ωzy,−Ey]
T

and the generalized stresses Σx = [σzx, Hzx, Dx]
T, Σy = [σzy, Hzy, Dy]

T, we can obtain

Zy + iZx = f
′
(z) (7)
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Σy + iΣx = Bf
′
(z) (8)

where the superscript prime indicates the derivative with respect to the argument.
Using Equation (8), the normal component of the electric displacement and the forces

along the arbitrary arcAB can be represented as

T =
∫ B

A
Σxdy−Σydx = −BRe[f(z)]BA (9)

where Re denotes the real part of a complex function.

3. Statement of the Problem and Its Solution

The mechanical model considered here is as follows (Figure 1).
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Figure 1. A screw dislocation interaction with two unequal interface cracks emanating from an
elliptical hole in a QC piezoelectric bi-material.

Consider a quasi-crystal piezoelectric bi-material that consists of two dissimilar trans-
versely isotropic media with respect to the poling direction (z-direction). It is assumed that
the upper plane is material 1 and the lower plane is material 2. There are two asymmetrical
interface cracks, given in Figure 1. Here, a and b denote the lengths of the major semi-axis
and the minor semi-axis of the elliptical hole, respectively; l1 and l2 denote the lengths
of the two cracks. A screw dislocation with Burgers vector b = (b3, b⊥, bφ)

T, where the
dislocation line perpendicular to the z-plane is located at z0 = a + l1 + reiθ in material 1,
where b3, b⊥ stand for the displacement jump values of phonon field and phason field,
respectively, bφ means the electric-potential jump value [24].

The boundary conditions of the present problem can be expressed as∫
l
du(1) = b,

∫
l
Σ
(1)
y dx − Σ

(1)
x dy = 0 (10)

u(1)(z) = u(2)(z), T(1)(z) = T(2)(z), z ∈ L′ (11)

T(1)(z) = T(2)(z) = 0, z ∈ L (12)

where the superscript, (1) and (2), denote the quantities of material 1 and material 2,
respectively; L is the surface of hole and crack; and L′ is the remainder of the interface,
which is the perfect bonding between the material 1 and material 2.

In order to obtain the expressions of the complex function f(z), we introduce a new
conformal mapping function:

ζ = G(z) =
g(z)− b1+a1

2 +
√
(g(z)− a1)(g(z)− b1)
b1−a1

2

(13)

where
g(z) =

z
a + b

+
b

z +
√

z2 − a2 + b2
(14)
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and

a1 = − a + l2
a + b

− b

a + l2 +
√

b2 + 2al2 + l2
2

, b1 =
a + l1
a + b

− b

a + l1 +
√

b2 + 2al1 + l2
1

(15)

The conformal mapping transforms the outside of the elliptical hole with two unequal
cracks in the z-plane into the interior of a unit circle γ in the ζ-plane.

In the ζ-plane, the Equations (11) and (12) can be rewritten as

u(1)(ζ) = u(2)(ζ), T(1)(ζ) = T(2)(ζ), ζ ∈ L′ (16)

T(1)(ζ) = T(2)(ζ) = 0, ζ ∈ γ (17)

Assume the complex functions f(j) (j = 1, 2) in the ζ-plane have the form

f(j)(ζ) = fb
(j)(ζ) + fm

(j)(ζ) (18)

where fb
(j)(ζ), (j = 1, 2) represent the functions associated with the solutions for one-

dimensional hexagonal piezoelectric quasicrystal bi-material subjected to a screw disloca-
tion, while fm

(j)(ζ) represent the functions corresponding to the perturbed fields due to
the crack.

Assume that the functions fb
(j)(ζ) can be given as

f(1)b (ζ) = f(1)0 (ζ) + f(1)p (ζ) , f(2)b (ζ) = f(2)p (ζ) (19)

where f(1)0 (ζ) represent the function corresponding to the unperturbed field and is analytic

except for the point of ζ0; f(j)
p (ζ) (j = 1, 2) denotes the perturbed fields in the material j.

From Equation (10), f(1)0 (ζ) is given as

f(1)0 (ζ) =
1

2π
b ln(ζ − ζ0) (20)

Substituting Equations (6) and (9) into Equation (16), we obtain

Im[fb
(1)(ζ)] = Im[fb

(2)(ζ)], B(1)Re[fb
(1)(ζ)] = B(2)Re[fb

(2)(ζ)] (21)

Utilizing Equations (19) and (21), noting that ζ = ζ holds along the real axis, we have

fb
(1)(ζ) =

1
2π

[I ln(ζ − ζ0) + Π12 ln(ζ − ζ0)]b (22)

fb
(2)(ζ) =

1
2π

(I−Π12)b ln(ζ − ζ0) (23)

where the overbar means the conjugate, I is a 3× 3 unit matrix and

Π12 = (B(2) + B(1))
−1

(B(2) − B(1)) (24)

By taking Equations (9), (17), (18), (22) and (23) and noting ζ = ζ−1 holds along the
unit circle γ, one can obtain

f(1)m (ζ) = − 1
2π

[I ln(ζ − ζ
−1
0 ) + Π12 ln(ζ − ζ−1

0 )− (I + Π12) ln ζ]b (25)

f(2)m (ζ) = − 1
2π

(I−Π12)[ln(ζ − ζ
−1
0 )− ln ζ]b (26)
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Substituting Equations (22), (23), (25) and (26) into Equation (18), the complex potential
in the ζ-plane is expressed as follows.

f(1)(ζ) = 1
2π [I ln(ζ − ζ0) + Π12 ln(ζ − ζ0)− I ln(ζ − ζ

−1
0 )

−Π12 ln(ζ − ζ−1
0 ) + (I + Π12) ln ζ]b

(27)

f(2)(ζ) =
1

2π
(I−Π12)[ln(ζ − ζ0)− ln(ζ − ζ

−1
0 ) + ln ζ]b (28)

With Equations (8), (27) and (28), the complex expressions of the generalized stresses
can be obtained as

Σ
(1)
y + iΣ(1)

x = 1
2π B(1)bG′(z)

1√
(g(z)− a1)(g(z)− b1)

×[I( ζ
ζ−ζ0

+ 1
1−ζζ0

) + Π12(
ζ

ζ − ζ0
+

1
1− ζζ0

)]
(29)

Σ
(2)
y + iΣ(2)

x = 1
2π B(2)G′(z)

1√
(g(z)− a1)(g(z)− b1)

× (I−Π12)[
ζ

ζ − ζ0
+

1
1− ζζ0

]b
(30)

4. Stress Intensity Factors (SIFs) and Image Force of the Dislocation

The SIFs in the phonon and phason fields and the electric displacements intensity
factors at the right crack tip are defined as

K =


Kσ

KH
KD

 = lim
z→a+l1

√
2π(z− a− l1)Σ

(j)
y =

1√
2π(b1 − a1)

Be f f G′(a + l1)× [
1

1− ζ0
+

1
1− ζ0

b (31)

The matrix Be f f is

Be f f = 2B(2)
(

B(2) + B(1)
)−1

B(1) = 2B(1)
(

B(2) + B(1)
)−1

B(2) (32)

The Peach–Koehler force for quasicrystals plays an important role in the defect me-
chanics of quasicrystals. The Peach–Koehler force, an important quantity for the theory of
dislocations of quasicrystals, is derived in [11]. Li and Fan [25] obtained the force between
two parallel screw dislocations by extending the Peach-Koehler force to quasicrystals. We
therefore discuss the generalized Peach-Koehler force for piezoelectric quasicrystals.

Consider two stress field systems, S and T, both of which represent singularities
corresponding to the physical defects in a linear elastic piezoelectric quasicrystal (Figure 2):

Crystals 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

( )
1

z
1 0 0

1 1 1
lim 2 ( ) ( ) [ ]

2 ( ) 1 11

j eff
H 1 y

a+l
1

D

K

K z-a-l G a l
b -a

K




  

 
        
 
 

 
K Σ B b (31)

The matrix 
effB  is 

eff (2) (2) (1) 1 (1) (1) (2) (1) 1 (2)2 ( ) 2 ( )    B B B B B B B B B  (32)

The Peach–Koehler force for quasicrystals plays an important role in the defect me-
chanics of quasicrystals. The Peach–Koehler force, an important quantity for the theory of 
dislocations of quasicrystals, is derived in [11]. Li and Fan [25] obtained the force between 
two parallel screw dislocations by extending the Peach-Koehler force to quasicrystals. We 
therefore discuss the generalized Peach-Koehler force for piezoelectric quasicrystals. 

Consider two stress field systems, S and T, both of which represent singularities cor-
responding to the physical defects in a linear elastic piezoelectric quasicrystal (Figure 2): 

 
Figure 2. Electro-elastic singularities S and T in a piezoelectric quasicrystal, where   is any sur-
face enclosing S. 

The total interaction enthalpy can be written as 

I II
tot

1 1
[ ( ) ( ]]
2 2

S T S T S T T S T S T S
ij ij ij ij i i ij ij ij ij i iV V

E H w D E H w D E dV   


       (33)

By using divergence theorem, the total interaction enthalpy can be rewritten as 

tot [ ]S T S T S T T S T S T S
ij i ij i j ij i ij i jE u H w D u H w D dS   


       (34)

We are interested in calculating the total interaction enthalpy and calculate the force 
acting on a dislocation. Choose a contour C surrounding the dislocation, as shown in Fig-
ure 3. 

 
Figure 3. Contour surrounding piezoelectric quasicrystal dislocation core and slip plane. 

We assume that the fields associated with T are continuous in the neighborhood of 
the contour C. Following Bilby and Shelbie [26], calculating the contributions from the 
integrals on contours   and   as 0  , Equation (34) becomes  

tot
T T T

i ij j i ij j j jE b n dS b H n dS b D n dS
  



  
      (35)

Figure 2. Electro-elastic singularities S and T in a piezoelectric quasicrystal, where Σ is any surface
enclosing S.
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The total interaction enthalpy can be written as

Etot =
∫

VI+VII

[
1
2
(σS

ijε
T
ij + HS

ijw
T
ij − DS

i ET
i ) +

1
2
(σT

ij εS
ij + HT

ij w
S
ij − DT

i ES
i ]]dV (33)

By using divergence theorem, the total interaction enthalpy can be rewritten as

Etot =
∫

Σ
[σS

iju
T
i + HS

ijw
T
i + DS

j φT − σT
ij uS

i − HT
ij w

S
i − DT

j φS]dS (34)

We are interested in calculating the total interaction enthalpy and calculate the force act-
ing on a dislocation. Choose a contour C surrounding the dislocation, as shown in Figure 3.
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Figure 3. Contour surrounding piezoelectric quasicrystal dislocation core and slip plane.

We assume that the fields associated with T are continuous in the neighborhood of
the contour C. Following Bilby and Shelbie [26], calculating the contributions from the
integrals on contours Σ+ and Σ− as ε→ 0 , Equation (34) becomes

Etot = b‖i

∫
Σ+

σT
ij njdS + b⊥i

∫
Σ+

HT
ij njdS + bφ

∫
Σ+

DT
j njdS (35)

b‖i , b⊥i represent the displacement jump values of the phonon field and phason field in the
xi direction, respectively.

If giving the dislocation a virtual incremental displacement δξk, the general expression
for the force acting on a dislocation in a piezoelectric quasicrystal is

Fk = −
δEtot

δξk
= −(b‖j σT

ij + b⊥j HT
ij + bφDT

j )ε jklsl (36)

in which ε jkl is an alternating tensor and sl is a unit vector parallel to the dislocation line.
According to Equation (36), the image forces exerted on the dislocation due to the

presence of the crack can be obtained as

Fx − iFy = bT
[

Σ
(1)
yp (z0) + iΣ(1)

xp (z0)
]

(37)

where Σ
(1)
kp (z0)(k = x, y) denotes the perturbation stresses of the phonon fields, the per-

turbation stresses of the phason fields and the perturbed electric displacements at the
dislocation point z0. Subtracting Σ

(1)
k0 (z0) for a screw dislocation in infinite material with

B(1) from the corresponding Σ
(1)
k (z0), the perturbed stresses of the phonon and phason

fields and electric displacements are obtained.
With Equations (8) and (10), we have

Σ
(1)
y0 (z0) + iΣ(1)

x0 (z0) =
1

2π
B(1) 1

z− z0
b (38)

Therefore, the image force acting on the screw dislocation in material 1 is

Fx − iFy =
1

2π
bT B(1)g′(z0)√

(g(z0)− a1)(g(z0)− b1)
[I( 1

2 −
2g(z0)− a1 − b1

4
√
(g(z0)− a1)(g(z0)− b1)

− g′′ (z0)
√
(g(z0)− a1)(g(z0)− b1)

2[g′(z0)]
2 − 1

ζ0ζ0 − 1
) + Π12(

ζ0

ζ0 − ζ0
− 1

ζ2
0 − 1

)]b
(39)
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some special cases of these results are discussed in detail below.

(1) If b = 0, l1 = l2, Equation (29) degenerates into

Σ
(1)
y + iΣ(1)

x =
1

2π
B(1) 1√

z2 − (a + l1)
2
[I ζ1

ζ1−ζ10

+Π12
ζ1

ζ1 − ζ10
+ I

1
1− ζ1ζ10

+ Π12
1

1− ζ1ζ10
]b

(40)

where ζ1 =
z +

√
z2 − (a + l1)

2

a + l1
, ζ10 =

z0 +
√

z2
0 − (a + l1)

2

a + l1
. Equation (40) represents the

case of the interaction between a screw dislocation and the length of the 2(a + l1) interface
crack in the infinite quasicrystal piezoelectric bi-material.

(2) If l2 = l1 = 0, Equation (29) can be reduced to the case of a screw dislocation
interacting with an elliptical hole in the infinite quasicrystal piezoelectric bi-material.

Σ
(1)
y + iΣ(1)

x =
1

2π
√

z2 − a2 + b2
C(1)[I

ζ2

ζ2 − ζ20

+Π
ζ2

ζ2 − ζ20
+ I

1
1− ζ2ζ20

+ Π
1

1− ζ2ζ20
]b (41)

where ζ2 =
z +
√

z2 − a2 + b2

a + b
, ζ20 =

z0 +
√

z2
0 − a2 + b2

a + b
.

The results can be further reduced to the case of a screw dislocation interacting with
an elliptical hole when the material is the pure elastic bi-material. This is consistent with
the results in [27].

(3) If l1 = l2 = 0, a = b, Equation (29) becomes

Σ
(1)
y + iΣ(1)

x =
1

2π
B(1) z2 − a2

2az2
1√

(g1(z)− a2)(g1(z)− b2)
[I

ζ3

ζ3 − ζ30

+Π12
ζ3

ζ3 − ζ30
+ I

1
1− ζ3ζ30

+ Π12
1

1− ζ3ζ30
]b

(42)

where ζ3 =
g1(z)− b2+a2

2 +
√
(g1(z)− a2)(g1(z)− b2)
b2−a2

2

, ζ30 =
g1(z0)− b2+a2

2 +
√
(g1(z0)− a2)(g1(z0)− b2)

b2−a2
2

,

a2 = − a + l1
2a
− a

2a + 2l1
, b2 =

a + l1
2a

+
a

2a + 2l1
and g1(z) =

z
2a

+
a

2z
.

Equation (42) presents the interaction between a screw dislocation and a circular hole
when the material is the pure elastic bi-material. This is consistent with the results in [28].

(4) If a = 0, Equation (29) reduces to

Σ
(1)
y + iΣ(1)

x =
1

2π
B(1) 1√

(g2(z)− a3)(g2(z)− b3)
[I ζ4

ζ4−ζ40

+Π12
ζ4

ζ4 − ζ40
+ I

1
1− ζ4ζ40

+ Π12
1

1− ζ4ζ40
]b

(43)

where ζ4 =
g2(z)− b3+a3

2 +
√
(g2(z)− a3)(g2(z)− b3)
b3−a3

2

, ζ40 =
g2(z0)− b3+a3

2 +
√
(g2(z0)− a3)(g2(z0)− b3)

b3−a3
2

,

a3 = − 1
b

√
l2
2 + b2, b3 = 1

b

√
l2
1 + b2 and g2(z) = 1

b

√
z2 + b2.
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Equation (43) shows the results of the interaction between a screw dislocation and an
interface crisscross crack.

(5) When l2 = 0, one has that a1 = −1 from Equation (15). In this case, the Equation (29)
can be simplified as

Σ
(1)
y + iΣ(1)

x =
1

2π
B(1)

[
a

a2 − b2 −
bz

(a2 − b2)(z2 − a2 + b2)
1
2

]
1√

(g(z) + 1)g(z)− b1)

×[I ζ

ζ − ζ0
+ Π12

ζ

ζ − ζ0
+ I

1
1− ζζ0

+ Π12
1

1− ζζ0
]b

(44)

This is the result of a single-interface crack originating from the edge of an elliptical
hole. In particular, when a tends to zero, the result of a screw dislocation interacting with
the interface T-shaped crack can be obtained from Equation (44).

(6) If l2 = l1, the stress field of the interaction between a screw dislocation and two sym-
metrical cracks originating from an elliptical hole can be simulated from Equation (29):

Σ
(1)
y + iΣ(1)

x =
1

2π
B(1)

 a
a2 − b2 −

bz

(a2 − b2)(z2 − a2 + b2)

1
2

 1√
g2(z)− b2

1

[I
ζ5

ζ5 − ζ50
+ Π12

ζ5

ζ5 − ζ50
+ I

1
1− ζ5ζ50

+ Π12
1

1− ζ5ζ50
]b

(45)

where ζ5 =
g(z)−

√
g2(z)− b2

1

b1
, ζ50 =

g(z0)−
√

g2(z0)− b2
1

b1
.

5. Numerical Examples

The effects of the material constants on the field intensity factors and image forces are
illustrated in this section. Table 1 lists the material properties of the bi-materials [29–32].

Table 1. Material properties of two 1D hexagonal piezoelectric QCs.

C44 (GPa) K2 (GPa) e15 (C·m−2) d15 (C·m−2) λ11 (10−9C2N−1m−2)

Material 1 50 0.3 −0.318 −0.16 0.0826
Material 2 70.19 24 11.6 1.16 5

In the computation, we might set the coupling constant of material 2 R(2)
3 = 0.8846 GPa [33].

The other parameters are selected as follows:
b3 = 1.6× 10−9 m, b⊥ = 1 0. 7 × 10−9 m, bφ = 1× 10−9 V.
Figures 4 and 5 show the variations of the normalized phonon and phason SIFs with the

angular position θ of the dislocation for different values of R(1)
3 at a = 0.01 m, b = 0.005 m,

l1 = 0.005 m, l2 = 0.008 m. We found that the SIFs are negative in this condition, which
shows that screw dislocation can reduce the shielding effect. The shielding effect increases
as the value of the coupling constants R1

3 increases, but decreases as the value of θ increases.
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Figures 6 and 7 show the variations of the normalized phonon and phason stress
intensity factors with r/a for different values of R(1)

3 at a = 0.01 m, b = 0.005 m, l1 =
0.005 m, l2 = 0.008 m. We found that the SIFs are negative in this condition, which shows
that screw dislocation can reduce the shielding effect. The shielding effect increases as the
value of the coupling constants R1

3 increases, but decreases as the value of r/a increases.
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Figures 8 and 9 give the relation between the normalized image force and r/a for
selected elevation angles θ. As shown in Figure 6, we found that the value of the normalized
image force in the x-axis direction decreases with the increase in θ and increases with the
increase in r/a. The crack always attracts the dislocation in the x-axis direction. As shown
in Figure 9, we found that whether the image force in the y-axis direction is attractive or
repulsive is difficult to determine because it is affected by the position of the dislocation.
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6. Conclusions

The interaction between screw dislocation and two unequal cracks in one-dimensional
hexagonal piezoelectric quasicrystal bi-materials was studied using the complex function
method. The complex expressions for the stresses and electric displacements are given in
this article. The results of this paper are consistent with those in some literatures. Numerical
examples show that the coupling elastic constant of the phonon and phason fields has a
significant effect on the stress intensity factor. The method adopted in this paper can be
extended to other problems of interactions between defects in quasicrystals.
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