
Citation: Slautin, B.; Turygin, A.;

Pashnina, E.; Slautina, A.; Chezganov,

D.; Shur, V. Evolution of

Nanodomains and Formation of

Self-Organized Structures during

Local Switching in X-Cut LNOI.

Crystals 2022, 12, 659. https://

doi.org/10.3390/cryst12050659

Academic Editors: Tzi-yi Wu and

Ali Belarouci

Received: 18 April 2022

Accepted: 2 May 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Evolution of Nanodomains and Formation of Self-Organized
Structures during Local Switching in X-Cut LNOI
Boris Slautin , Anton Turygin , Elena Pashnina, Alla Slautina , Dmitry Chezganov and Vladimir Shur *

School of Natural Science and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia;
boris.slautin@urfu.ru (B.S.); anton.turygin@urfu.ru (A.T.); elena.pashnina@urfu.ru (E.P.);
alla.slautina@urfu.ru (A.S.); chezganov.dmitry@urfu.ru (D.C.)
* Correspondence: vladimir.shur@urfu.ru

Abstract: The features of nanodomain growth during local switching in X-cut lithium niobate on
insulator (LNOI) were comprehensively studied using the biased tip of a scanning probe microscope.
The obtained results were discussed in terms of the kinetic approach. The revealed differences in
domain growth in bulk LN and LNOI were attributed to the higher bulk conductivity of LNOI. The
obtained influence of humidity on the shape and growth of isolated domains was attributed to the
water meniscus. Analysis of the transition between the “forward growth” and “sideways growth”
stages was performed by switching to the stripe electrode. A sand-glass-shaped domain was formed
due to growth in the opposite direction after the domain touched the electrode. Stable periodical
domain structures down to 300 nm were created and characterized in LNOI. Highly ordered comb-
like domains of various alternating lengths, including four- and eight-fold increase periods, were
produced by performing biased tip scanning along the Y axis. The obtained knowledge is important
for the future development of nanodomain engineering methods in monocrystalline ferroelectric thin
films on insulators.

Keywords: lithium niobate; domain structure; local switching; non-polar cut; self-organization;
nanodomain engineering; forward growth

1. Introduction

Lithium niobate on insulator (LNOI) wafers are among the most promising materials
for various integrated optical and acoustic devices [1–3]. LNOI wafers usually consist of
an ion-sliced monocrystalline lithium niobate (LN) film, with a thickness of 300–900 nm,
attached to the SiO2 layer on the LN substrate [4]. This structure allows the basic advantages
of LN, namely, the wide spectral transparency window, large electro-optic coefficient, and
strong second-order nonlinearity, to be combined with the small thickness and strong
drop in refractive index on the LN/SiO2 interface (∆n ≈ 0.67) [5,6]. Therefore, LNOI
is extremely attractive for quantum photonic and non-linear optics. The realization of
low-loss waveguides [7–11], high-speed electro- and acousto-optic modulators [1,3,5,12,13],
non-linear frequency converters [14,15], micro-disk and micro-ring resonators [16–19], and
grating couplers [20–22] has been demonstrated recently.

It is known that the creation of stable periodical domain structures with nanoscale
period reproducibility (periodical poling) can improve the efficiency of light frequency con-
version by producing a quasi-phase matching (QPM) effect [23–25]. Numerous prototypes
of very efficient wavelength converters, including second harmonic generators (SHGs), sum-
frequency generators (SFGs), and difference frequency generators (DFGs) [14,15,26–28],
have already been demonstrated. Particular attention has been paid to the production of
periodically poled LNOI (PPLNOI) with submicron periods, to enable backward optical
harmonic generation, which could be used to create a mirrorless optic parametric oscillator
(MOPO) [29]. The production of PPLNOI with submicron periods remains a challenging
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task, due to domain–domain interactions and backswitching in LN crystals. The creation
of periodical domain structures down to 200 nm in Z-cut LNOI using the biased tip of a
scanning probe microscope (SPM) [30,31] has been reported recently.

Nowadays, SPM is successfully used in LNOI wafers to create domain structures and
domain imaging using piezoelectric force microscopy (PFM) [32–37]. Investigations have
primarily been performed on Z-cut LNOI. Periodical poling in X-cut LNOI has been realized
using lithographically produced electrodes with a minimal period of 600 nm [15,26,38].
However, the creation of domain structures with lower periods in X-cut LNOI, which are
attractive for applications, has still not been studied.

This paper is devoted to an investigation of the formation of domain structures during
local switching in X-cut LNOI. The study of the growth, interaction, and stability of isolated
nanodomains and periodical domain structures facilitated the creation of X-cut PPLNOI
with a submicron period. The formation of self-organized nanoscale domain structures
was revealed and discussed.

2. Materials and Methods

The studied X-cut LNOI wafers (LN film/SiO2/LN substrate) were provided by Jinan
Jingzheng Electronics (NanoLN, Jinan, China). The thicknesses of different layers of the
wafer were as follows: LN film—300 nm; SiO2 layer—1 µm; LN substrate—500 µm. Domain
growth in LN thin film and bulk X-cut LN crystal with a thickness of 500 µm was compared.
The surface roughness of both samples was below 1 nm.

The scanning probe microscope Ntegra Aura (NT-MDT, Zelenograd, Russia) was used
for domain creation and imaging. The isolated domains were created using local switching by
single DC pulses with an amplitude of 50 to 300 V and duration of 10 ms to 100 s (Figure 1a).
Comb-like domains were formed by scanning using a biased tip along the Z axis (Figure 1c).
Moreover, we studied the domain growth towards the Pt 30 nm-thick and 200 µm-wide stripe
electrode deposited by magnetron sputtering and oriented along the Y axis (Figure 1b). The
electrode pattern was produced using electron beam lithography by the “lift-off” process. All
the measurements were carried out in a nitrogen atmosphere with relative humidity (RH),
controlled by an internal sensor in SPM, with an accuracy of about 1%.
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Figure 1. Schemes of the poling setups for (a) isolated domains and periodical poling, (b) domain
switching toward the stripe electrode, and (c) creation of comb-like domains.

Domain imaging was carried out using PFM and an electron channeling method
(ECM). We used single-frequency PFM with a voltage amplitude of 3–6 V and a frequency
far from the resonance. PFM collects the piezoelectric signal from a depth of hundreds
of nanometers [39]. The ECM is based on the change in intensity of the back-scattered
electrons, depending on the crystallographic structure of the sample [40]. The high sen-
sitivity of ECM to the surface crystallographic structure facilitates ferroelectric domain
imaging in the layer with a depth of tens of nanometers [41–43]. The ECM was performed
with an EVO-LS10 scanning electron microscope (Carl Zeiss NTS, Jena, Germany) using an
angle-selected, four-quadrant, back-scattered electron detector.
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3. Results and Discussion
3.1. Isolated Domains

The growth of the isolated domains in the polar direction, under local switching, was
studied in an X-cut bulk crystal and a thin film. The domains were created by rectangular
pulses with voltages ranging from 75 to 200 V and a 5 s duration at an RH of 30%. The
dependence of the domain shape on the pulse polarity was analyzed.

In the LNOI film, the application of negative pulses led to the formation of wedge-like
domains, whereas the application of positive pulses led to the appearance of domains with
several “spikes” (Figure 2a). The number of “spikes” decreased with the pulse amplitude.
In the bulk LN crystals, long narrow domains were formed after the application of negative
pulses, whereas wedge-like domains appeared after the application of positive pulses
(Figure 2b). The linear voltage dependence of the domain length obtained for both pulse
polarities is typical for switching in LN (Figure 2c,f) [44]. The voltage dependences of the
domain base width (w) for both pulse polarities in LNOI (Figure 2d) and for positive pulses
in bulk LN (Figure 2g) were successfully fitted by w(U) = a(U − Uth)1/2, determined from
the spatial distribution of the field polar component near the tip–surface contact [44], where
a is the constant and Uth is the threshold voltage for domain nucleation. In contrast, the
width of the domains created by negative pulses in bulk LN remained constant in the entire
voltage range. The best-fit values of the threshold voltages were about 25 V for LNOI and
35 V for bulk LN.
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Figure 2. PFM images of isolated domains created in (a) LNOI and (b) bulk LN by positive and negative
voltage pulses. The voltage dependences of the domain (c,f) length, (d,g) width, and (e,h) aspect ratio in
(c–e) LNOI and (f–h) bulk LN. The pulse duration was 5 s.
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For an explanation of the obtained difference in the domain shape and voltage de-
pendences of the domain sizes between the bulk crystal and LNOI, the domain growth
was considered in terms of the kinetic approach [44]. According to the kinetic approach,
domain growth occurs under the polar component of an electric field (Eloc.z) by generating
the elementary steps with charged kinks and kink motion along the wall. Eloc.z represents
the sum of the external field applied by the tip (Eex·z), the local depolarization field (Edep·z),
and the screening field (Escr·z).

Eloc·z(r, t) = Eex·z(r, t)− Edep·z(r, t) + Escr·z(r, t) (1)

Step generation occurs at the domain base in the vicinity of the tip, under the action of
Eex.z. It is close to zero at a distance of around one micron from the tip.

Domain elongation (forward growth) is caused by partially screened Edep.z produced
far from the domain base by charged kinks, which stimulates kink motion. The screening
field Escr.z slows down the kink motion and prevents spontaneous backswitching after
pulse termination.

Eloc·z(r, t) = Edep·z(r, t)− Escr·z(r, t) (2)

The screening effectiveness depends on the conductivity of the charged domain walls
(CDWs) of the wedge-like domains and bulk conductivity. It is necessary to take into
account that the “head-to-head” CDWs that appeared after the application of the positive
pulse possess at least an order of magnitude higher conductivity than the “tail-to-tail”
CDWs that appeared after the application of the negative pulse [45,46]. Moreover, the
conductivity in LNOI (10−13 Sm/mm) is about five orders of magnitude higher than that in
bulk crystals [47,48], due to the point defects induced by ion irradiation and incompletely
removed by annealing.

In bulk LN, formation of the stable wedge-like domain under the positive pulses can
be attributed to the high conductivity of the “head-to-head” CDWs, which provide effective
screening and, thus, prevent backswitching.

In LNOI, more effective screening, caused by high bulk conductivity, diminishes the field
produced by kinks. This results in a decrease in the domain elongation by kink motion and an
increase in the CDW tilt, which leads to the formation of additional narrow “spikes” [49].

Formation of the narrow wedge-like domains under negative pulses in bulk LN can
be attributed to the pronounced backswitching effect, caused by the low conductivity
of “tail-to-tail” CDWs. In this case, the domain width determined by the interaction of
approaching walls is independent of the applied voltage.

Domains created in LNOI by negative pulses have low conductive “tail-to-tail” CDWs,
which leads to the growth of long wedge-like domains. At the same time, the high bulk
conductivity prevents backswitching and the width of the created wedge-like domain
persists after pulse termination.

The influence of humidity on domain growth was studied at an RH ranging from
20% to 70%, with pulses of −125 V to −200 V and a duration of 1 s (Figure 3). Three RH
regions, characterized by different domain shapes, were distinguished.

For low humidity (RH < 45%), the length of the wedge-like domains is almost inde-
pendent of RH, whereas the significant increase in the domain width leads to a decrease in
the aspect ratio (Figure 3b–d).

For moderate humidity (45% < RH < 60%), the formation of domains with a wide base
and narrow tail was observed. The base width was almost independent of RH, whereas the
base length slightly decreased (Figure 3c,d).

For high humidity (RH > 60%), the base width decreased significantly with RH and
the domain length continued to decrease (Figure 3c,d); thus, the aspect ratio increased
significantly (Figure 3b).
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Figure 3. (a) PFM images of isolated domains for various RH at a voltage of −200 V. Dependence of
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Domain shape transformation with RH can be attributed to the formation and growth
of a water meniscus in the tip–surface contact [50]. The appearance of the small meniscus
at RH < 45% led to the delocalization of Eex.z and an increase in the domain width. The
continuous growth of the meniscus at a moderated RH improved the screening of Edep.z,
which led to the formation of a domain with a wide base and narrow tail. The decrease in
domain width at a high RH was attributed to the significant diminishing of Eex.z, due to
strong delocalization.

The domain growth towards the stripe electrode was studied for switching using
pulses with various voltages and durations at an RH of 30% (Figure 4a–d). The biased tip
was placed 4 µm from the grounded stripe electrode. The nonuniform domain contrast in
the PFM (Figure 4a,b) and ECM (Figure 4c,d) images allowed the local domain depth to be
qualitatively characterized and the domain growth to be restructured. The darker regions
correspond to the deeper domain.
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The wedge-like domains with CDWs started to grow towards the electrode. After the
domain had touched the electrode, the domain growth from the electrode towards the tip led
to the formation of “head-to-head” CDWs, thus creating a sand-glass-shaped domain. The
subsequent growth promoted its rapid transformation to the stripe domain with a neutral
domain wall. The obtained results allowed the transition between the main stages of the
domain evolution—from “forward growth” to “sideways growth”—to be observed [51].

3.2. Periodical Domain Structures

Arrays of isolated domains with various periods were created to investigate domain–
domain interactions. Domain length alternation in arrays with small periods had already
been demonstrated on polar and nonpolar cuts of bulk LN [52,53]. A decrease in the
period leads to intermittent quasiperiodic and chaotic behavior. This effect has never been
observed in Z-cut LNOI [33].

We obtained a uniform domain length for the entire range of periods from 4 to 0.3 µm
(Figure 5a–c). The width of the domain increased over the period, while the aspect ratio
essentially decreased from 25 to 7 (Figure 5e,f). The domain length increased linearly
with voltage (Figure 5g). The variation in domain lengths was obtained for the 300 nm
period, switched at voltages above −200 V (Figure 5d,g). It is necessary to point out that
the achieved domain length above 3 µm is sufficient for LN waveguides with a width of
around 1 µm.
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3.3. Self-Organized Domain Structures

The self-organized domain structures were formed during scanning with a biased tip
along the Y axis with a voltage of −175 V and scanning rate of 5 µm/s at various levels of
RH (Figure 6). The strongly pronounced dependence of the domain structure on RH was
revealed. Only a few isolated narrow domains appeared in dry nitrogen and at an RH of
60% (Figure 6a,c). Self-organized “comb-like” structures, consisting of narrow domains,
were formed at a humidity of around 25% (Figure 6b). A similar effect had been previously
obtained on nonpolar cuts of bulk LN [54].
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The effect of self-organization can be clearly observed in a histogram (Figure 7e) and
Poincaré plot, which represents the dependence of the length of each domain in the array on
the length of its neighbor (Figure 7f). An analysis of the Poincaré plot revealed the formation
of six separated clusters, corresponding to four groups of domains, which can also be clearly
distinguished in the histogram: L—large; M—medium; S—short; and T—tiny. The formation
of quasiperiodic alternations of domain length, such as four- (L-T-S-T- . . . ) (Figure 7b) and
eight-fold (L-T-S-T-M-T-S-T . . . ) period increases (Figure 7c), was observed. Arrays with
chaotic alternation were also obtained (Figure 7d).
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The self-organization was attributed to the electrostatic interaction between neighbor-
ing domains in the array, where large (L) or medium (M) domains suppressed the growth
of the neighboring domains and led to the formation of tiny (T) and small (S) domains.
It should be noted that only quadruple- and double-length periods had been previously
observed in the bulk LN [53]; the eight-fold increase in the periods was observed for the
first time in the current study.

The obtained knowledge is important for the future development of domain engineer-
ing methods in monocrystalline ferroelectric thin films on insulators. It forms the basis for
the implementation of periodical domain pattering in mass production by local switching
on X-cut thin films using lithographically produced electrodes with submicron periods.
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4. Conclusions

A comprehensive investigation of the features of domain growth during local switch-
ing in X-cut LNOI, using the biased tip of a scanning probe microscope, was performed.
The obtained results have been discussed in terms of the kinetic approach. The revealed
differences in domain growth in bulk LN and LNOI are attributed to the unusual screening
of the depolarization field, caused by the high bulk conductivity of LNOI. The obtained
significant influence of humidity on the shape and growth of isolated domains in LNOI is
attributed to the formation of the water meniscus.

The transition between the main stages of the domain evolution—“forward growth”
and “sideways growth”—was performed by local switching toward the stripe electrode
in LNOI. It was shown that after the domain had touched the electrode, the growth in the
opposite direction from the electrode toward the tip led to the formation of a sand-glass-
shaped domain. The subsequent domain growth promoted its rapid transformation to the
stripe domain with neutral walls.

It was shown that weak domain–domain interactions enabled the creation of periodical
domain structures with submicron periods in LNOI. Stable periodical domain structures
with periods down to 300 nm were created and characterized, which are essentially lower
than those achieved using lithographically produced electrodes [15,26,38].

Highly ordered comb-like domains of various alternating lengths, including four- and
eight-fold increases in periods, were produced using biased tip scanning along the Y axis.

The obtained knowledge is important for the future development of domain engineer-
ing methods in monocrystalline ferroelectric thin films on insulators. It forms the basis for
the implementation of periodical domain pattering by local switching on X-cut thin films
using lithographically produced electrodes with submicron periods.
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5. Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 2018,

26, 1547–1555. [CrossRef] [PubMed]
6. Saravi, S.; Pertsch, T.; Setzpfandt, F. Lithium Niobate on Insulator: An Emerging Platform for Integrated Quantum Photonics.

Adv. Opt. Mater. 2021, 9, 2100789. [CrossRef]
7. Hu, H.; Ricken, R.; Sohler, W. Lithium niobate photonic wires. Opt. Express 2009, 17, 24261–24268. [CrossRef]

http://doi.org/10.1002/lpor.201100035
http://doi.org/10.1002/lpor.201700256
http://doi.org/10.1063/1.1819527
http://doi.org/10.1364/OE.26.001547
http://www.ncbi.nlm.nih.gov/pubmed/29402028
http://doi.org/10.1002/adom.202100789
http://doi.org/10.1364/OE.17.024261


Crystals 2022, 12, 659 9 of 10

8. Volk, M.F.; Suntsov, S.; Rüter, C.E.; Kip, D. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond
blade dicing. Opt. Express 2016, 24, 1386–1391. [CrossRef]

9. Courjal, N.; Guichardaz, B.; Ulliac, G.; Rauch, J.-Y.; Sadani, B.; Lu, H.; Bernal, M.-P. High aspect ratio lithium niobate ridge
waveguides fabricated by optical grade dicing. J. Phys. D Appl. Phys. 2011, 44, 305101. [CrossRef]

10. Cai, L.; Wang, Y.; Hu, H. Low-loss waveguides in a single-crystal lithium niobate thin film. Opt. Lett. 2015, 40, 3013–3016.
[CrossRef]

11. Rüter, C.E.; Suntsov, S.; Kip, D.; Stone, G.; Dierolf, V.; Hu, H.; Sohler, W. Characterization of diced ridge waveguides in pure and
Er-doped lithium-niobate-on-insulator (LNOI) substrates. Opt. Compon. Mater. XI 2014, 8982, 89821G. [CrossRef]

12. Wang, M.K.; Li, J.H.; Chen, K.; Hu, Z. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber. Opt. Express 2020,
28, 21464. [CrossRef]

13. Yu, Z.; Sun, X. Acousto-optic modulation of photonic bound state in the continuum. Light. Sci. Appl. 2020, 9, 1–9. [CrossRef]
[PubMed]

14. Mu, B.; Wu, X.; Niu, Y.; Chen, Y.; Cai, X.; Gong, Y.; Xie, Z.; Hu, X.; Zhu, S. Locally periodically poled LNOI ridge waveguide for
second harmonic generation [Invited]. Chin. Opt. Lett. 2021, 19, 060007. [CrossRef]

15. Wang, C.; Langrock, C.; Marandi, A.; Jankowski, M.; Zhang, M.; Desiatov, B.; Fejer, M.M.; Lončar, M. Ultrahigh-efficiency
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