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Abstract: The structures of 2-(3-hydroxy-5-methylphenoxy)-N-(4-nitrophenyl)acetamide), B1, and
2-(3-hydroxy-5-methylphenoxy)-N-(4-(trifluoromethyl)phenyl)acetamide, B2, are crystallized in the
crystal symmetry of the monoclinic structure and in the space group of P21/c. For the different
structures of B1 and B2, B1 displays an absolute planarity conformation with torsion angles of
172.2–179.1. The two molecules of B1 are linked by a hydrogen bond of N–H . . . O–N–O, where a
hydrogen atom of amide is bound to an oxygen atom of the nitro-substituted group. In the case of B2,
the molecules are connected to each other through the hydrogen bonding interaction of C=O . . . H–O.
DFT calculations reveal that the transition from HOMO to LUMO of B1 and B2 shows the absorption
bands B1 and B2 at 314 and 240 nm, respectively. Upon the addition of an OH− ion, the absorption
bands of B1 and B2 shift to a longer wavelength than the original bands of B1 and B2. According to
the 1H-NMR results, the NH proton of B1 and B2 disappears due to the deprotonation process. The
methylene group and aromatic region move to upfield shift when adding an OH− ion.

Keywords: hydrogen bonds; deprotonation process; red shift

1. Introduction

Orcinolic derivatives are vital for many applications, such as organic synthesis, chem-
ical sensors, enzyme inhibitors and antifungal agents [1,2]. The hydroxide ion (OH−) is
an ion necessary for precipitation processes and environmental systems. Moreover, the
degree strength of the hydroxide ion is used to deprotonate the NH- and OH- groups
within molecules [3,4]. The nitro group (-NO2) and trifluoromethyl group (-CF3) within
the compounds are used as electron-withdrawing substituents [5,6]. In many studies, the
nitro group connecting to compounds displays antibacterial activity and is used in optical
materials—for example, fluorescence probes, photonics and optoelectronics [7–10]. Com-
pounds with trifluoromethyl groups play important roles as anticancer compounds and
dye materials [11–14]. In relation to the photophysical properties, these substituents exist
in polar solvents and basic conditions, leading to various mechanisms, such as internal
charge transfer and pi–pi transition. The design and synthesis of compounds containing
−NO2 and −CF3 groups are highly focused on their utilization in many applications.
Nath et al. prepared a sulfadiazine derivative containing 4-nitroaniline that can be grown
in the form of crystals. The crystals that were obtained were solvated by DMF, and the
process of binding with anions, such as Cl−, F−, Br− and I−, was investigated by using
UV–Vis and 1H NMR techniques, resulting in the loosening of the NH proton when F−

was added due to the deprotonation process [15]. Nakayama et al. synthesized and studied
the asymmetric N-phenyl imide derivatives acting as triboluminescence materials—for
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example, N-(4-trifluoromethylphenyl)phthalimide exhibited a twisted structure, and the
blue light emission was also observed [11]. Lobatto et al. studied the inclusion complexes
of triflurin derivatives and β-cyclodextrin by crystal X-ray and spectroscopic techniques,
and observed that the 1:1 complex conformation of the 4-trifluoromethyl aniline derivative
and β-cyclodextrin produced increases in the absorption band at 238 and 430 nm, and they
calculated the association constant as 18 M−1 [16]. In the present study, we report on the
synthesis and crystals of orcinolic derivatives. Additionally, the behavior of crystals in
DMSO was studied using DFT calculations. Moreover, the crystals were investigated as
OH− indicators by 1H-NMR and UV–Vis spectroscopy.

2. Experimental
2.1. Materials

In the experiment, all the chemical reagents were purchased from RCI Labscan Limited
and Sigma-Aldrich Co. All the reagents for synthesis were used without purification.

2.2. Equipment

The 1H and 13C NMR spectra were obtained on a 400 MHz NMR spectrometer. UV–Vis
spectra were recorded on a Perkin Elmer lambda 365. HRMS was performed on a Bruker
microtof-Q III. Infrared spectra (4000–400 cm−1) were obtained by a Perkin Elmer system
2000 Fourier transform infrared spectrometer.

2.3. Methods
2.3.1. Crystallographic Methods

The X-ray diffraction data of the compounds, such as lattice constants and diffraction
intensities for the crystals of the title compounds, were collected at 273.15 and 296.15 K
with a Bruker D8 Quest CMOS diffractometer equipped with graphite monochromatic
MoKα radiation. The structures were solved using the dual space method [17] with the
olex2.solve structure solution program using Charge Flipping and refined by successive
differential Fourier syntheses performed by the least-squares minimization method using
the SHELXL refinement package [18]. Anisotropic thermal parameters were refined for
all non-hydrogen atoms. The hydrogen atoms were isotopically treated with a mixture
of independent and constrained refinements. The disordered fluorine atoms of CF3−
substituent groups in compound B2 were refined with half occupancy. OLEX2 and Mercury
3.10.3 [19] software were used for graphical illustrations related to single crystal X-ray data.
The supplementary crystallographic data for the structures of the compounds reported
in the current article have been deposited in CCDC 2075678 and 2075682. These data can
be obtained via http://www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 30 June
2021).

2.3.2. Computational Details

In the present study, all the theoretical calculations were performed for the isolated
B1 and B2 molecules using density functional theory (DFT) to obtain further information
concerning the structural and electronic properties. The electronic geometries for all
molecules in the ground (S0) and the first excited state (S1) were fully optimized at the
PBE0 level of theory [20] using the 6-311G(d,p) basis set. The electronic transitions were
performed by time-dependent DFT (TD-DFT) with the PBE0 method using the 6-311G(d,p)
basis set. The results for the solvent effects were analyzed with a polarizable continuum
model (PCM) [21] of dimethyl sulfoxide (DMSO). All the calculations were performed
using the Gaussian 09 program [22].

2.4. Synthesis of Compounds B1 and B2

2.4.1. Synthesis of 2-(3-hydroxy-5-methylphenoxy)-N-(4-nitrophenyl)acetamide), B1,
and 2-(3-hydroxy-5-methylphenoxy)-N-(4-(trifluoromethyl)phenyl)acetamide, B2, as shown
in Scheme 1

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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2.4.1.1 2-(3-hydroxy-5-methylphenoxy)-N-(4-nitrophenyl)acetamide), B1
The compound B1 was synthesized in previous literature [23].
2.4.1.2 2-(3-hydroxy-5-methylphenoxy)-N-(4-(trifluoromethyl)phenyl)acetamide, B2
The B2 compound was synthesized using an orcinol as a starting material. The reaction

mixture of 4-(trifluoromethyl) aniline (2.50 g, 16 mmol), chloroacetyl chloride (4.95 mL)
and triethylamine (3.25 mL) in CH2Cl2 (10 mL) was stirred in an ice bath for 2 h. Moreover,
the resultant reaction mixture was stirred at room temperature for 24 h, resulting in a
brown precipitate of 2-chloro-N-(4-(trifluoromethyl)phenyl)acetamide (R2), with a yield
of 85%. 1H NMR (400 MHz, CDCl3, ppm): δ = 8.41 (s, 1H), 7.72 (d, J = 8.6 Hz, 2H),
7.65 (d, J = 8.7 Hz, 2H), 4.25 (s, 2H). Then, the condensation reaction of 2-chloro-N-(4-
(trifluoromethyl)phenyl)acetamide (R2) and 3,5-dihydroxytoluene (1.05 g, 8.42 mmol) in
CH3CN (15 mL) was performed by stirring the mixture at 135 ◦C for 13 h under an N2
atmosphere. A total of 20 mL of deionized water was added to the resulting mixture. The
aqueous layer was additionally extracted with 20 mL of CH2Cl2 three times and then dried
over anhydrous Na2SO4. The reaction product was purified via column chromatography
on silica gel using EtOAc/CH2Cl2 = 1:9 (v/v) as an eluent. The product of 2-(3-hydroxy-5-
methylphenoxy)-N-(4-(trifluoromethyl)phenyl)acetamide was isolated as white crystals
with a yield of 26.6%. 1H NMR (400 MHz, d6-DMSO, ppm): δ = 10.39 (s, 1H), 9.34. (s,
1H), 7.87 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 8.6 Hz, 2H), 6.26 (s, 1H), 6.22 (s, 1H), 6.20 (s, 1H),
4.64 (s, 2H), 2.18 (s, 3H). 13C NMR (400 MHz, d6-DMSO, ppm): δ = 167.88, 159.26, 158.78,
142.49, 142.48, 140.00, 126.55, 126.51, 124.29, 120.02, 109.771, 106.69, 99.66, 67.52, 21.76. IR
(cm−1); 3275, 3095, 1687, 1560, 1402, 826 HRMS (m/z): calculated for C16H14F3NO3+Na:
348.0823; found: 348.0815.

3. Results and Discussion
3.1. Crystal Structures of Compounds B1 and B2

The crystals of compounds B1 and B2 were grown in the solvent as EtOAc:CH2Cl2 = 1:9.
The experimental parameters relating to the single-crystal X-ray analysis of compounds are
presented in Table 1. Compound B1 was crystalized as a monoclinic structure with a P21/c
space group, and its molecular structure with the E configuration for the N–C(=O)–C–O
bond is presented in Figure 1. The structure of the compound was observed to present an
almost absolute planarity conformation with the torsion angles of C4–N2–C7–O3; 0.9(5),
C4–N2–C7–C8; 179.1(3), C9–O4–C8–C7; 174.2(2) and N2–C7–C8–O4; 172.7(2), respectively.



Crystals 2022, 12, 1252 4 of 14

Additionally, the torsion angles involved in the substituted benzene ring, with respect to
the amide functional group, were discovered to be C7–N2–C4–C3; −178.6(3) and C7–N2–
C4–C5; 1.8(5), which indicated a minor deviation from the planar of the structure. The
packing images of compound B1 for the front and side views are presented in Figure 2.
Moreover, the difference between each plane of the structure was 3.778(2) Å; however; the
π–π interaction was not observed in such a compound.

Table 1. Crystal data and structure refinement parameters for compounds B1 and B2.

Crystal Data Compound B1 Compound B2

Empirical formula C15H14N2O5 C32H28F6N2O6
Formula weight 302.28 650.56
Temperature/K 273.15 296.15
Crystal system Monoclinic Monoclinic

Space group P21/c P21/c
a/Å 7.1943(19) 10.3749(19)
b/Å 14.499(4) 7.2604(14)
c/Å 13.550(3) 20.582(4)
α/◦ 90.00 90
β/◦ 94.159(9) 97.360(7)
γ/◦ 90.00 90

Volume/Å3 1409.7(6) 1537.6(5)
Z 4 2

ρcalc g/cm3 1.424 1.405
µ/mm−1 0.109 0.121

F(000) 632.0 672.0
Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073)

2Θ range for data collection/◦ 6.02 to 50.12 5.956 to 54.068
Index ranges −8 ≤ h ≤ 8, −16 ≤ k ≤ 17, −16 ≤ l ≤ 16 −13 ≤ h ≤ 13, −9 ≤ k ≤ 9, −26 ≤ l ≤ 26

Reflections collected 8786 48,473
Independent reflections 2500 [Rint = 0.1084, Rsigma = 0.0919] 3361 [Rint = 0.0515, Rsigma = 0.0185]

Data/restraints/parameters 2500/0/201 3361/105/239
Goodness-of-fit on F2 0.975 1.029

Final R indexes [I ≥ 2σ (I)] R1 = 0.0556, wR2 = 0.1113 R1 = 0.0428, wR2 = 0.1064
Final R indexes [all data] R1 = 0.1537, wR2 = 0.1435 R1 = 0.0591, wR2 = 0.1228

Largest diff. peak/hole/e Å−3 0.18/−0.22 0.20/−0.18
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The molecular configuration of B1 was stabilized by the intramolecular H-bonding
of C=O . . . H, displayed in Figure 3. The molecules were linked to each other through
C=O . . . H–O bonding by the carbonyl of amide and the hydroxy group from the methoxy
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phenol ring. Furthermore, the molecules were also connected by N–H . . . O–N–O, in which
the hydrogen atom of amide is bound to the oxygen of the nitro-substituted group.
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For compound B2, the molecule was also crystalized as a monoclinic structure with a
P21/c space group, and its Z configuration concerning the N–C(=O)–C–O bond is presented
in Figure 4. Remarkably, the structure of compound B2 was observed to be disordered
at the position of fluorine atoms of the -CF3 functional group; therefore, the formula was
presented as a double of the literal structure. Unlike compound B1, compound B2 was
observed to be more diverged from the planarity condition, with the torsion angles of
C8–C9–O1–C10; 172.8(1), C5–N1–C8–O2; 0.7(2), C5–N1–C8–C9; −179.6(1) and N1–C8–
C9–O1; 1.7(2). Notably, the torsion angles of C8–N1–C5–C4 and C8–N1–C5–C6 related to
the -CF3-substituted benzene ring aligned with the remaining structure were −142.3(2)
and 38.2(2), respectively. The arrangement largely deviated in comparison to compound
B1; accordingly, the packing images are exhibited as zigzag structures, as presented in
Figure 5. According to this orientation, the intramolecular H-bonding of C=O . . . H was not
observed in compound B2; however, the molecules were also linked to each other through
C=O . . . H–O bonding, as presented in Figure 6. The H-bonding process according to the
hetero atom of fluorine with N–H, including π–π interaction between each plane, was not
observed; nonetheless, the difference between each centroid was detected with the value of
4.8447(15) Å.
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Figure 6. Intermolecular hydrogen bonding in compound B2.

In terms of the bond lengths, the comparison of bond distances involving the amide
functional group demonstrated that N2–C7; 1.352(4) and C7–O3; 1.211(4) in compound B1 were
relatively comparable to the bonds of N1–C8; 1.338(2) and C8–O2; 1.222(2) in compound
B2. In addition, the bond that bound the nitrogen atom of the amide group and the phenyl
ring was observed to be 1.408(4) and 1.419(2) in compounds B1 and B2, respectively. This
was attributed to the related equivalent strength of the -CF3 electron-withdrawing group
related to -NO2 that created an almost equal electron density in the bond formation, leading
to the similar bond lengths of such compounds. Some important bond lengths, bond angles
and torsion angles are presented in Table 2.

Table 2. Selected bond lengths (Å), bond angles (◦) and torsion angles (◦) in B1 and B2 compounds.

Compound B1 Compound B2

Selected bond lengths Selected bond lengths
N1–O1 1.221(4) C7–C8 1.501(4) C1–F1 1.336(4) C8–C9 1.510(2)
N1–O2 1.226(4) C8–O4 1.409(3) C1–F2 1.244(6) C9–O1 1.412(2)
C4–N2 1.408(4) O4–C9 1.377(3) C5–N1 1.419(2) O1–C10 1.378(2)
N2–C7 1.352(4) C13–C15 1.504(4) N1–C8 1.338(2) C12–C16 1.507(3)
C7–O3 1.211(4) C11–O5 1.371(4) C8–O2 1.222(2) C14–O3 1.367(2)

Selected bond angles Selected bond angles
C4–N2–C7 129.0(3) C5–N1–C8 125.7(1)
N2–C7–O3 123.7(3) N1–C8–O2 124.7(1)
N2–C7–C8 113.6(2) N1–C8–C9 116.3(1)
O3–C7–C8 122.7(3) O2–C8–C9 119.0(1)
C7–C8–O4 106.5(2) C8–C9–O1 110.2(1)
C8–O4–C9 118.3(2) C9–O1–C10 117.8(1)

C12–C13–C15 120.0(3) C13–C12–C16 120.3(1)
O5–C11–C12 122.7(3) O3–C14–C13 117.8(1)

Selected torsion angles Selected torsion angles
O2–N1–C1–C6 −177.0(3) F3–C1–C2–C7 −10.1(4)
C7–N2–C4–C3 −178.6(3) C8–N1–C5–C4 −142.3(2)
C7–N2–C4–C5 1.8(5) C8–N1–C5–C6 38.2(2)
C4–N2–C7–O3 0.9(5) C5–N1–C8–O2 0.7(2)
C4–N2–C7–C8 179.1(3) C5–N1–C8–C9 −179.6(1)
N2–C7–C8–O4 172.7(2) N1–C8–C9–O1 1.7(2)
C7–C8–O4–C9 174.2(2) C8–C9–O1–C10 172.8(1)

C8–O4–C9–C10 5.4(4) C9–O1–C10–C11 −177.1(1)
C8–O4–C9–C14 −174.3(2) C9–O1–C10–C15 3.8(2)

3.2. Theoretical Calculations

For the calculations, the structures of B1 and B2 were optimized, as illustrated in
Figure 7. The bond lengths for the C-N, N-H and N-C distances of B1 and B2 were 1.396Å
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and 1.402 Å; 1.013 Å and 1.013 Å; 1.361 Å and 1.357 Å, respectively. There were no
significant differences in the bond lengths’ values in the optimized geometries of B1 and
B2. However, optimized structures of B1 and B2 exhibited the existence of a strong H-bond
(1.013 Å) belonging to N-H.
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Figure 7. Optimized structure of (a) compound B1 and (b) compound B2.

The excitation energies, oscillator strengths (f) and transition states obtained from
the TD-DFT calculations at the PBE0/6-311G(d,p) level using optimized ground state
geometries for B1 and B2 are listed in Table 3. The calculated wavelengths with the
maximum absorption values of B1 and B2 were 314 and 240 nm, respectively, which were
slightly lower than the experimental results at 327 and 258 nm. According to the TD-DFT
calculations, these strong absorptions corresponded to HOMO-1→LUMO (S0→S3 state)
and HOMO-2→LUMO (S0→S4 state) transitions for B1 and B2, respectively. The results
clearly show that the electronic transition of B1 with substituted (-NO2) is more effective
than that of B2 with the trifluoromethyl (-CF3) group.

Table 3. The main contributions of electronic transition using PCM-TD-PBE0 functional at 6-311G(d,p)
basis set compared to the experimental absorption wavelengths of B1 and B2 in the DMSO solvent
(Eex is the calculated vertical excitation energy, H corresponds to HOMO and L corresponds to
LUMO).

Compound B1

States Eex (eV) Eex (nm) f Electronic Transition

S0→S1 4.02 354 0.0048 H→L(99%)

S0→S2 4.3 315 0.0006 H-5→L(95%)

S0→S3 4.61 314 0.3465 H-1→L(66%)+ H-2→L(33%)

S0→S4 4.78 279 0.0131 H-2→L(65%)+ H-1→L(34%)

Compound B2

States Eex (eV) Eex (nm) f Electronic Transition

S0→S1 5.21 260 0.0062 H→L(98%)

S0→S2 5.22 243 0.0397 H-1→L+1(33%)+ H-2→L+1(28%)

S0→S3 5.33 242 0.1511 H→L+2(70%)+ H-1→L+3(10%)

S0→S4 5.52 240 0.5093 H-1→L(70%)+ H-2→L(18%)

The molecular orbitals were related to the electronic transitions for both compounds, as
presented in Figure 8. The structures of compounds B1 and B2 explained the contributions
of HOMO-1, HOMO-2 and LUMO excitations. The HOMO-1 to LUMO and HOMO-2
to LUMO excitations corresponded to the internal charge transfer (ICT) process for the
electronic spectra of compounds B1 and B2.
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3.3. The Optical Properties of Compounds B1 and B2 by UV–Visible Spectroscopy

The maximum wavelength absorptions of compounds B1 and B2 in DMSO were at
327 and 258 nm, respectively. Upon the addition of the OH− ion to the B1 solution, an
absorption wavelength of 327 nm disappeared. This indicated that a new band at 466 nm
corresponded to the deprotonated species in the solution, as presented in Figure 9A. This
mechanism was under the internal charge transfer process [24]. This phenomenon occurred
under the π–π* transition that produced the red shift of the absorption wavelength. In the
case of B2, the absorption wavelength at 258 nm decreased and presented a new absorption
wavelength at 303 nm upon the addition of OH−, as presented in Figure 9B. The mechanism
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was similar to that of B1. An obvious change can be observed in B1, rather than B2, because
of the NO2 group performing as an electron-withdrawing group, resulting in the NH of the
amide functional group being a more acidic proton; therefore, the addition of OH− to the
B1 solution led to the loss of a proton in the amide group. For the B2 compound, the CF3
moiety is less powerful than the NO2 group in B1, but B2 can lose the proton of the amide
group. For the color change when adding OH−, as presented in Figure 10, the B1 solution
changed from being colorless to an intense yellow color, but B2 did not change color. The
color changes of the B1 and B2 solutions were consistent with the UV–Vis experiments.
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3.4. The Interactions between Compounds (B1 and B2) and OH− Ion by 1H NMR Spectroscopy

Additionally, the NH proton signals of B1 and B2 were 10.64 and 10.39 ppm, respec-
tively. The OH proton signals of B1 and B2 are 9.33 and 9.34 ppm, as presented in Figures 11
and 12. Upon addition of OH− in 1 equivalent, the NH and OH protons of both compounds
disappeared due to the deprotonation process [25]. The CH2 and ArH protons of B1 and
B2 exhibited an upfield shift because these protons gained an enhanced electron density.
By adding 2–4 equivalents of OH− to the B1 and B2 solutions, the proton peaks presented
greater upfield shift when compared to one equivalent of the OH− ion. This evidence
indicates that the structures of B1 and B2 are changeable to a deprotonated form under
basic conditions.
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Figure 12. 1H NMR spectra of B2 (5× 10−3 M) and B2 with different equivalents of OH− in d6-DMSO.

4. Conclusions

The orcinolic derivatives (B1 and B2) were synthesized and crystallized in the present
study. The crystal structures of B1 and B2 were also stabilized by the hydrogen-bonding
interaction. The π–π stacking interaction did not occur within intermolecular crystals. The
DFT results indicate that the HOMO and LUMO of B1 and B2 are consistent with that of
the UV–Vis results. The 1H-NMR results show that the structures of B1 and B2 changed
the resonance signals of aromatic and methylene protons upon the addition of OH− ions.
Therefore, B1 and B2 can be used as hydroxide indicators.
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