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Abstract: The physical and chemical properties of three new liquid crystalline derivatives, based on an
azomethine core with low-temperature mesophase—namely (4-methoxybenzylideneamino) phenyl
palmitate (I), (4-methoxybenzylideneamino) phenyl oleate (II), and (4-methoxybenzylideneamino)
phenyl linoleate (III)—were prepared and physically examined using experimental methodologies.
Elemental analysis, FT-IR, and NMR spectroscopy were used to confirm their molecular structure.
Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) were used to inves-
tigate their mesomorphic activity. The results revealed that compound (I) is monotropic smectogenic,
possessing the smectic A mesophase, whereas the other two analogues were shown to possess the
SmA phase enantiotropically. Two of the saturated and unsaturated prepared derivatives (namely
I and II) were used to construct their phase diagram. The eutectic composition of the mixture ex-
amined showed a slight enhancement of the stability of the smectic A phase. Polymorphic phases
were produced at the eutectic composition of the binary phase diagram of the derivative II with the
4-n-dodecyloxy benzoic acid component.

Keywords: mesomorphic properties; smectic phases; fatty acid liquid crystals; geometrical structures;
binary phase diagram; polymorphic phases

1. Introduction

It is well known that the physical properties of organic materials are largely determined
by their molecular structure. Examining the structure–activity interactions is extremely
useful when designing a material to achieve the necessary device applications [1–3]. Liquid
crystals (LC) have been shown to be viable choices for device applications. Low-melting-
temperature liquid crystals (LCs) have been proven to be useful materials for a variety of
applications, including electro-optical displays and temperature sensors [4–9]. To be con-
trollable in device applications, these materials must have particular features [4–6]. Optical
transmittance, for example, influences the applicability of liquid crystalline substances. In
addition, the mesophase type and stability are important traits. In the field of liquid crystal
applications, color change with temperature is also a valuable phenomenon [10].

In general, LC compounds exhibit one or more different mesophases, such as nematic
(N) and layered Smectic (Sm) phases, which are determined by their molecular order [11–13].
It has been shown that changes in the polarity and/or polarizability within the central core
of the molecule can affect the mesophase stability of the prepared compound. Furthermore,
the molecular structure of LC materials and, accordingly, their mesomorphic properties are
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influenced by the terminal groups, which are either small, compact polar groups or flexible,
lengthy hydrocarbon chains [14].

Mixtures of liquid crystalline (LC) materials are attracting great attention these days [15–21].
LC materials that show their transitions at room temperature and maintain their mesomor-
phic character throughout a large temperature range are desirable for practical applications.
Mesomorphic requirements of mesogenic cores are significantly changed when individ-
ual components are mixed together. Many investigations [15–18] have focused on the
mesophase behavior when two or more compounds are mixed where none, one, or all
of the components are mesomorphic. Dimeric LCs have also been investigated [19–21].
Binary or ternary combinations can be composed of symmetric (mesogenic moieties are
the same) or non-symmetric (mesogenic units are different) components. The intermolecu-
lar interaction between the two mesogenic cores of the two components of the mixture is
accompanied with major changes in the optical activity of these materials in both molecules.

One of the important goals of our work is to perform a systematic investigation on the
produced compounds that were attached with a linear n-alkyl chain of palmitic acid and
unsaturated alkenyl chains (oleic and linoleic acids) with various degrees of unsaturation.
Their good optical properties were previously confirmed by examining their mesomorphic
behavior [6].

A new two-ring calamitic (I–III, Figure 1), with an azomethine group as a central
linkage, was synthesized and its mesomorphic and optical behavior examined, aiming to
obtain low melting temperatures in the range of room temperature. Another goal of the
current study is to examine the mesomorphic and optical properties of binary mixtures,
which were formed by mixing two systems with different terminal chains.
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Figure 1. Synthesis of derivatives (I–III).

2. Experimental and Synthesis of Materials

Compounds I–III were prepared according to Figure 1. Synthetic method details are
given in Supplementary data (S1–S4).

3. Results and Discussion
3.1. Mesomorphic Investigations

Table 1 shows the transition temperatures, enthalpy, and normalized entropy of tran-
sitions as measured by DSC. POM textures identify the phases for the prepared liquid
crystal derivatives (I–III), which are confirmed by DSC measurements, with some typical
textures shown in Figure 2. Figure 3a–c shows the DSC thermograms for all prepared
derivatives (I–III) upon heating and cooling scan at a rate of 10 ◦C/min. The data in Table 1
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and the phase transitions in Figure 4 show that all of the three synthesized derivatives are
mesomorphic, with varying mesophase stability depending on the length and un-saturation
of the alkyl or alkenyl chain. Furthermore, all of the prepared compounds were shown to
possess the smectic A mesophase. When heated, (4-methoxybenzylideneamino) phenyl
palmitate (I), which does not contain a double bond in its carbon terminal chain, is purely
smectogenic, with a narrow monotropic smectic A phase range of near 9.8 ◦C. The length
and unsaturation of the wing group in compound II [22], (4-methoxybenzylideneamino)
phenyl oleate, was shown to affect their mesomorphic behavior, resulting in a SmA temper-
ature range larger than that of the saturated analogue I (20.1 ◦C). In general, increasing the
polarizability and/or polarity of the mesogenic component of the entire molecule improves
mesophase stability. Compound III has a longer terminal chain compared to I, and two
conjugated double bonds compared to its analogues I and II, which results in a further
increase in the SmA temperature range (near 27.7 ◦C).

Table 1. Transition temperatures (T, ◦C), enthalpy of transitions (∆H, kcal/mol), and normalized
transition entropy (∆S/R) for compounds I–III.

Compound TCr-SmA ∆HCr-SmA TSmA-I ∆HSmA-I ∆TSmA ∆S/R

I 89.9 32.93 88.8 * 2.69 9.8 * 0.89

II 41.9 35.78 62.0 2.98 20.1 1.07

III 38.0 37.23 65.7 2.20 27.7 0.78
Abbreviations: Cr-SmA = crystal to smectic A transition; SmA-I = Smectic A to isotropic liquid transition.
* montropic phase on cooling only.
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The linoleic acid derivative III has a mesomorphic property, with a low melting point
near room temperature (38.0 ◦C upon heating), as indicated from Table 1 and Figures 3 and 4.
This is due to the length of the unsaturated alkenyl terminal chain. The strength of the
terminal attractions causes the smectic molecular order to grow, allowing for the simple orga-
nization of the layers due to the long alkenyl chain, thereby expanding the SmA temperature
range. The microphase separation between the aromatic cores and alkenyl chains, which
becomes more advantageous as the terminal chain length grows, may also play a role in the
creation of the smectic phase [23,24]. Many factors are known to influence the mesomorphic
behavior of calamitic mesogens, including polarizability, dipole moment, aspect ratio, and
competitive interactions within terminal aggregations. Furthermore, the molecular geome-
try is influenced by mesomeric configurations and has an impact on molecular–molecular
interactions. According to our findings, the molecular aggregation of rod-like molecules
caused by the lateral attraction of linear planar molecules with longer alkenyl chains may be
the driving force behind mesophase activity. The end-to-end association of terminal flexible
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chains, which varies depending on mesomeric effects, is another factor. The mesomorphic
behavior is influenced by the combination of these factors in varying ratios. A major role
of the alkenyl chains in terms of entropy is their liability; they can easily undergo multi-
conformational changes [25]. As a result, the CH=N bond’s thermal cis–trans isomerization
can represent the lower entropy changes predicted for low-molar mass mesogens, which is
consistent with other studies [26–29].
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As can be seen from Figure 4, the inclusion of one or two double bonds is associated
with a decrease in both the melting points and the smectic A stabilities. The difference
between derivative I and either of the other two other derivatives, II or III, is two carbon
atoms in the terminal chains, which is does not significantly affect their mesophase behavior.
Other differences are the single double bond in II and the two conjugated double bonds
in III, which are far from the central mesogenic group that prevents the conjugation
with the azomethine central linking group. The only possible reason for such a decrease
in the stability of the smectic A phase is the possible non-linearity due to the cis–trans
effect [6,21,29].
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3.2. Binary Mixtures

Figure 5 depicts the binary phase diagram produced from DSC measurements of two
components, I and II, with different terminal chains. As can be seen from the diagram,
over the entire composition range, the binary mixes were shown to exhibit the SmA
mesophase. Derivative I exhibited the SmA phase monotropically, while compound II
exhibited the SmA mesophase enantiotropically. The binary phase diagram shows a positive
enhancement of the SmA phase compared to linear behavior, as shown in this diagram.
This can be attributed to the variation in total lengths and different saturation between
the two components of the mixture, which enhances the arrangement of the molecules.
Furthermore, Figure 5 shows that the solid mixture with 22.0 mole % of I represents the
eutectic composition, which melts at 40.0 ◦C and has a SmA temperature range of 29.1 ◦C.
This is in accordance with previous investigations, where the length of the terminal chain
determines both conformation and steric effect in pure and mixed states [6,15–18].
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Figure 5. Binary phase diagram of I/II system.

Another example of a binary phase diagram was constructed for the present prepared
fatty acid derivative II and the 4-n-dodecyloxy benzoic acid (D) in order to investigate the
effect of different geometry of terminal chains on the mesomorphic properties of mixtures
II/D. Figure 6 depicts a binary phase diagram obtained from DSC examinations of both
components. The SmC and N mesophases are enantiotropically present in the alkoxy acid
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derivative, D. The binary phase diagram shows a slight enhancement of the N phase over all
compositions, as shown in this diagram. The enhancement of the N phase can be attributed
to the good alignment between the two components (II and D) of the mixture, which does
not disrupt the arrangement of the molecules. Moreover, polymorphic mesophases have
been seen at eutectic point (41 mol% of D). Figure 6 further shows that the solid mixture
with a 41.0 mol% eutectic composition of D has a eutectic melting point of 39.2 ◦C and a
mesomorphic temperature range of 65.9 ◦C. Incorporation of one material with low melting
temperature (II) in mixed states results in depression in the melting temperatures of all
mixtures and leads to formation of polymorphic phases.
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3.3. Effect of Replacement of Azo Linkage by Azomethine Moiety

In order to investigate the effect of replacing the azo group with an azomethine
one, the investigated compounds (I–III) are compared with those of the previously in-
vestigated azo analogues [6], 4-[2-(4-methoxy phenyl)diazenyl]phenyl hexdecanoate (A),
4-[2-(4-methoxyphenyl)diazenyl]phenyl octadeca-9-enoate (B), and 4-[2-(4-methoxy phenyl)
diazenyl]phenyl octadeca-9,12-dienoate (C). Smectic A phase was also the mesophase ob-
served in all of the azo compounds (A–C, Figure 7), but with lower transition temperatures
compared with their azomethine analogues (I–III). It was found from the comparison be-
tween their mesophase stabilities that the azomethine derivatives (I–III) are of relatively
higher thermal stability than the azo compounds (A–C). Thus, it seems that the attachment of
–CH=N–mesogen increases the polarizability and, consequently, enhances the intermolecular
association between molecules, showing a higher stable phase. The results indicated that the
type of linkage is more effective on the phase transitions and stability of designed compounds.
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4. Conclusions

In the present study, three liquid crystalline derivatives, based on natural fatty acids,
were prepared and their mesomorphic behavior examined by DSC and POM. The results
revealed that all of the synthesized saturated (I) and unsaturated (II and III) fatty acid
analogues are monomorphic and possess the SmA mesophase. The thermal stabilities and
mesomorphic temperature ranges of the prepared derivatives are found to be dependent
on the length of hydrocarbon chains attached at the ends of the molecule. In addition, the
terminal alkenyl chain (in compounds II and III) has a significant effect on the melting
temperatures. Binary phase diagrams constructed between two different derivatives I/II
and II/D showed low melting temperature, with broad mesomorphic temperature ranges
at the eutectic compositions as well as polymorphic phase formation for the II/D system.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/cryst12030350/s1, S1: Materials; S2: Synthesis of 4-methoxybenzylideneamino)
phenol A; S3: Synthesis of Fatty Acid Derivatives, I–III; S4: Characterization.
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Writing—original draft, H.A.A., F.S.A., N.S.A.-K., A.M.M., N.S.B. and M.M.N.; Writing—review and
editing, H.A.A., A.M.M. and M.M.N. All authors have read and agreed to the published version of
the manuscript.
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