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Abstract: In this paper, we give an simple but approximate yield surface for single FCC crystals in
Hill’s criterion form by Schmid’s law and nonlinear optimization theory. Assuming that all FCC
crystallites in a polycrystal have the same (current) critical resolved shear stress τc for slip, we derive
two closed but approximate yield functions through the orientational averaging of all FCC crystallites’
yield surfaces in the polycrystal. The effect of crystallography on the two yield functions are described
by the orientation distribution function.
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1. Introduction

The studies of plasticity on polycrystals may be divided into two classes: the mathemat-
ical theory of plasticity and physical theory of plasticity [1–4]. The mathematical approach
of plasticity is a formalization of known experimental results and does not penetrate deeply
into the physical process of plastic yielding. An alternative approach to the mathematical
theory of plasticity is the physical approach of plasticity. A polycrystalline material is an
aggregate of tiny crystallites separated by grain boundaries. The microstructure of the
polycrystal includes grain orientations and the grain boundary structure. Plastic properties
of the polycrystal are related to slip mechanisms of crystallites and the microstructure of
the polycrystal.

In order to study the properties of the polycrystal, we take a representative volume
element (RVE) from the polycrystal. Although the volume of the RVE is small, the RVE
contains information of the crystallographic texture on the polycrystal. The earlier study
of polycrystalline plasticity was conducted by Sachs [5] and Taylor [6]. Sachs assumed
that all crystallites in a RVE have the same stress. Taylor assumed that all crystallites in
a RVE experience the same deformation. Bishop and Hill [7,8] adopted Taylor’s model
to calculate a yield function for an isotropic aggregate of cubic crystallites. Let τc denote
a critical resolved shear stress. For an isotropic aggregate of FCC (face centered cubic)
crystallites, assuming that all slip systems of cubic crystallites in a polycrystal have the same
(current) critical resolved shear stress, the uniaxial tensile yield stresses should be 2.238τc
under Sachs’ model and 3.06τc under Taylor’s model [9]. Maniatty et al. [10] employed
the isotropic plasticity equivalent method, in which the actual stress tensor acting on an
anisotropic material is transformed into a new stress tensor acting on an “isotropic plasticity
equivalent” material, for obtaining an anisotropic yield function. Houtte [11] presented a
method of obtaining the yield locus of textured polycrystals by constructing a data bank of
the Taylor factors. Both Maniatty et al. and Houtte did not give closed expressions of yield
functions with the effect of the texture coefficients.
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The micromechanics of polycrystals is interesting only because one can measure the
orientations of crystallites by orientation imaging microscopy or by X-ray diffraction. As we
know, using the same manufacturing procedure, one can never make two polycrystalline
samples with identical crystalline orientations. One can only make samples which seem
macroscopically identical. Since the statistical information on the microstructure of a
polycrystal can be described mathematically by the orientation distribution function (ODF)
and since the plastic deformation of polycrystals involves slips inside crystallites, we will
develop a statistical yield function with the effects of the orientation distribution function
(ODF) and the the critical resolved shear stress τc of crystallites.

In this paper, we provide a simple method to obtain two closed but approximate yield
functions with the effect of the texture coefficients for the RVE, where the volume average
(i.e., orientational averaging) of all crystallites’ yield surfaces is taken as a (macroscopic)
yield function of the RVE. Using the physical approach to FCC crystallites, we derive a
yield surface of single FCC crystals in Hill’s criterion form by Schmid’s law and nonlinear
optimization theory, give a plastic anisotropy tensor M(R) of FCC crystallites with orienta-
tion R, and obtain the volume average of all crystallites’ yield surfaces in the RVE to obtain
two closed but approximate yield functions for the RVE. The two yield functions are based
on the assumption that all crystallites in the RVE have the same (current) critical resolved
shear stress τc for slip. The effect of crystallography in the two yield functions is described
by the texture coefficients. The first yield function is based on Sachs’ model. The second
yield function is based on the assumption that the effect of the ODF on the perturbation
stress ∆σij is, up to the terms, linear in the texture coefficients. Man [12–14] found that for
orthorhombic aggregates of cubic crystallites, a macroscopic yield function of the RVE, up
to terms, is linear in the texture coefficients.Our two yield functions are different to Man’s
yield function [12,13] in three aspects: (1) the two yield functions are for an anisotropic
aggregate of cubic crystallites, but Man’s yield function is for an orthorhombic aggregate of
cubic crystallites; (2) we can determine the relations between two material parameters and
the (current) critical resolved shear stress τc through some physical assumptions, but Man’s
yield function contains two unspecified parameters (Y0 and β) and Man’s yield function
is independent of the physical model; (3) Man’s yield function includes the effect of the
ODF being, up to terms, linear in the texture coefficients,while our second yield function is
quadratic texture dependence.

The critical resolved shear stress τc is related to the crystalline dislocation mechanism,
the crystalline size, and the grain boundary structure. In this paper, however, we do
not discuss the hardening process of the critical resolved shear stress τc during plastic
deformation. Herein, we only study the constitutive form of the yield function of the FCC
polycrystal for the given ODF and the given τc.

2. Approximate Yield Surface of FCC Crystal in Hill’s Criterion form

Assume that a fixed spatial Cartesian coordinate system is chosen. To describe the
orientation of a FCC crystallite in the RVE, we pick as a reference a FCC crystallite I, whose
three four-fold axes of rotational symmetry coincide with the Cartesian coordinate axes.
The orientation of any crystallite in the RVE is then specified by rotation R , which takes
the reference crystallite I to the configuration of the crystallite.

By Schmid’s law, we know that yielding for the reference crystallite I would begin on a
slip system n⊗ t (combination of a slip plane and a slip direction) when the resolved shear
stress on this slip plane and in the slip direction reaches a critical value τc, where the unit
normal of the slip plane is denoted by n and the unit vector of the slip direction is denoted
by t with t · n =tini=0. When volume average stress components in the reference crystallite
I are denoted by σij(I), the shear stress on the slip plane and in the slip direction should be
τ = σij(I)tinj. Because the shear stress of the reference crystallite on its slip planes and in
its slip direction satisfies |τ| ≤ τc, the stress components of the reference crystallite I are in
space S :
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S =
{
(σ11, σ22, σ33, σ23, σ31, σ12) ∈ R6 : |τ| = | σijtinj| ≤ τc

}
, (1)

where σij=σij(I). The yield surface ∂S of the reference crystallite I should be

∂S =
{
(σ11, σ22, σ33, σ23, σ31, σ12) ∈ R6 : |τ| = | σijtinj| = τc

}
. (2)

The space S given in (1) is surrounded by a set of yield functions (| σijtinj| = τc) linear
in stress components.

Assume that the space S in (1) can be surrounded approximately by a yield surface

f (σij(I)) = Mijkl(I)σij(I)σkl(I)− 1 = 0, (3)

where I ∈SO(3) is the second-order identity tensor for the reference crystallite I, M(I) is
called the plastic anisotropy tensor[4] of the reference crystallite I with the minor and
major symmetries, σij(I) is the volume average stress in the reference crystallite I. Any
hydrostatic stress pδij does not change the shear stress value of the reference crystallite I
because τ =

(
σij + pδij

)
tinj = σijtinj by tini=0 for all p ∈ R. Hence, we have

f (σij(I)) = f (σij(I)+pδij) or 2pMijklδijσkl + p2Mijklδijδkl = 0, p ∈ R (4)

which leads to the traceless condition Miikl(I) = 0 for any pair of indices k and l.
When the reference crystallite I and the traction acting on the reference crystallite I

have a rotation R, the stress tensor in the reference crystallite I becomes σR
ij = RisRjtσst(I),

and the plastic anisotropy tensor M(I) becomes MR with constitutive restriction:

f (σij(I)) =Mpqnm(I)σpq(I)σnm(I)− 1 = MR
ijklσ

R
ij σR

kl − 1 = 0. (5)

where the three four-fold axes of rotational symmetry of the reference FCC crystallite I
coincide with the Cartesian coordinate axes. Considering

MR
ijklσ

R
ij σR

kl=
[
RipRjqRknRlm Mpqnm(I)

][
RisRjtσst(I)

]
[RkuRlvσuv(I)] (6)

= δspδtqδunδvm Mpqnm(I)σst(I)σuv(I) =Mpqnm(I)σpq(I)σnm(I)

and RipRis = δsp, we have MR
ijkl=RipRjqRknRlm Mpqnm(I) in (5). Assuming that all crystal-

lites in the RVE have the same (current) critical resolved shear stress τc for slip, we have
the plastic anisotropy tensor M(R) of the crystallites with orientation R:

Mijkl(R) = MR
ijkl=RipRjqRknRlm Mpqnm(I). (7)

If we use σij(R) to denote the volume average stress of the crystallites with orientation
R, the yield surface f (σij(R)) for the crystallites with orientation R can be expressed as

f (σij(R)) = Mijkl(R)σij(R)σkl(R)− 1 = 0 (8)

by (5) and (7). Since the reference FCC crystallite I has the octahedral symmetry O, the
plastic anisotropy tensor should satisfy MR

ijkl=Mijkl(I) for each rotation tensor R ∈O, which
with the minor and major symmetries of M(I) reads [15]

[
MI J(I)

]
=



m11 m12 m12 0 0 0
m12 m11 m12 0 0 0
m12 m12 m11 0 0 0

0 0 0 m44 0 0
0 0 0 0 m44 0
0 0 0 0 0 m44

, (9)
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where
[
MI J(I)

]
is the matrix form of M(I) in Voigt’s notation (i.e., indices ij and kl in Mijkl

are denoted by indices I and J of MI J with convention 11 → 1, 22 → 2, 33 → 3, 23 →
4, 13 → 5, 12 → 6; for instances, M1122 = M12, M1123 = M14), m11, m12, and m44 are the
material parameters of the reference crystallite I. The plastic anisotropy tensor

[
MI J(I)

]
in

(9) can be decomposed into [16][
MI J(I)

]
= m12

[
B(1)

I J

]
+ 2m44

[
B(2)

I J

]
+ (m11 −m12 − 2m44)

[
B(3)

I J (I)
]

(10)

where
[

B(1)
I J

]
,
[

B(2)
I J

]
, and

[
B(3)

I J (I)
]

are the matrix form of the following tensors in Voigt’s
notation, respectively

B(1)
ijkl = δijδkl , B(2)

ijkl =
1
2
(δikδjl + δilδjk), B(3)

ijkl(I) =
3

∑
α=1

δαiδαjδαkδαl , (11)

B(1) and B(2) are isotropic fourth-order tensor bases, B(3)(I) is a fourth-order tensor basis
for cubic crystals. The traceless condition Miikl(I) = 0 makes the plastic anisotropy tensor
M(I) in (10) become

Mijkl(I) = m12B(1)
ijkl + 2m44B(2)

ijkl + (−3m12 − 2m44)B(3)
ijkl(I) (12)

because of m11 = −2m12 which makes that

Miikl(I) = m12(3δkl) + 2m44δkl + (m11 −m12 − 2m44)δkl ≡ 0 (13)

holds.
Putting (12) into (3), we find a yield surface of the reference crystallite I in Hill’s

criterion form

f (σ(I)) = m12σiiσkk + 2m44σijσij + (−3m12 − 2m44)
(

σ2
11 + σ2

22 + σ2
33

)
(14)

=
1
η2

[
(σ22 − σ33)

2 + (σ33 − σ11)
2 + (σ11 − σ22)

2
]
+

1
ς2

[
σ2

23 + σ2
31 + σ2

12

]
− 1 = 0

because

B(1)
ijklσijσkl = σiiσkk, B(2)

ijklσijσkl = σijσij, B(3)
ijkl(I)σijσkl = σ2

11 + σ2
22 + σ2

33, (15)

where σij = σij(I) and

η2 = − 1
m12

, ς2 =
1

4m44
. (16)

When −3m12 − 2m44 = 0, M(I) in (12) is an isotropic tensor whose corresponding
yield surface is von Mises’ yield criterion.

For the reference FCC crystallite I, the slip occurs on {111} planes in <110> directions.
The unit normal n of the slip planes and the unit vector t of the slip directions constitute
the 24 slip systems n⊗ t [9]

{n⊗ t} = {± 1√
3
(111)⊗ 1√

2
[11̄0], ..., ± 1√

3
(111̄)⊗ 1√

2
[011]}, (17)

in which there is t · n =0 for each slip system. Substituting (17) into |τ| = |σijtinj| ≤ τc in
(1), one can obtain 24 inequalities that are linear in stress components
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|τ| = 1√
6
|(σ22 − σ33) + σ31 ± σ12| ≤ τc, (18)

|τ| = 1√
6
|(σ22 − σ33)− σ31 ± σ12| ≤ τc,

|τ| = 1√
6
|(σ33 − σ11) + σ12 ± σ23| ≤ τc,

|τ| = 1√
6
|(σ33 − σ11)− σ12 ± σ23| ≤ τc,

|τ| = 1√
6
|(σ11 − σ22) + σ31 ± σ23| ≤ τc,

|τ| = 1√
6
|(σ11 − σ22)− σ31 ± σ23| ≤ τc

which constitute the the stress space S .
Now we assume that the stress space S in (1) can approximately be surrounded by a

function in Hill’s criterion form (14). In order to determine η and ς in (14), we introduce
two subspaces of S in (1)

S1 =
{
(σ11, σ22, σ33, 0, 0, 0) ∈ R6 : |τ| = | σijtinj| ≤ τc

}
, (19)

S2 =
{
(0, 0, 0, σ23, σ31, σ12) ∈ R6 : |τ| = | σijtinj| ≤ τc

}
and two subspaces in R6

M(η) = {(σ11, σ22, σ33, 0, 0, 0) ∈ R6 : (σ22 − σ33)
2 + (σ33 − σ11)

2 + (σ11 − σ22)
2 − η2 ≤ 0}, (20)

N (ς) =
{
(0, 0, 0, σ23, σ31, σ12) ∈ R6 : σ2

23 + σ2
31 + σ2

12 − ς2 ≤ 0
}

.

The maximum and minimum values of η and ς in (20) are defined by

ηmax = inf{η :M(η) ⊃ S1}, ςmax = inf{η : N (ς) ⊃ S2}, (21)

ηmin = sup{η :M(η) ⊂ S1}, ςmin = sup{ς : N (ς) ⊂ S2},

where we determine η and ς in (14) through multi-axial tensions and pure shears, respec-
tively. The proceeding maximum and minimum problems in (21) belong to nonlinear
optimization problems. The relations (19) and (20) are used to obtain the best fitting of the
FCC crystal yield surface | σijtinj| ≤ τc.

We use Microsoft Excel to solve the problems (21) with (20) and (18). Then we obtain
the maximum and minimum values of η and ς

ηmin = 3 τc, ηmax =
√

12 τc, ςmin =
√

3 τc, ςmax =
√

6τc. (22)

Putting η = ηmax and ς = ςmax into (14), we find a yield surface of FCC crystals for
the reference FCC crystallite I

1
12 τ2

c

[
(σ22 − σ33)

2 + (σ33 − σ11)
2 + (σ11 − σ22)

2
]
+

1
6 τ2

c

[
σ2

23 + σ2
31 + σ2

12

]
− 1 = 0 (23)

which is just the same as that of Maniatty et al. [10].
Since the goal of the paper is to estimate a macroscopic yield function of the RVE, let

us choose η and ς in (14) as follows:

η =
1
2
(ηmin + ηmax) = 3.232τc, ς =

1
2
(ςmin + ςmax) = 2.091τc. (24)
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If all crystallites in the RVE have the same (current) critical resolved shear stress τc for
slip, we combine (7) with (12), (16) and (24) to obtain the plastic anisotropy tensor

Mijkl(R) = − 1
η2 B(1)

ijkl +
1

2ς2 B(2)
ijkl + ωB(3)

ijkl(R) (25)

and the yield surface f (σij(R)) for FCC crystallites with orientation R

f (σij(R)) = − 1
η2 (σii(R))2 +

1
2ς2 σij(R)σij(R) + ωB(3)

ijkl(R)σij(R)σkl(R)− 1 = 0 (26)

where ω = 3
η2 − 1

2ς2 and

B(α)
ijkl(R) = RipRjqRknRlmB(α)

pqnm = B(α)
ijkl , α = 1, 2, (27)

B(3)
ijkl(R) = RipRjqRknRlmB(3)

pqnm(I) =
3

∑
α=1

RiαRjαRkαRlα.

3. Yield Function and Effective Plastic Anisotropy Tensor of RVE

The crystallographic texture of a polycrystal is described by the orientation distribution
function (ODF). The ODF is used to describe the probability density of finding a crystallite
with orientation R in the RVE. The mechanical anisotropy of the RVE is caused mainly by its
crystallographic texture and plastic anisotropy of crystallites. Let w(R) be the orientation
distribution function. If L2(SO(3)) is the space of the square-integrable complex-valued
functions, w ∈ L2(SO(3)) can be expanded as an infinite series in terms of the Wigner
D−functions [17,18]

w(R) = wiso +
∞

∑
l=1

l

∑
m=−l

l

∑
n=−l

cl
mnDl

mn(R), cl
mn = (−1)m−n(cl

m̄n̄)
∗, (28)

where wiso = 1
8π2 , cl

mn (l ≥ 1) are the texture coefficients, (cl
m̄n̄)
∗ denote the complex

conjugate of the complex number cl
m̄n̄, n = −n. The Wigner D-functions Dl

mn constitute
an orthogonal basis in L2(SO(3)). The texture coefficients that we shall need can easily
be measured by X−ray diffraction. The texture coefficients cl

mn are related to Roe’s Wlmn
coefficients by formula [19]

Wlmn = (−1)n−m
√

2
2l + 1

cl
mn. (29)

The micromechanics of polycrystals becomes interesting only because one can obtain
statistical information of the orientations by X-ray diffraction or measure the orientations
of pcrystallites, pointwise, by orientation imaging microscopy. For the measurement of
X-ray diffraction, one measures the specimen surface’s, 1

4 depth’s, and 1
2 depth’s texture

coefficients, respectively, by sanding the specimen of sheets. The mean values of the
texture coefficients on the surface, 1

4 depth, and 1
2 depth of the specimen are taken as

the texture coefficients of the specimen. For the measurement of the orientation imaging
microscopy, one obtains the orientation (Euler angles ψp, θp, φp) of each crystallite Ωp in
the specimen. Since the FCC polycrystal can be taken as an aggregate of cubic crystallites
(i.e., Ω = ∪N

p=1Ωp), the texture coefficients of the specimen are given by [20]

cl
mn =

1
|Ω|

N

∑
p=1
|Ωp|c4

mn(Rp) (30)
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with

cl
mn(Rp) =

2l + 1
8π2 ·

1
24

24

∑
i=1

(
Dl

mn(RpQ(i)
cr )
)∗

, ∀Q(i)
cr ∈ O, (31)

where Rp = R(ψp, θp, φp) and O is the group of cubic crystal symmetry.
Let σij be the volume average stress components of the RVE. By definition of the ODF,

the orientational (volume) average stress can be obtained by

σij =
∫

SO(3)
σij(R)w(R)dg, (32)

where g = 8π2gH , gH is the Haar measure on SO(3) with gH(SO(3)) = 1, σij(R) is the
volume average stress tensor of crystallites with orientation R in the RVE. When R is
defined by Roe’s notation [18], there is dg = sin θdψdθdφ.

When all crystallites in the RVE have the same (current) critical resolved shear stress
τc for slip, the yield surface f (σij(R)) of crystallites with orientation R is determined by
(26). By the ODF definition, the volume average f (σij(R)) of all crystallites in the RVE can
be expressed as

f (σij(R)) =
∫

SO(3)
f
(
σij(R)

)
w(R)dg =

∫ 2π

0

∫ π

0

∫ 2π

0
f
(
σij(R)

)
w(R) sin θdψdθdφ = 0 (33)

which can be taken as the macroscopic yield function of the RVE.
If the macroscopic yield function f (σij(R)) can be expressed as

f (σij(R)) = σij Meff
ijklσkl − 1 = 0 (34)

in Hill’s criterion form, then we call Meff in (34) the effective plastic anisotropy tensor
of the RVE. The effective plastic anisotropy tensor Meff gives the relationship between
the macroscopic yield function and the volume average stress of the RVE. One recipe to
compute the effective plastic anisotropy tensor Meff in (34) is by way of putting (8) into (33)

σij Meff
ijklσkl =

∫
SO(3)

σij(R)Mijkl(R)σkl(R)w(R)dg. (35)

4. Volume Average of Plastic Anisotropy Tensor

The basic assumption for Sachs’ model [5] is that all crystallites in the RVE experience
the same state of stress (i.e., σij(R) =σij, ∀R ∈SO(3)). Substituting σij(R) =σij into (35)
reads σij Meff

ijklσkl =
∫

SO(3) σij Mijkl(R)σklw(R)dg. Since the equation holds for each σij, the
effective plastic anisotropy tensor has to be the volume average plastic anisotropy tensor
M of the RVE

Mijkl =
∫

SO(3)
Mijkl(R)w(R)dg (36)

=
∫

SO(3)

(
− 1

η2 B(1)
ijkl +

1
2ς2 B(2)

ijkl + ωB(3)
ijkl(R)

)
w(R)dg

by (25).
From the results given by Huang and Man [21] and Huang [16,22], we know∫

SO(3)
B(1)

ijklw(R)dg = B(1)
ijkl ,

∫
SO(3)

B(2)
ijklw(R)dg = B(2)

ijkl (37)
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because of B(1)
ijkl and B(2)

ijkl being isotropic fourth order tensors and

∫
SO(3)

B(3)
ijkl(R)w(R)dg =

(
3

∑
α=1

∫ 2π

0

∫ π

0

∫ 2π

0
RiαRjαRkαRlα

1
8π2 sin θdψdθdφ

)
(38)

+
∞

∑
s=1

s

∑
m=−s

s

∑
n=−s

cs
mn

3

∑
α=1

∫ 2π

0

∫ π

0

∫ 2π

0
RiαRjαRkαRlαDs

mn(R) sin θdψdθdφ

=

(
1
5

B(1)
ijkl +

2
5

B(2)
ijkl

)
+ Φijkl ,

because of the relation [19]∫
SO(3)

B(3)
ijkl(R)Ds

mn(R)dg = 0, when s > 4 (39)

where B(3)
ijkl(R) is a fourth-order tensor. For an anisotropic aggregate of cubic crystallites,

Φ in (38) is totally symmetric (i.e., Φi1i2i3i4 = Φiτ(1)iτ(2)iτ(3)iτ(4) for any permutation τ of
{1, 2, 3, 4}) and traceless with non-trivial components [21]:

Φ2233 = a1, Φ1133 = a2, Φ1122 = a3, (40)

Φ1123 = a5 − a8, Φ1113 = −a7 + 3a4, Φ1112 = −a6 + a9,

Φ3323 = −4a5, Φ3313 = −4a4, Φ3312 = 2a6

and

a1 = −32π2

105
(c4

00 +

√
5
2

Re c4
20), a2 = −32π2

105
(c4

00 −
√

5
2

Re c4
20), (41)

a3 =
8π2

105
(c4

00 −
√

70 Re c4
40), a4 =

8
√

5π2

105
Re c4

10, a5 =
8
√

5π2

105
Im c4

10,

a6 =
8
√

10π2

105
Im c4

20, a7 =
8
√

35π2

105
Re c4

30, a8 =
8
√

35π2

105
Im c4

30, a9 =
8
√

70π2

105
Im c4

40.

Here Re c4
m0 and Im c4

m0 denote the real and imaginary parts of the complex number
c4

m0, respectively. c4
00 is a real number because of (28)2.

Putting (37) and (38) into (36), we obtain an effective plastic anisotropy tensor Meff of
the RVE under the Sachs’ model

Meff
ijkl = Mijkl = −ρB(1)

ijkl + 3ρB(2)
ijkl + ωΦijkl (42)

with

ρ =
1
5
(

2
η2 +

1
2ς2 ) =

1
16.348τ2

c
, (43)

ω =
3
η2 −

1
2ς2 =

1
5.786τ2

c
.

The texture coefficients c4
m0 above can be measured by the X−ray diffraction and

inversion of pole figures (Roe, 1965 [18]). Obviously, the effective plastic anisotropy tensor
satisfies the traceless condition Meff

iikl = 0 because of Φiikl = 0. Substituting (42) and (15)1,2
into (34), we obtain a macroscopic yield function of the RVE

f (σij(R)) = −ρσiiσjj + 3ρσijσij + ωΦijklσijσkl (44)

=
1

Y2
0

(
3
2

σijσij −
1
2

σiiσjj + βΦijklσijσkl

)
− 1 = 0
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where
Y0 =

1√
2ρ

= 2.859τc , β =
ω

2ρ
= 1.413. (45)

The macroscopic yield function f (σij(R)) of the RVE with a group of texture symmetry
Gtex can be obtained from the constraints imposed by Gtex on the texture coefficients. For
instance, if the coordinate axes are the two-fold axes of orthorhombic symmetry of the
texture, then c4

m0 = 0 for odd m and Im c4
m0 = 0 for all m. Substituting these restriction

into (44) and (41), we obtain the macroscopic yield function of the RVE in the Hill’s
criterion form

f (σij(R)) = F(σ22 − σ33)
2 + G(σ33 − σ11)

2 + H(σ11 − σ22)
2 + 2Lσ2

23 + 2M σ2
31 + 2N σ2

12 − 1 = 0 (46)

for an orthorhombic aggregate of FCC crystallites, where

(F, G, H) =
1

Y2
0

(
1
2
(1, 1, 1)− β(a1, a2, a3)

)
, (47)

(L, M, N) =
1

Y2
0

(
3
2
(1, 1, 1) + 2β(a1, a2, a3)

)
.

a1, a2, and a3 in (41) are determined by the texture coefficients. Y0 and β in (45) are
dependent on the (current) critical resolved shear stress τc. The formula (46) is the same as
that of Man [12,13] in form. However, Man’s yield function is independent of the physical
model; hence Y0 and β for Man’s yield function are two unspecified material parameters.

5. Yield Function with Quadratic Texture Dependence

Under Sachs’ model, the effective plastic anisotropy tensor Meff is the volume average
plastic anisotropy tensor of the RVE. Man’s yield function [12,13] and the yield function (46)
contain the effect of the ODF only being, up to terms, linear in the texture coefficients, which
may not suffice for strongly textured polycrystals [20]. In this section, we will establish a
new physical model for deriving a macroscopic yield function of the RVE. The macroscopic
yield function delineates the effect of the crystallographic texture on the plastic anisotropy
up to terms quadratic in the texture coefficients.

Considering the collection of crystallites with orientation R in the RVE and using σij(R)
to denote the volume average stress in these crystallites, we have the average perturbation
stress of these crystallites

∆σij = σij(R)− σij, (48)

where σij is given in (32). We assume that the average perturbation stress ∆σij of crystallites
with orientation R are governed by a constitutive relation of the form

∆σij = ∆σij(R, w, σkl) (49)

with constraint
∆σij(R, w, 0) = 0. (50)

From (32) and (48), we have∫
SO(3)

∆σij(R, w, σkl)w(R)dg = 0. (51)

Similar to the process of deriving the HV-V model given by Huang and Man [21], the
average perturbation stress ∆σij of the crystallites with orientation R can approximately be
expressed as

∆σij = κ
(

Ψijkl(R)−Φijkl

)
σkl , (52)
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where we consider the effect of the ODF to ∆σij being, up to terms, linear in the texture
coefficients,

Ψijkl(R) = −1
5

B(1)
ijkl −

2
5

B(2)
ijkl + B(3)

ijkl(R), (53)

and κ is an unspecified material parameter. From (37) and (38), we know that ∆σij in (52)
satisfy the relation (51).

Through (35) and (48), we obtain an effective plastic anisotropy tensor by relation

σij Meff
ijklσkl =

∫
SO(3)

σij(R)Mijkl(R)σkl(R)w(R)dg =
∫

SO(3)
σij Mijkl(R)σklw(R)dg (54)

+
∫

SO(3)

(
∆σij Mijkl(R)∆σkl + ∆σij Mijkl(R)σkl + σij Mijkl(R)∆σkl

)
w(R)dg.

From (52) and (25), we have

σij Mijkl(R)∆σkl =
κ

2ς2 σij

(
Ψijkl(R)−Φijkl

)
σkl (55)

+κωσij

(
−1

5
B(1)

ijkl +
3
5

B(3)
ijkl(R)− B(3)

ijmn(R)Φmnkl

)
σkl .

by relations B(1)
ijmnΨmnkl(R) =B(1)

ijmnΦmnkl = 0 and

B(1)
ijmnB(1)

mnkl = 3B(1)
ijkl , B(1)

ijmnB(3)
mnkl(R) = B(1)

ijkl , (56)

B(3)
ijmn(R)B(3)

mnkl(R) = B(3)
ijkl(R), B(2)

ijmnB(α)
mnkl(R) = B(α)

ijkl(R), α = 1, 2, 3.

By means of the relations (37) and (38), we can complete the following integrations
and obtain the volume average value on (55)∫

SO(3)
∆σij Mijkl(R)σklw(R)dg =

∫
SO(3)

σij Mijkl(R)∆σklw(R)dg (57)

= κωσij

(
− 2

25
B(1)

ijkl +
6

25
B(2)

ijkl +
1
5

Φijkl −ΦijmnΦmnkl

)
σkl .

Similarly, from (52) and (25) we have

∆σij Mijkl(R)∆σkl= ˇ2σij(Ψijpq(R)−Φijpq)[−
1
η2 B(1)

pqmn

+
1

2ς2 B(2)
pqmn + ωB(3)

pqmn(R)](Ψmnkl(R)−Φmnkl)σkl

whose volume average value is∫
SO(3)

∆σij Mijkl(R)∆σklw(R)dg (58)

=
κ2

2ς2 σij

(
− 2

25
B(1)

ijkl +
6

25
B(2)

ijkl +
1
5

Φijkl −ΦijmnΦmnkl

)
σkl

+ κ2ωσij

(
− 6

125
B(1)

ijkl +
18

125
B(2)

ijkl −
3

25
Φijkl −

4
5

ΦijmnΦmnkl + o(|Φ2|
)

σkl .

Substituting (36), (42), (57), and (58) into (54), we obtain the effective plastic anisotropy
tensor for anisotropic aggregates of FCC crystallites with quadratic texture dependence

Meff
ijkl = −ρeffB(1)

ijkl + 3ρeffB(2)
ijkl+ωeffΦijkl+ϑeffΦijmnΦmnkl (59)
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with

ρeff = ρ +
4
25

κω +
6

25
κ2ρ +

2
125

κ2ω (60)

= (0.0612 + 0.0277κ + 0.0175κ2)/τ2
c ,

ωeff = ω +
2
5

κω +
3
5

κ2ρ− 1
5

κ2ω

= 0.00213(κ + 29.573)(κ + 2.731)/τ2
c ,

ϑeff = −2κω− 3κ2ρ− 2
5

κ2ω

= −0.253(κ + 1.368)κ/τ2
c

where 1
ς2 = 2

5 (15ρ− 2ω) because of (43). Substituting (59) into (34), we obtain a macroscopic
yield function of the RVE

f (σij(R)) =
1(

Yeff
0
)2

(
3
2

σijσij −
1
2

σiiσjj+βeffΘijklσijσkl+γeffΘijmnΘmnklσijσkl

)
− 1 = 0 (61)

where we discard terms o(|Φ2|) in (59) and

Yeff
0 =

(
2ρeff

)−1/2
= 0.707τc(0.0612 + 0.0277κ + 0.0175κ2)−1/2, (62)

βeff =
ωeff

2ρeff =
0.00107(κ + 29.573)(κ + 2.731)

0.0612 + 0.0277κ + 0.0175κ2 ,

γeff =
ϑeff

2ρeff = − 0.126(κ + 1.368)κ
0.0612 + 0.0276κ + 0.0174κ2 .

The effective plastic anisotropy tensor in (59) satisfies the traceless condition Meff
iikl = 0.

In metallurgical practice, because of the effects of alloying elements, it is difficult to
obtain accurate estimates of the material parameters τc and κ in (61). The macroscopic yield
function (61) is then more properly looked upon as a representation formula with three
undetermined parameters Yeff

0 , βeff and γeff.

6. Discussion and Example

When the yield function is in Hill’s criterion form, the Taylor factorM(0.5, 0) for an
orthorhombic weakly textured aggregate of FCC crystallites can be expressed as [14]

M(0.5, 0) =
σ11

τc
= 3.067− 10.095

(
W400 −

2
√

10
3

W420 +

√
70
3

W440

)
, (63)

where σ11 is a uniaxial tensile yield stress.
Under Sachs’ model, we obtained the macroscopic yield function (46) for an aggregate

of FCC crystallites. For uniaxial tensile problems, the yield function in (46) becomes
(G + H)(σ11)

2 − 1 = 0 or

σ11 = (G + H)−1/2 = Y0(1− β(a2 + a3))
−1/2 ≈ Y0

(
1 +

β

2
(a2 + a3)

)
(64)

from (47). When the RVE is an orthorhombic aggregate of FCC crystallites, there are Re c4
20 =

c4
20 and Re c4

40 = c4
40 (Roe, 1965 [18]) in (41). From (41), (45) and (29), we rewrite (64) into

σ11 = 2.859τc − 9.666τc

(
W400 −

2
√

10
3

W420 +

√
70
3

W440

)
(65)
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which is close to the result (63). However, the derivation of (65) is much simpler than
that of (63) because the computation of the Taylor factor for a textured polycrystal is very
complicated and time consuming.

The parameter κ in (62) can be determined by an experiment. For instance, from the
relation of an isotropic polycrystal (aluminum) stress–strain curve and a single crystal stress–
strain curve, Taylor [6] found that Yeff

0 = 3.06τc agrees with the experimental data very
well. Taking Yeff

0 = 3.06τc, we obtain κ = −0.365 by solving (62)1 and then get βeff = 1.384
and γeff = 0.866 from (62)2,3. For an orthorhombic weakly textured aggregate of FCC
crystallites, if we discard the o(c4

m0) terms of the texture coefficients in (61), similar to the
procedure of deriving (46) and (64) from (44), we obtain the yield stress of uniaxial tension

σ11 = Yeff
0

(
1 +

βeff

2
(a2 + a3)

)
= 3.06τc − 10.133τc

(
W400 −

2
√

10
3

W420 +

√
70
3

W440

)
. (66)

The formula above is almost the same as (63). To check the form of the expression (66),
we give one example as follows.

Example of yield stress under uniaxial tension of sample Sθ:
Take an example Sθ from a metal sheet with the rolling direction θ as shown in

Figure 1. To obtain the expression of the uniaxial yield stress σθ and the rolling direction θ,
we give the stress tensor of a uniaxial stress σθ on as follows

σ(θ) = σθn⊗ n =σθ

 cos2 θ cos θ sin θ 0
cos θ sin θ sin2 θ 0

0 0 0

 (67)

where n =[cos θ, sin θ, 0]T . Similar to the derivation of (66), for an orthorhombic weakly

textured aggregate of FCC crystallites, putting σij(θ) in (67) and W4m0 =
√

2
9 c4

m0 in (29)

into (61) and after discarding the o(W4
m0) terms of the texture coefficients, we obtain the

yield stress σθ of the uniaxial tension sample Sθ as follows:

σθ = 3.06τc− 10.133τc

(
W400−

2
√

10
3

W420 cos 2θ+

√
70

3
W440 cos 4θ

)
. (68)

Figure 1. Samples Sθ of metal sheet.

Yu Xiang [23] in the doctoral dissertation gave the experimental data on two aluminum
alloys (AA5754 hot band, AA3105 O-temper). As shown in Figure 1, uniaxial test samples
were cut with tensile axis with the rolling direction (RD) θ = 0◦, 15◦, 30◦, · · · , 90◦. For each
tensile direction, measurements were made on two samples to obtain the flow stress at 4%
longitudinal plastic strain. The experimental results are listed in Table 1, where the data Y(1)

i

and Y(2)
i of Xiang’s Experiment 1 and Experiment 2 are labeled with superscripts (1) and (2),

respectively, and the subscript 1 ≤ i ≤ 7 indicates a sample with tensile axis making an
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angle φi = (i− 1)× 15◦ with the rolling direction (RD) shown in Figure 1. The texture
coefficients of the two alloys were measured by X-ray diffraction as shown in Table 2.

Table 1. Flow stresses Y(j)
i (MPa) of two aluminum alloys.

Aluminum Alloy 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Hot Band Y(1)
i

282.31 279.14 274.78 258.58 259.41 270.97 279.58

AA5754 Y(2)
i

282.00 278.82 270.15 257.99 257.53 271.77 280.87

O-temper Y(1)
i

126.72 125.13 124.11 122.15 124.19 124.72 126.10

AA3105 Y(2)
i

125.19 125.43 124.82 124.50 123.91 124.65 126.04

Table 2. Texture coefficients Wlmn of two aluminum alloys.

AA5754 (Hot band) W400 = −0.0033 W420 = −0.0025 W440 = −0.0071

AA3105 (O-temper) W400 = 0.0072 W420 = −0.0019 W440 = −0.0022

To determine τc in (68) for the aluminum alloys from Xiang’s experimental data, we
introduce an objective function as follows:

Π(τc) =
7

∑
i=1

[
1
2
(Y(1)

i + Y(2)
i )− σθ|θ=θi ]

2, θi = (i− 1)× 15◦. (69)

By the method of least squares, we solve the equation ∂Π(τc)
∂τc

= 0 and obtain the
critical resolved shear stress τc of the FCC crystals for the two aluminum alloys

τc = 86.93 MPa for AA5754 hot band; (70)

τc = 41.66 MPa for AA3105 O-temper.

Putting the fitted values τc in (70) and the texture coefficients Wlmn in Table 2 for the
two alloys into (68), we plot the fitting results of the yield stress σθ on the uniaxial tension
sample Sθ as shown in Figure 2. The expression (68) of the yield stress σθ on the uniaxial
tension sample Sθ can fit Xiang’s experimental data on two aluminum alloys (AA5754 and
AA3105) very well.

θ (°

σ  (MPa)θ

)

Figure 2. Experimental data of Xiang and fitting results of (68).
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7. Conclusions

In this paper, we provide a simple method to obtain two closed but approximate yield
functions with the effect of the texture coefficients for the RVE, where the volume average
(i.e., orientational averaging) of all crystallites’ yield surfaces is taken as a (macroscopic)
yield function of the RVE. Through theoretical analysis, we draw the following important
conclusions:

1. Assuming that all crystallites in the RVE have the same (current) critical resolved
shear stress τc for slip and employing Schmid’s law and the nonlinear optimization
theory, we give a plastic anisotropy tensor M(R) of the FCC crystals with orientation
R and obtain the volume average of all crystallites’ yield surfaces in the RVE.

2. By the Microsoft Excel, we solve nonlinear optimization problems and obtain an approx-
imate plastic anisotropy tensor and a yield surface of FCC crystallites with orientation.

3. For an orthorhombic weakly textured aggregates of FCC crystallites, we obtain two
yield stresses of uniaxial tension, respectively.

4. Through an example, we obtain the yield stress under the uniaxial tension on sample
Sθ. We find that the expression of the yield stress can fit Xiang’s experimental data
very well.
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