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Abstract: An effective free vibration optimization procedure in combination with the isogeometric
approach (IGA), particle swarm optimization (PSO) and an integrated global and local parameteriza-
tion is presented. The natural frequency of functionally graded (FG) plates is calculated by the IGA
based on the Bézier extraction of non-uniform rational B-splines (NURBS) with the cubic NURBS
basis function. The material composition is assumed to vary only in the thickness direction, and the
volumetric fraction is described by the NURBS basis function in light of the superior properties of
NURBS curves. The volume fractions of the control points are then optimized by the PSO. In most of
the previous work, the control points for the volume fraction are usually equally spaced, which is
incapable of identifying the optimal location of the graded zones in most cases. To overcome this
bottleneck, a novel local refinement strategy is proposed. The reliability and effectiveness of the
proposed approach are demonstrated through several numerical examples. It is interesting to observe
that the optimal results are sandwich or laminate plates, and few parameters are involved in the
integrated global and local parameterization.

Keywords: free vibration optimization; isogeometric analysis; Bézier extraction; functionally graded
plates; local refinement

1. Introduction

Functionally graded materials (FGMs) [1] are advanced composite materials composed
of two or more constituent phases with a smooth graded region. Inspired by the spatially
variable composition, the concept of designing a flexible graded pattern of material com-
positions is essential and booming. Since then, some researchers are devoted to deriving
maximum benefits from FGM structures via an optimal design. In this study, we focus on
improving the dynamic performance of the FGM plate via numerical modelling.

Before optimizing the FGMs, it is essential to simulate the dynamic response of the
FG plates. Obtaining the analytical solutions of the problems with general inhomogeneity
in general is difficult, and sometimes is impossible. The numerical techniques are more
effective as they are better suited to simulating complex models [2–10]. Hughes et al. [11]
presented the isogeometric analysis (IGA) to integrate the mesh of finite element method
(FEM) and the CAD model by incorporating the geometric basis into numerical analysis.
Besides the advantages of the high-fidelity of original geometry with arbitrary continu-
ity, much fewer degrees-of-freedom (DOFs) are involved than the regular FEM owing to
the faster convergence. The IGA has been extensively applied to different engineering
problems [12–17]. For composite structural optimization problems, Taheri et al. [18–20]
investigated the shape, material design, and topology optimization of functionally graded
structures. The IGA, in conjunction with the genetic algorithm, is used to design lami-
nated composite plates to achieve the maximum strengths [21]. The interfacial stresses are
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decreased via a NURBS based reinforcement distribution optimizer for reinforcing ingre-
dients [22]. An adaptive evolutionary optimization strategy minimized the mechanical
response of the FG plate under thermal loads via optimizing the material distribution based
on the IGA [23]. The variable-stiffness composite structures were tailored by Hao and his
cooperators [24,25]. These results have motivated the further investigation of the IGA into
the existing FEM code. Borden and his co-workers presented the Bézier extraction oper-
ator and isogeometric Bézier elements for non-uniform rational B-Spline(NURBS)-based
isogeometric analysis [26].

Another important issue on the optimization of the FGM is to define the volume
fraction profile with functions because it is intractable to pointwise generate the volume
fraction profile owing to a prohibitively computational cost. Some studies designed the
material distribution with the power law function [27–30]. In their work, the design
variables were the volume fractions indices or other related coefficients. The idea was
attractive for being easy to implement and computationally efficient with very few design
variables, but it may fail to create complicated material profiles and explore the possible
best performance due to the confinement of the optimization search space. On the other
hand, some node-based interpolation models were employed to generate the volume
fraction profile, which was defined with numerical interpolations via the volume fractions
at control points. Cho and Ha [31] used the piecewise bilinear interpolation to specify
the node volume fractions, which was discontinuous of the first derivative at grid lines,
and thus leading to creases in the volume fraction. Some researchers [32,33] suggested the
piecewise bicubic interpolation with a Hermite basis function to obtain smooth material
composition profiles. In their works, the physical constraints 0 ≤ V(z) ≤ 1 should be
checked in every iterative step in case the volume fraction is out of the bounds. Taheri
and Hassani [18,19] described the volume fraction distributions and shape via the NURBS
basis functions. In their works, the control points were designed. The NURBS has superior
properties in the description of the material distribution, because it is easy to guarantee
the physical constraints due to the strong convex hull property and is able to define the
complex material profiles with any desired order continuity. Do et al. [34] combined deep
learning and optimal algorithms to obtain the optimal material volumetric distribution of
the FG plate along the thickness direction.

In this work, we focus on the optimization of the FG plate where the material varies
along the thickness direction only. The IGA based on the Bézier extraction operator [26,35]
is applied to obtain the natural frequency of the FG plate. The numerical feasibility of
the Bézier extraction-based IGA for the FG plate in the free vibration problem will be
investigated. Different theories are used to study the dynamic response of the plate, such
as first-order shear deformation theory (FSDT) [36], second-order shear deformation plate
theory (SSDT) [37], third-order shear deformation plate theory (TSDT) [38], sinusoidal
shear deformation theory (SSDT) [39], and so on. Nevertheless, the influence of the plate
theory is negligible to the optimization. For simplicity, FSDT is adopted hereafter. Besides
the uniform control points in the IGA, another group of control points are distributed along
the thickness direction for the volumetric fraction optimization. The volume fractions at the
control points are optimized by a PSO. The NURBS is employed to model the distribution
of the constituent material. In most of the work, the control points are equally distributed
along the thickness direction. As a result, the optimal graded region depends on the control
points around, which sometimes is not flexible enough to get a better distribution. To
overcome this difficulty, a novel local refinement strategy is proposed, which could quickly
seek the optimal graded region with a permitted width. It is capable of describing different
variations with only very few control points.

The rest of the paper is organized as follows: Section 2 briefly presents some numerical
techniques involved in the free vibration analysis, including the Bézier extraction of NURBS
and isogeometric analysis Mindlin plate formulation. Section 3 establishes the mathematical
formulation for the optimization problems. Three numerical examples are provided in
Section 4. Finally, some conclusions are given in Section 5.
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2. Theoretical Formulation
2.1. Functionally Graded Plates

A metal-ceramic FG plate of thickness h in Figure 1 is considered. The bottom and
top faces of plate are assumed to be fully metal and ceramic, respectively, and the gradient
property varying along z-direction. Throughout the study, the Poisson’s ratio ν, Young’s
modulus E, and density ρ vary through the thickness as [18,40]

E(z) = Em + (Ec − Em)Vc(z) (1)

ρ(z) = ρm + (ρc − ρm)Vc(z) (2)

ν(z) = νm + (νc − νm)Vc(z) (3)

where Vc is the volume fraction of the ceramic phase, z is the thickness coordinate variable
with −h/2 ≤ z ≤ h/2, and subscripts c and m represent the ceramic and metal con-
stituents, respectively.
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2.2. NURBS Basis Functions

Before designing the volumetric fraction with any desired order continuity along the
thickness, the NURBS basis functions are used in the description of the volume fraction
distribution and approximation of the solutions. We give a concise introduction of the
NURBS basis functions. For details on NURBS, please refer to [41].

In 1D parametric space ξ ∈ [0, 1], a knot vector k(ξ) is a non-decreasing sequence of
real numbers as

k(ξ) =
{

ξ1 = 0, ξ2, . . . , ξi, . . . , ξn+p+1 = 1
}

(4)

where i is the knot index, ξi is the ith knot, n is the number of basis functions, and p is the
order of the polynomial. k(ξ) is called an open knot vector when its first and last knots
have multiplicity equal to p + 1. With a given knot vector, the ith B-spline basis function of
degree p are defined recursively as

Ni,0 =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

(5)

and for p ≥ 1

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (6)

Note that 0/0 is defined as 0 in the evaluation.
The NURBS basis function Ri,p(ξ) is constructed by a weighted average of the B-spline

basis functions as follows

Ri,p(ξ) =
Ni,p(ξ)wi

∑n
j=1 Nj,p(ξ)wj

(7)

where wi is the ith weight, the NURBS basis function is degenerate into B-spline basis
function when wi = 1.
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The bivariate NURBS basis function for a NURBS surface is given by

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Nj,q(η)wi,j

∑n
i=1 ∑m

j=1 Ni,p(ξ)Nj,q(η)wi,j
=

Ni,p(ξ)Nj,q(η)wi,j

W(ξ, η)
(8)

where wi,j represents the 2D weight; Nj,q(η) is the B-spline basis of order p defined on
the knot vector k(η), followed by recursive formulas in Equations (5) and (6); W(ξ, η) =

∑n
i=1 ∑m

j=1 Ni,p(ξ)Nj,q(η)wi,j is the weighted function for a NURBS surface.
By defining W as the diagonal matrix of weights for a NURBS surface,

W =


w1

w2
. . .

wn×m

 (9)

and let N be the vector of B-spline basis functions, then Equation (8) can be rewritten in
matrix form as

R(ξ, η) =
1

W(ξ, η)
WN (10)

2.3. Bézier Extraction of NURBS

In order to embed the IGA program into existing FEM code, the Bézier extraction operator
is adopted to construct B-spline/NURBS basis functions. The basic idea is to use Bézier
decomposition to map the B-spline/NURBS basis functions over the element in the form
of Bernstein polynomial basis defined on the Bézier element [26]. The B-spline/NURBS
basis functions usually have Cp− f continuous across the knots, where f is the multiplicity
of the knot. With a given B-spline/NURBS curve, the continuity of the basis functions can
be reduced by knot insertion and without altering the B-spline/NURBS curve. By this way,
Bézier decomposition creates C0 Bézier elements over each knot interval. In other words,
the B-spline/NURBS curve can be replaced by C0 Bézier curve and B-spline/NURBS basis
functions will be identical to the Bernstein polynomials of order p within each element and
only new control points are arisen. And the C0 Bézier elements are similar to the Lagrange
elements straightforwardly integrating into the existing FEM code [26].

Consider k(ξ) =
{

ξ1 = 0, ξ2, . . . , ξi, . . . , ξn+p+1 = 1
}

is the original knot vector, let us
insert a new knot ξ ∈ [ξk, ξk+1)(k > p) into the knot vector, the total number of the new

basis functions and control points is then reaches m = n + 1, and the new control points
−
Pi

can be obtained from the old control points Pi according to [26,35,41]

−
Pi =


P1 i = 1
αiPi + (1− αi) Pi−1 1 < i < m
Pn i = m

(11)

with

αi =


1 i ≤ k− p

ξ−ξi
ξi+p−ξi

k− p + 1 ≤ i ≤ k

0 i ≥ k + 1
(12)

It is worth noting that the same knot value may be inserted multiple times and it reduces
the continuity of the basis functions by one for each insertion. But, the continuity of the curve
or surface is preserved as the control variables in Equations (11) and (12) are chosen.

Based on [26,35,41], the relationship between new control points Pj+1 and the old con-
trol points Pj (P1

= P is the original) at the jth knot inserted can be written in matrix form

Pj+1
=
(

Cj
)T

Pj (13)
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where the Bézier extraction operator of the jth knot inserted is defined by

Cj =


α1 1− α2 0 · · · 0
0 α2 1− α3 0 · · · 0
...

. . .
...

0 · · · αn+j−1 1− αn+j

 (14)

By defining
{

ξ1, ξ2, · · · ξ j, · · · , ξm

}
as the set of inserted knots vector, the whole Bézier

extraction operator is obtained as

CT = (Cm)T
(

Cm−1
)T

. . .
(

C1
)T

(15)

With Bézier extraction, the relationship between new Bézier control points Pb and
original B-splines control points P is given as

Pb = CTP (16)

The B-spline curve is given by

X(ξ) = PTN(ξ) (17)

where N(ξ) is B-spline basis function. After inserting knots, the B-spline curve with Bézier
points is written as

X(ξ) =
(

Pb
)T

B(ξ) = PTCB(ξ) (18)

where B(ξ) is Bernstein polynomial basis function.
Normally, it is unnecessary to establish the global extraction operator. Instead, only the

local extraction operator of each element is needed. Therefore, from Equations (17) and (18),
it obtains

Ne(ξ) = CeBe(ξ) (19)

Equation (19) presents the relationship between the B-spline basis function and the
Bernstein polynomials through a Bézier extraction operator Ce where the superscript e
denotes the element number.

Using the tensor product operator, two-dimension Bernstein polynomials Ne(ξ, η) can
be expressed as

Ne(ξ, η) = Ce(ξ)⊗ Ce(η)Be(ξ, η) (20)

where Ce(ξ) and Ce(η) are the univariate element Bézier extractors, respectively, and B(ξ, η)
denote the bivariate Bernstein polynomial basis function.

Based on the Bézier extraction operator, the NURBS basis functions can be obtained

Re =
WeNe

We =
WeCeBe

We (21)

The relationship between Bézier control points Pb,e and NURBS control points Pe can
be written as [26,35,41]

Pb,e =
(

Wb,e
)−1

(Ce)TWePe (22)

with Wb,e defining the local Bézier weights, which is in diagonal matrix.
Based on Equations (10), (21) and (22), a NURBS surface is defined as

X = PTR = PT WCB
W

=

(
CTWP

)T
B

W
=

(
WbPb

)T
B

W
(23)
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Thus, based on the above equations, an NURBS curve or surface can be written
equivalently in terms of a set of Bézier elements through Bézier extraction operator.

2.4. Isogeometric Analysis Mindlin Plate Formulation

Based on the Reissner–Mindlin theory, the displacements u, v, and w at a point (x, y, z)
in the plate, see Figure 1, are expressed as [36,40]

u(x, y, z) = u0(x, y) + zβx(x, y)
v(x, y, z) = v0(x, y) + zβy(x, y)

w(x, y, z) = w0(x, y)
(24)

where u0, v0, w0 are the reference plane displacements components in the x, y, and z axis,
respectively. βx and βy are the transverse normal rotations in the xz- and yz-planes of
reference plane.

By making the usual small strain assumptions, the strain–displacement relations are
expressed in the following matrix form

ε =

{
εp
0

}
+

{
zεb
εs

}
(25)

The reference plane strains εp, the bending strains εb, and the shear strain εs in
Equation (25) are written as

εp =


u0,x
v0,y

u0,y + v0,x

, εb =


βx,x
βy,y

βx,y + βy,x

, εs =

{
βx + w0,x
βy + w0,y

}
(26)

where the subscript comma denotes the partial derivative with respect to the spatial
coordinate succeeding it. The constitutive relations are derived from Hook’s law as

σ = Dm(z)
(
εp − zεb

)
, τ = Ds(z)γ (27)

where σ = [σx σy τxy], τ = [τxz τyz] are the in-plane stress and shear stress respec-
tively, and material matrices Dm(z) and Ds(z) are given as

Dm(z) =
E(z)

1− v(z)2

 1 v(z) 0
v(z) 1 0

0 0 1−v(z)
2

, Ds(z) =
1
2

αE(z)
1 + v(z)

[
1 0
0 1

]
(28)

where α is the shear correction factor, and α = 5/6 is adopted in this study for simplicity [40].
In the parametric domain in the IGA framework, the finite element approximation

uses NURBS basis function. Thus, the generalized displacements in the reference plane are
approximated as follows

uh
0 = ∑NP

I=1 RIuI (29)

with
uh

0 =
[
uh

0 vh
0 wh βx βy

]T (30)

uI =
[
uI vI wI β Ix β Iy

]T (31)

where NP = (p + 1) (q + 1) is the number of the control points per element, and RI and uI denote
the shape function and the unknown displacement vector at Ith control point, respectively.

By substituting Equation (29) to (26), and we obtained

εp = ∑NP
I=1 Bp

I uI , εb = ∑NP
I=1 Bb

I uI , γ = ∑NP
I=1 Bs

IuI (32)
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with

Bp
I =

RI,x 0 0 0 0
0 RI,y 0 0 0

RI,y RI,x 0 0 0

, Bb
I =

0 0 0 RI,x 0
0 0 0 0 RI,y
0 0 0 RI,y RI,x

, Bs
I =

[
0 0 RI,x RI 0
0 0 RI,y 0 RI

]
(33)

For free vibration analysis, a weak form can be established as∫
Ω

δεTDεdΩ +
∫

Ω
δγTDsγdΩ =

∫
Ω

δuTm
..
udΩ (34)

where

ε =

[
εp
εb

]
, D =

[
Dm B
B Db

]
, Ds =

∫ h/2

−h/2
Ds(z)dz (35)

Dm =
∫ h/2

−h/2
Dm(z)dz, B =

∫ h/2

−h/2
zDm(z)dz, Db =

∫ h/2

−h/2
z2Dm(z)dz (36)

m =


I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

, (I0, I1, I2) =
∫ h/2

−h/2
ρ(z)

(
1, z, z2

)
dz (37)

By taking Equations (29)–(33) into (34), the formulation of the free vibration is recast as(
K−ω2M

)
u = 0 (38)

where

K =
∫

Ω

{
Bp

Bb

}T[Dm B
B Db

]{
Bp

Bb

}
dΩ +

∫
Ω
(Bs)TDsBsdΩ (39)

M =
∫

Ω
NTmNdΩ (40)

NI =


RI 0 0 0 0
0 RI 0 0 0
0 0 RI 0 0
0 0 0 RI 0
0 0 0 0 RI

 (41)

where ω is the natural frequency.

3. Volume Fraction Optimization by Particle Swarm Optimization
3.1. Formulation of the Optimization Problem

The material distribution can be optimized by designing the volume fractions profile
via the volume fraction of the control points. A constrained optimization problem is
established as

Find Vi, i = 1, 2, . . . , N
Minimize f (Vi)
Subjectto gj(Vi) ≤ 0, j = 1, 2, · · · , J

hk(Vi) = 0, k = 1, 2, · · · , K
0 ≤ Vi ≤ 1

(42)

where Vi is the volume fractions of the ceramic on the ith control points. N is the number
of the control points. f (Vi, ωi) is the objective function, gj(Vi, ωi) is the jth inequality
constraint, and hk(Vi, ωi) is the kth equality constraint. 0 ≤ Vi ≤ 1 is the physical bound
for the volume fraction. The specific forms of the objective function and constraint will be
detailed in the numerical experiments.
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3.2. Volume Fraction Distribution Parameterization

In this study, the volume fraction is obtained as a NURBS curve with a weighted linear
combination of the NURBS basis functions as

V(u) =
N

∑
i=0

Ri,p(u)Vi, 0 ≤ V ≤ 1 (43)

where Vi is the volume fraction of the control points to generate the volume fraction curve.
The NURBS can represent complex shapes with a few control points. This property makes
the NURBS curves promising to achieve a more complex desired profile of the material
distribution by determining control points. The control weights of the material profile are
set to one, so the NURBS basis function is degenerated into B-spline basis function for the
volume fraction description.

With the proposed Equation (43), it is easy to restrict the volume fraction within the
physical upper and lower bounds; namely, 0 ≤ V(u) ≤ 1 by setting design variables Vi in
the interval [0, 1]. This advantage results from the strong convex hull property that the
curve is contained in the convex hull of its control polygon [41]. Thus, it is convenient to
apply the physical constraints without any extra computations. Furthermore, it is easy
to access any desired order continuity with selecting the degree p of the basis function.
The continuity of the volumetric profile across the control points is determined by the
continuity of the basis across the knot span. Nevertheless, more control points are required
for higher order continuity. In this study, p = 3 is selected. In principle, the present technique
circumvents the difficulties of existing methods in the volume fraction description.

3.3. Particle Swarm Optimization

Classical gradient-based algorithms compute the sensitivity of the objective functions
to enhance their performance in searching for optimal solutions. Nevertheless, it may
encounter the difficulty of getting stuck in a local optimum for non-convex problems.
Sufficiently smooth is required to guarantee the existence of its first (and often second)
derivatives. Metaheuristic algorithms are ideal candidates at finding global solutions in the
complexity and non-convex problems. In this study, we employ PSO.

PSO is a population approach with stochastic perturbations, which is developed
by Kennedy and Eberhart [42]. It is inspired by the movement of natural swarms and
flocks such as fish and bird schooling in nature. The PSO is becoming powerful and
increasingly popular.

In the PSO, the design variables are set as the coordinates x to describe the spatial
position in the search space, and thus a group of the design variables are considered as
an N-dimensional particle. In the beginning, a number of entities are placed in the search
space. The objective function at the current location is evaluated at each particle. Then
the particle is attracted to the current global best location and its own best location in the
history. At the same time, the movement is stochastically oscillated on the way to the best
locations. The particle’s location is iteratively updated until converged. The particle swarm
optimization contains the following steps:

1. Initialized population (t = 0), 100 in this study, of particles with random positions
→
x

0
i

and velocities
→
v

0
i in the search space;

2. Evaluate the objective function for each particle, and compare the particle’s fitness

function to obtain the global best fitness and its location
→
p , and identify the best

location
→
g in the neighborhood;

3. Update the velocity and position of the particle according to
→
v

t+1
i = w

→
v

t
i + α

→
u 1 � (

→
p −→x

t
i) + β

→
u 2 � (

→
g −→x

t
i)

→
x

t+1
i =

→
x

t
i +
→
v

t+1
i
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where w is inertia weight, and is set as 0.9, α, β are adjustment weights, set as 1.49 [42]
→
u 1,
→
u 2 are two random vectors, and each entry taking the values between 0 and 1. �

is the entry-wise product, that is [a� b]ij = aijbij.
4. Enforce the bounds. If any component of x is outside a bound, set it equal to

that bound.
5. Set t = t + 1, and repeat steps 2–4 until either a maximum number of generations has

been achieved, or a satisfactory convergence has been reached for the population.

The selection of initial population is important to achieve fast convergence and to
prevent local minima. It is essential to allocate the initial particles to fill the design space.
One of the most popular techniques for uniform distribution is a Latin hypercube design.
It is inspected to possess the highest overall sparseness. The distribution is improved by
maximizing the minimum distance between points (Figure 2).
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generator, (b) Latin hypercube, and (c) Latin hypercube improved by maximizing the minimum
distance between points.

The penalty function method is involved to handle the constraints. In this method,
problem (42) is reconstructed as

Find Vi, i = 1, 2, . . . , N

Minimize f (Vi) + c

(
∑

j=1:J
max(0, gj(Vi)) + ∑

k=1:K
|hk(Vi)|

)
(44)

c is the penalty parameter. In this work, c is selected as 100.

3.4. Local Refinement for Graded Regions

It is possible to yield the laminate-like results after the optimization. Between the
constitutional materials, there is a graded region where one material smoothly transits
to another in the FGMs. The thickness of the transition zone may influence optimal
results. Therefore, we develop a strategy to identify the graded region. The following steps
are proposed:

1. Define a sparse knot vector for the control points and initialize their volume fractions;
2. Optimize the volume fraction with the PSO;
3. Refine the optimal results:

a) If |Vi −Vi+1| > 0.9, then insert four data points for volume fraction description be-
tween (zi, Vi) and (zi+1, Vi+1), i.e., (zi + δ, Vi), (zi + δ + d, Vi), (zi + δ + 2d, Vi+1) and
(zi + δ + 3d, Vi+1), where δ and d are used to describe the location and the thickness
of the transition zone;
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b) If |Vi −Vi+1| < 0.9 and |Vi+1 −Vi+2| < 0.9 and |Vi −Vi+2| > 0.9, then delta data
(zi+1, Vi+1) and insert four points between (zi, Vi) and (zi+2, Vi+2), i.e., (zi + δ, Vi),
(zi + δ + d, Vi), (zi + δ + 2d, Vi+2) and (zi + δ + 3d, Vi+2);

4. Optimize parameters δ and d to update the volume fraction curves until converged.

A detailed numerical description of this method can be found in Section 4.3.

4. Results and Discussions

In this section, some examples are employed to illustrate the feasibility of the present
method in the design of the FG plate in the free vibration problem.

A FG square plate is considered for all cases in Figure 1. The dimensions of the
plate are a = b = 1 m. The FG plate is made up of metal (Al) and ceramic (Al2O3). The
material properties of the constituents are given in Table 1. The natural frequency involved
in this study is obtained with the IGA simulation by the Bézier extraction of NURBS,
based on the Mindlin theory. The plane is modeled by a net of 18 × 18 control points and
15 × 15 elements by using the cubic NURBS basis function in Figure 3. All dimensionless
frequencies are defined by ω∗ = ωπ2(a2/h

)√
ρm/Em.

Table 1. Material properties for Al and Al2O3 [43].

Material Property Al Al2O3

E(GPa) 70 380
ν

ρ (kg/m3)
0.3

2707
0.25
3800
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In the following examples, the constraint boundaries are obtained by the Mindlin
theory with the power-law FG plate. The volume fraction Vc of the ceramic in the FG plate
with the power-law distribution is

Vc =

(
z
h
+

1
2

)n
(45)

where n is the volume fraction exponent, also known as the gradient index. Thus, the
volume fraction of metal Vm is Vm = 1−Vc. In optimization problems, volumetric fractions
are parameterized by Equation (43) with cubic NURBS where control weights are set to one.



Crystals 2022, 12, 830 11 of 21

4.1. IGA Simulation by Bézier Extraction of NURBS

The accuracy of the IGA simulation by the Bézier extraction of NURBS is investigated
via an Al/Al2O3 square thin plate with a length–thickness ratio of a/h = 100 under different
boundary conditions and gradient indices are considered. Table 2 compares the first
five mode normalized natural frequencies obtained with different methods. The results
obtained based on the FSDT via different methods are in good agreement with each other.
If fewer constraints are added to the boundary, changing from CCCC to SCSC, SSSS, and
SFSF, the natural frequency gradually decreases. The magnitude of the natural frequency
decreases with an increasing gradient index. It can be explained by the fact that as the
gradient index increases, the volume fraction of the ceramic is lower, and the plate has
a lower stiffness. It should be noted that the IGA with the Bézier extraction of NURBS
by using the cubic NURBS basis function eliminates the shear locking phenomena in the
thin plate.

It is obvious that the distribution of the volumetric fraction will influence the natural
frequency of an FG plate. In the following part, the volumetric fraction distribution will
be optimized to explore the dynamic performance of an FG plate, where the volumetric
fraction is parameterized by Equation (43) with control weights of the material profile set
to one.

4.2. Maximize the Difference between Consecutive Frequencies

In order to avoid the resonance in a certain frequency band, it is required to increase the
difference of two consecutive frequencies. In this section, we consider a natural frequency
optimization problem to maximize the frequency distance between the first two natural
frequencies of the plate.

A simply supported FGM square plate is considered. The length–thickness ratio is
a/h = 20. Both top and bottom surfaces are ceramic. Eleven evenly distributed control points
are located in the thickness direction to define the volume fraction Vc of the ceramic by
Equation (43). Then the optimization problem is stated as

Find Vi, i = 2, 3, . . . , 10
minimize f (Vi) = ω∗1 −ω∗2

Subjectto g1 =
∫ h/2
−h/2 [ρcVc+ρm(1−Vc)]dz

hρc
−m0 ≤ 0

0 ≤ Vi ≤ 1, V1 = 1, V11 = 1.

(46)

where the constraint boundary m0 =
∫ h/2
−h/2 [ρcVc+ρm(1−Vc)]dz

hρc
is the dimensionless mass ob-

tained from the power-law FG plate with different power-law indices as shown in Table 3.
The first two natural frequencies of the power-law FG plate ω∗r1, ω∗r2 are listed in Table 3 as
a reference to illustrate the effectiveness of the optimization process.

In this case, three optimization algorithms, that is the PSO, the genetic algorithm (GA),
and the pattern search algorithm (PS), are performed to address this problem. The GA
imitates the evolution of a creature and is based on the mechanism of natural genetics,
which combines a ‘survival of the fittest’ mentality with a structured, yet random, exchange
of information in order to explore the search space. The PS starts with a base point, and
evaluates the objective function in a stencil-based fashion determined by a set of directions
to search a descent direction until converged. The swarm size of 100 is used in the PSO.
The population size of the GA is 100, as is the PSO. The tolerance of mesh size in the PS is
1 × 10−6.
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Table 2. First five normalized natural frequencies of Al/Al2O3 thin plate with various boundary
conditions and gradient indices.

n Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

(a) SFSF

0

IGA with Bézier extraction
of NURBS 56.5512 94.6494 215.3262 228.5588 274.1382

S-FSDT-based IGA [40] 56.5584 94.7388 215.5711 228.5829 274.2876
Zienkiewicz [44] 56.4791 94.7141 215.6299 - -

0.5

IGA with Bézier extraction
of NURBS 47.8860 80.1536 182.3564 193.5485 232.1575

S-FSDT-based IGA [40] 47.8913 80.2210 182.5386 193.5617 232.2649
Zienkiewicz [44] 47.7452 80.1576 182.4411 - -

1

IGA with Bézier extraction
of NURBS 43.1501 72.2290 164.329 174.4098 209.205

S-FSDT-based IGA [40] 43.1544 72.2861 164.4815 174.4179 209.2924
Zienkiewicz [44] 43.0872 72.2001 164.3911 - -

2

IGA with Bézier extraction
of NURBS 39.2307 65.6675 149.3978 158.565 190.1972

S-FSDT-based IGA [40] 39.2347 65.7197 149.5365 158.5722 190.2767
Zienkiewicz [44] 39.1666 65.6400 149.0583 - -

(b) SSSS

0

IGA with Bézier extraction
of NURBS 115.8928 289.59 289.59 463.0858 578.8734

S-FSDT-based IGA [40] 115.8926 289.5806 289.5806 463.0741 578.7215
Zienkiewicz [44] 115.8695 289.7708 - 463.4781 -

0.5

IGA with Bézier extraction
of NURBS 98.1350 245.23 245.23 392.1661 490.2589

S-FSDT-based IGA [40] 98.1343 245.2169 245.2169 392.1448 490.0963
Zienkiewicz [44] 98.0136 245.3251 - 392.4425 -

1

IGA with Bézier extraction
of NURBS 88.4292 220.9798 220.9798 353.3897 441.7981

S-FSDT-based IGA [40] 88.428 220.9643 220.9643 353.3613 441.6348
Zienkiewicz [44] 88.3093 221.0643 - 353.6252 -

2

IGA with Bézier extraction
of NURBS 80.3968 200.9035 200.9035 321.2784 401.6464

S-FSDT-based IGA [40] 80.3953 200.8879 200.8879 321.2475 401.5008
Zienkiewicz [44] 80.3517 200.8793 - 321.4069 -

(c) SCSC

0

IGA with Bézier extraction
of NURBS 169.8842 321.1324 406.4732 554.2942 599.3743

S-FSDT-based IGA [40] 169.9230 321.1937 406.5707 554.5021 599.3170
Zienkiewicz [44] 170.0196 321.4069 - 555.2809 -

0.5

IGA with Bézier extraction
of NURBS 143.8626 271.9523 344.2506 469.4564 507.6351

S-FSDT-based IGA [40] 143.8904 271.9916 344.3090 469.5928 507.5430
Zienkiewicz [44] 143.8179 272.1090 - 470.0770 -

1

IGA with Bézier extraction
of NURBS 129.6378 245.0642 310.2251 423.0577 457.4619

S-FSDT-based IGA [40] 129.6605 245.0927 310.2664 423.1599 457.3585
Zienkiewicz [44] 129.6496 245.1310 - 423.6904 -

2

IGA with Bézier extraction
of NURBS 117.8613 222.7987 282.0365 384.6108 415.8853

S-FSDT-based IGA [40] 117.8818 222.8238 282.0750 384.7018 415.7952
Zienkiewicz [44] 117.8104 222.8111 - 385.0672 -

(d) CCCC

0

IGA with Bézier extraction
of NURBS 211.1102 430.2397 430.2397 633.8258 770.8743

S-FSDT-based IGA [40] 211.1468 430.3633 430.3633 634.1625 770.8950
Difference 0.0173% 0.0287% 0.0287% 0.0531% 0.0027%

0.5

IGA with Bézier extraction
of NURBS 178.7791 364.3864 364.3864 536.8548 653.0164

S-FSDT-based IGA [40] 178.8047 364.4639 364.4639 537.0816 652.9193
Difference 0.0143% 0.0213% 0.0213% 0.0422% 0.0149%

1

IGA with Bézier extraction
of NURBS 161.1039 328.3736 328.3736 483.8103 588.5278

S-FSDT-based IGA [40] 161.1242 328.4308 328.4308 483.9866 588.3962
Difference 0.0126% 0.0174% 0.0174% 0.0364% 0.0224%

2

IGA with Bézier extraction
of NURBS 146.4685 298.5351 298.5351 439.8380 535.0256

S-FSDT-based IGA [40] 146.4868 298.5884 298.5884 439.9988 534.9293
Difference 0.0125% 0.0179% 0.0179% 0.0365% 0.0180%
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Table 3. The frequency for the simply supported FGM plate with a/h = 20.

Power-Law Index
(n)

¯
m0 ω*

r1 ω*
r2 ω*

r2−ω*
r1

1 0.8562 87.75 216.80 129.05
2 0.8082 79.76 196.98 117.22
5 0.7603 75.52 186.17 110.65

The computed optimal results of the PS, GA, and PSO are tabulated in Table 4, where
ω∗1 and ω∗2 are the first two natural frequencies of the optimal FG plate. The iteration history
of the objective function is demonstrated in Figure 4. It should be noticed that the first
several iterations are ignored for the reason that the value of the reconstructed objective
function from Equation (44) is larger than 0. From Table 4 and Figure 5, it is observed that
the PSO and GA offer better results, and the PS is getting stuck in the local optimum and
cannot improve the results. On the other side, the PSO converges in less than 45 iterations,
much less than the GA in more than 180 iterations and the PSO in more than 100 iterations.
It can be observed that the GA fails to converge in 200 iterations for n = 2 and 5. Since
the difference of the constraint boundary, the numbers of iterations are different for three
optimization algorithms. The PS cannot obtain the best solution, and the PSO and the GA
with the same population size consume the same CPU time in each iteration. We conclude
that the PSO performs best among the three algorithms.

Table 4. Optimal results of GA, PSO, and PS.

PSO GA PS

n ω*
1 ω*

2 ω*
2−ω*

1 ω*
1 ω*

2 ω*
2−ω*

1 ω*
1 ω*

2 ω*
2−ω*

1

1 115.80 284.33 168.52 115.51 283.64 168.12 110.81 272.42 161.61
2
5

108.45
92.64

265.98
227.31

157.53
134.67

106.90
91.66

262.30
224.99

155.40
133.32

101.26
90.42

248.88
222.05

147.62
131.63
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Figure 5. Volume fraction distribution for different mass constraints with different index: (a) n = 1;
(b) n = 2; (c) n = 5.

The volume distributions and control points of the optimal results along the thickness
are plotted in Figure 5. From Figure 5, most of the volume fractions on the control points are
on the constraint boundary in the PSO results. The optimized plate are sandwich-like plates
with two transition zones at the top and bottom surface, in which the material distribution
is symmetric with respect to the reference plane of the plate. The stiffer and heavier phase is
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mainly distributed in the vicinity of the surface of the plate, while most of the part is metal
in the region near the reference plane. As the constraint dimensionless mass is lighter, the
transition region is thinner. Furthermore, the difference of the first two natural frequencies
of the optimized FG plate is 30% more than that of the corresponding difference of the
power-law FG plate, except the result with n = 5, which is only 21% more.

Notwithstanding with the same fraction of the materials, it is promising to improve
the dynamic performance of the composites by designing its material distribution. We
validate the feasibility of the proposed method, and the PSO produces the best results
among the three algorithms. Nevertheless, it is observed that there are two graded regions
in the optimized volumetric fraction distributions, which are determined by the distance of
the adjacent control points. If we can further refine the transition zone, better results may
be obtained.

4.3. Minimize Mass

The mass of the plate is minimized with the frequency constrained. Both top and
bottom surfaces are ceramic. The length–thickness ratio a/h = 20, and 7 evenly distributed
control points are located in the thickness direction to define the volume fraction. Different
boundary conditions are investigated. The optimization problem is stated as

Find Vi, i = 2, . . . , 6

minimize m(Vi) =
∫ h/2
−h/2 [ρcVc+ρm(1−Vc)]dz

hρc

Subjectto g1 = ω∗r −ω∗ ≤ 0
0 ≤ Vi ≤ 1, V1 = 1; V7 = 1

(47)

where the constraint ω∗r is the fundamental frequency of the power-law FG plate with
power-law index n = 1 under different boundary conditions and listed in Table 5. The
fundamental frequency of the optimal FGM should be more than the reference fundamental
frequency ω∗r as shown in g1. In Table 5, mpFGM and mFGM are the dimensionless mass of
the power-law (n = 1) and the optimum FG plates, respectively. It should be noted that
the dimensionless mass of the monolithic metal is ρm/ρc = 0.7124. The dimensionless mass
of power-law FG plate is mpFGM = ρc + ρm/2ρc = 0.8562. Thus, the dimensionless mass of
the optimal FG plate is bounded by (0.7124, 0.8562). It is worth noting that the maximum
difference of the upper and lower bound is merely 20%.

Table 5. The frequency of the power-law (n = 1) and optimum FG plates under different bound-
ary conditions.

B.C. ω*
r mpFGM mFGM Mass Decrease

SFSF 42.94 0.8562 0.7739 9.61%
SSSS
SCSC
CCCC

87.75
127.24
157.35

0.8562
0.8562
0.8562

0.7739
0.7739
0.7739

9.61%
9.61%
9.61%

The optimal results and volume fraction distributions are given in Table 5 and Figure 6,
respectively. Figure 7 displays the iteration history. It is interesting to note that the optimal
results with respect to different boundary conditions are identical. The optimal control
points are distributed on the constrained boundary. The objective function is to minimize
the mass of the plate, theoretically speaking that is, to reduce the volumetric fraction of
the ceramic phase. Most of the FG plate consists of the lighter and slender phase, metal,
mainly distributed near the reference plane, while the heavier and stiffer phase, ceramic,
is in the graded regions near the top and bottom surfaces. The dimensionless mass of the
optimized FG plate is around 0.7739, 9.61% lighter than the power-law FGM plate. The
constituents near the top and bottom play a predominant role in the determination of the
natural frequency of the FG plate.
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There are two transition zones near the top and bottom surfaces. The width of the
transition zone is determined by the distance of the adjacent pre-set control points. It is not
applicable if the width is smaller than the distance but to uniformly refine the number of the
control points. The rising number of design variables will bring more computational costs.

To efficiently determine the local graded region, we devise a local refinement strategy.
Thanks to the constituent volume distributions for different boundary conditions that are
in coincidence with each other, we choose a clamped plate to illustrate the strategy.

As shown in Figure 6, the transition zones lie between the first and last two control
points. We, respectively, insert four control points in the regions (−h/2,−h/3) and (h/3, h/2)
with four new parameters δ1, d1, δ2, and d2, for example, (−h/2+ δ1, 1),(−h/2+ δ1 + d1, 1),
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(−h/2+ δ1 + 2d1, 1), and (−5h/12+ δ1 + 3d1, 1) in region [−h/2,−h/3]. Then we establish
another optimization problem as:

Find δi, di, i = 1, 2

minimize m(Vc(δi, di)) =
∫ h/2
−h/2 [ρcVc+ρm(1−Vc)]dz

hρc

Subjectto g1 = ω∗r −ω∗ ≤ 0
gi+1 = δi + 3di ≤ h/6, i = 1, 2
h/40 ≤ δi, di ≤ h/6, i = 1, 2

(48)

The optimal parameters are tabulated in Table 6. The results and volume fraction
distributions of the locally optimized FG plate are shown in Table 7 and Figure 8. The
iteration history of the solution of the problem (48) is displayed in Figure 9. The parameter
to describe the thickness of the transition zone is the lower bound h/40, and the width of the
refined transition zone is much smaller than the one without refinement. The dimensionless
mass of locally optimized FGM is 0.7486, 12.57% lighter than the power-law FGM plate,
and 3% lighter than results without the local refinement. Nearly a 3% improvement can be
seen from Table 7, which is nearly 30% of the optimum mass without local refinement.

Table 6. Optimal parameters for local refinement.

Parameter Value Parameter Value

δ1 0.00125000 h/40 d1 0.00125000 h/40
δ2 0.00332315 h/15.05 d2 0.00125000 h/40

Table 7. Mass for optimum FG plates with and without local refinement.

Local Refinement mpFGM mFGM Mass Decrease

Without 0.8562 0.7739 9.61%
With 0.8562 0.7484 12.59%
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4.4. Maximize Natural Frequency

We consider the FG plate optimization problem of volume fraction distribution to
maximize the fundamental natural frequency. A simply supported FG square plate is
considered. The length–thickness ratio of a/h = 20. The bottom surface is metal and the top
is ceramic.

In the first step, we set nine evenly distributed control points located in the thickness
direction to define the volume fractions. The optimization problem is stated as

Find Vi, i = 2, . . . , 8
maximize f (Vi) = ω∗

Subjectto g1 =
∫ h/2
−h/2 [ρcVc+ρm(1−Vc)]dz

hρc
−m0 ≤ 0

0 ≤ Vi ≤ 1, V1 = 0, V9 = 1

(49)

where Vi is the volume fraction of the ceramic on the ith control point, m is the dimensionless

mass and is defined as m =
∫ h/2
−h/2 [ρcVc+ρm(1−Vc)]dz

hρc
. From the power-law distribution with

the volume fraction exponent n = 1 (linear distribution), we have m0 = ρc + ρm/2ρc = 0.8562.
Its fundamental natural frequency ω∗r is 87.75. The optimal frequency and volume fraction
distribution are given in Table 8 and Figure 10.

Table 8. Optimum FG plates with and without local refinement.

Local Refinement ω*
r ω* Frequency Increase

Without 87.75 106.63 21.51%
With 87.75 112.38 28.07%
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Figure 10. Volume fraction distribution for optimization with and without local refinement.

The metallic phase has a lower stiffness compared to the ceramic one. Thus, increasing
the amount of the ceramic phase may increase the natural frequencies. In this case, a
maximum natural frequency is demanded with the constrained mass. Thus, theoretically
speaking, the best result will be achieved in the case that the volume fraction of ceramic is
close to the maximum value, i.e., 50% of the plate in terms of the constraint g1 ≤ m0. The
fact is confirmed by Figure 10. The optimization increases the dimensionless fundamental
natural frequency to 106.63 by 21.51%. In Figure 10, we notice there are three graded
zones, i.e., (−h/2, −3h/8), (−h/4, −h/8), and (h/8, 3h/8). Therefore, we insert four extra
control points in the each region to refine the graded zone, and establish the optimization
problems as

Find δi, di, i = 1, 2, 3
minimize f ((Vc(δi, di)) = ω∗

Subjectto g1 =
∫ h/2
−h/2 [ρcVc+ρm(1−Vc)]dz

hρc
−m0 ≤ 0

gi+1 = δi + 3di ≤ h/8, i = 1, 2, 3
h/60 ≤ δi, di ≤ h/8, i = 1, 2, 3

(50)
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The refined results are shown in Tables 8 and 9, and Figure 10. Figure 11 displays the
iteration history of the optimization with and without local refinement. Twelve control
points are added to the original control points with six new parameters to refine the transi-
tion zones. A 7% improvement can be seen after the local improvement. It is interesting to
notice that the thickness of the graded zone is close to the lower bound of the variable, and
a laminate plate with graded zones is obtained.

Table 9. Frequency for optimum FG plates with and without local refinement.

Parameter Value Parameter Value

δ1 0.000833333 h/60 d1 0.000833333 h/60
δ2 0.000833666 h/59.98 d2 0.000833333 h/60
δ3 0.00490544 h/10.19 d3 0.0008377591 h/59.68
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On the other side, 59 design variables are required in the optimization without local
refinement to obtain the same results. If the lower bound is thinner, more design variable
is demanded for optimization without the local refinement, while the local refinement
technique is independent from the lower bound.

5. Conclusions

This paper focuses on improving the dynamic performance of metal/ceramic FG
plates through optimizing the volumetric distributions along the thickness. An optimiza-
tion procedure is proposed to search the optimal layout of the composition based on the
PSO, IGA with the Bézier extraction of NURBS, and the Mindlin theory. The volume
fraction profile of ceramic is parameterized by a NURBS curve whose control points can
be optimized as design variables. Furthermore, a local refinement technique has been
presented to determine the width and location of the graded zone. On the basis of the
present simulations, the following conclusions are drawn:

• Despite the C0-continuous on the element boundaries in IGA based on the Bézier
extraction of NURBS, no shear locking phenomena are observed in the power FG
square thin plate with a length–thickness ratio of a/h = 100 under different boundary
conditions and gradient indices. Furthermore, the IGA based on the Bézier extraction
of NURBS is ready to be embedded in existing FEM codes. As a result, this work is
ready to be extended to different optimization problems;

• Since the PS get stuck in the local optimum and cannot obtain the best solution, and the
PSO and GA have the same population size, it is concluded that the PSO moves fast
towards the optimal solutions, and performs best in comparison with the GA and PS;

• An appropriate distribution of the material constituents can effectively improve the
dynamic performance of FG plates. In this study, the performance of the optimal FG
plate is presented in comparison with the power-law FG plate, and a great improve-
ment can be observed. Nevertheless, the much thinner graded region may make the
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FG plate more difficult to fabricate. In this case, the thickness constraint, such as h/40
in Equation (48) and h/60 in Equation (50), can be adapted to meet the level of the
manufacturability while maximizing the mechanical performance of the FG plate.

• The local refinement strategy with two parameters is found to be very effective in
determining the location and width of graded zones and searching for local optimal
solutions. The optimal plates with the local refinement perform better than plates
without the local refinement;

• The optimal volume fraction of the FG plate represents a sandwich or laminate plate
with graded and homogeneous zones. The presented method can obtain the layers of
an optimal laminate plate and locate the FG transition zone.
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