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Abstract: Because of their importance in a variety of interdisciplinary study domains, Schiff-base
ligands have performed a significant role in the evolution of contemporary coordination chemistry.
This almost-comprehensive review covers all the aspects and properties of complexes, starting from
the Schiff-base ligands. Our work is centered on the eloquent advances that have been developed
since 2015, with special consideration to recent developments. Schiff-base ligands and their complexes
are adaptable compounds obtained from the condensation of two compounds: a carbonyl with an
amino. The correspondent metal complexes have been shown to have antifungal, antibacterial,
antioxidant, antiproliferative, and antiviral properties. This review begins with a short introduction
to Schiff-base ligands and their metal complexes. It stands out in the recent advancements in the
Schiff-base coordination chemistry domain and its future prospects as a potential bioactive core.
Additionally, the review contains knowledge about the antioxidant, redox, and catalytic activities of
the Schiff-base complexes, with important future applications in the obtaining of new compounds
and materials.

Keywords: Schiff-base complexes; antimicrobial activity; antioxidant activity; redox activity; catalytic
activity; siloxane

1. Introduction

Schiff-bases are a peculiar type of ligands possessing a diversity of donor atoms that
exhibit remarkable coordination modes towards transition metals [1–3], with the existence
of an azomethine linkage influencing biological activities [4–6]. An appreciable number of
Schiff-bases starting from various amines have been investigated by different methods [7,8]
and have been shown to have interesting applications in catalytic reactions, materials
chemistry, and last but not least, in industry [9,10]. Due to the reason that the steric
and electronic properties can be controlled by the amine/aldehydes basic, the salen type
ligands, obtained after condensation of salicylaldehyde and the primary diamine, are stated
as flexible ligands for coordination chemistry. This important type of ligands contains
in their structure donor centers necessary for metal ions to project different geometries
with other ligands [11]. Therefore, a numerous number of complexes were obtained by
moving the metal ions in the salen-type ligand. These compounds have been considerably
investigated in various domains of chemistry. The chelating activity of the tetradentate
ligand with nitrogen-oxygen donor atoms gives it kinetic and thermodynamic stability,
making it interesting for researchers. The presence of the nitrogen in the imine groups
(C=N) in Schiff-bases and in their metallic complexes and their chelating properties are the
reason for their many unique biological properties.

Metallo-salens compounds constitute relevant parameters in the progress of current
inorganic biochemistry [12–14], catalysis [15–17], magnetism [18], medical imaging [19],
and not long ago in sensors [20,21], nonlinear optical (NLO) devices [22], solar cells [23],
and as building motifs [24] or building blocks [25].
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These compounds are easy to synthesize and can be bonded with quasi all metal ions
in order to form the appropriate complexes; azomethine nitrogen being responsible for
coordination with metal ions through it [26]. Quite a large number of these types of metal
complexes with different coordination geometry and flexible oxidation states have been
studied in depth [27–34], some of them being representative of the progress of inorganic
biochemistry and catalysis. Copper is a biologically essential component, which is why
many chemicals need it to function [35]. The coordination chemistry of copper has aroused
the interest of numerous scientists due to its well-informed biological characteristics. A
very large number of copper complexes based on Schiff-bases have been successfully used
as models in biological and supramolecular systems [36–42].

Beyond the last decades, there have been many scientific studies regarding appli-
cations, mainly in biology: the antimicrobial, redox, catalytic, and antioxidant activities.
Therefore, a review accentuating the employment of the named ligands and their com-
plexes is demanded. The significance of Schiff-base complexes in supramolecular chemistry,
materials science and catalysis, coordination and separation processes, applications in
biomedical fields, and the formation of new compounds with outstanding structures and
properties, had been well studied and revised [43–49].

The biological activity of the metal complexes is higher than that of their ligands.
The complexes of the Schiff-bases are of great consideration due to their stability, electron
donating capacity, optical nonlinearity, catalytic, photochromic, and biological activity.
These practical activities are all based on the coordination of Schiff-bases with the metal
ions. An interesting class of Schiff-base complexes is that obtained starting from amino
acids [50]. Amino acids are dynamically implicated in a part of biological processes
and they possess the –NH2 and –COOH coordinating sites, which can be bonded with
aldehydes/ketones for synthesize Schiff-bases which are easily coordinated with the metal
ions (Figure 1).
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The majority of the ligands derived from the amino acids and their complexes with
the appropriate metal present distinct activities as drugs. An important study focused on
the analysis of complexes based on Schiff-bases of amino acid derivatives from the last five
years was made by Ghanghas et al. [51]. The complexes made with these ligands have high
thermal stability and antibacterial activity, making them suitable for medical applications.
The different types of the metal, ion, and ligand, the surrounding of the complex, coordina-
tion sites, hydrophilicity, lipophilicity, and the presence of co-ligands, together with the
concentration, all affect the antibacterial activity of these compounds [52–54]. Inclusion of
polar and lipophilic substituents increases the antibacterial action. Heterocyclic ligands
with multifunctionality, which can interact with nucleoside bases or specific biological
metal ions, are good candidates for bactericides [55–57]. The heterocyclic ligands interfere
with functional groups (enzymatic type) to get access to high coordination numbers. In a
recent study, Ghanghas et al. presented the history of the evolution of different types of
investigations used in order to improve the metal complexes of the Schiff-bases’ biolog-
ical activity, thus being of real help in projecting a new class of drugs starting from the
named compounds. The research regarding the antimicrobial activity of the synthesized
compounds has been considerably studied because there is a relevant issue to exploring
the linking properties of the complexes with a large variety of metal ions [51].
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Researchers have concentrated their efforts in recent years on producing and investi-
gating a new category of ligands and their complexes, having tetramethyldisiloxane spacers
between the complexing groups (from 320 to 3249 structures in the Cambridge Crystallo-
graphic Data Centre (CCDC) database). These structures are organized as a single crys-
tal (https://www.ccdc.cam.ac.uk/structures/Search?Compound=tetramethyldisiloxane&
DatabaseToSearch=Published, accessed on 1 October 2022). The tetramethyldisiloxane
spacers are well known as flexible and hydrophobic, and these properties are of real in-
terest. Thus, research activities focused primarily on the production of such ligands and
their metal complexes of relevance for catalysis, biological activity, materials science, and
nanoscience, reporting a vast number of such structures in the CCDC crystallographic
database [58–64]. The scientists have obtained and investigated around 259,536 Schiff-base
ligands and their complexes, organized as a single crystal (the structures are presented in
the CCDC Cambridge base) and more others in different forms.

In this review, advanced and biomedical applications (antimicrobial, antioxidant,
redox, and catalytic activities) of novel Schiff-bases and the metal complexes starting from
their discovery from 2015 to present are highlighted.

2. Some Aspects of the Biological Significance of Schiff-Base Complexes

The subject-the metal complexes starting from Schiff-bases has attracted the attention
of researchers because of its biological activity, with the main goal of discovering straight
and active therapeutic agents for the cure of various bacterial diseases.

Research into biological and inorganic chemistry has been of particular concern to
Schiff-base metal complexes, as it has been observed that a lot of the complexes can be used
as models for biologically important species. Therefore, we report them hereunder.

2.1. Antimicrobial Activity (Antibacterial and Antifungal)

Over the recent few years, from 2015 to present, the Schiff-base metal complexes have
earned much attention due to the biological properties of them. A large number of studies
have been published on their use in biological applications [65,66]. Schiff-bases have been
found as potentially effective antibacterial agents. The metal complexes of the Schiff-bases
have much better antibacterial activity than their free ligands [67–72].

The recently published literature [73] emphasizes the notable potential for antimicro-
bial activity and progress in the field of other types of interesting topoisomerase complexes.
It was demonstrated that the Cu(II)-picolinic acid complex is a significant delayer of gel
electrophoresis [74]. The thiosemicarbazone derivative of copper(II) has good activity in
the killing of S. aureus, S. typhimurium and K. pneumoniae after 6 h of incubation [75].

The antibacterial activity of a special class of complexes of transition metals bonded
through coordination bonds in the N2O2 mode was investigated, with the Schiff-bases of
the salen-type starting from the, 1,3-bis(3-propyl)tetramethyldisiloxane (AP0)—a diamine
having a siloxane spacer commercially available, with various salicylic aldehyde deriva-
tives [76,77]. All the metal complexes studied were assessed for antifungal (in vitro with
three types of fungi species (Aspergillus niger, Penicillium frequentans and Alternaria alternata)
and antibacterial activity (with two types of bacteria—Gram-negative (P. aeruginosa) and
Gram-positive bacteria (Bacillus)). The results of the antimicrobial activity tests showed
a higher efficiency, closer to that of the reference compounds (in this case-Caspofungin
and Kanamycin), in the case of the azomethines originating from substituted salicylalde-
hyde [77]. The ligands derived from 5-chlorosalicylaldehyde and its metal complexes have
been shown to present the highest potential for biological applications (this could be caused
by the presence of chlorine in the 5 position). The results of the antifungal and antibacterial
activity measurements recommended some of the synthesized compounds as possible
antimicrobial agents [59,76].

In another study, Zaltariov et al. [60] obtained and studied metal complexes starting from
silicon-containing ligands (starting from a new amine-trimethylsylil-propyl-p-aminobenzoate).
The Schiff-bases behave as bidentate (NO), tridentate (N2O), or tetradentate (N2O2) ligands,

https://www.ccdc.cam.ac.uk/structures/Search?Compound=tetramethyldisiloxane&DatabaseToSearch=Published
https://www.ccdc.cam.ac.uk/structures/Search?Compound=tetramethyldisiloxane&DatabaseToSearch=Published
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and they have a large diversity of interesting characteristics with applications in various
domains like biological, analytical, or industrial applications. Many of these ligands and
complexes have antibacterial, antifungal, antiviral, and antitumor properties. For projecting
different types of ligands, it is really important to choose the appropriate carbonylic and
aminic precursors. Homometallic and heterometallic complexes with trimethylsilyl groups
in structure have demonstrated an amphiphilic character and they can self-assemble in
solution as a function of solvent polarity. These special properties enhance the catalytic
activity for the complexes in various substrates and affect the behavior in solution. The
authors synthesized Cu(II) and Zn(II) complexes with two bidentate Schiff-bases hav-
ing trimethylsilyl units. The ligands were prepared by the condensation reaction of a
novel trimethylsilyl-propyl-p-aminobenzoate with o-vanillin and salicylaldehyde. Some
of the complexes can be used as possible candidates for cellular imaging because of their
absorbance in the visible region and because of their green emission. Complexes with
different types of metals were estimated against various fungi species and some types
of bacteria, and the analysis showed that they have a higher biological activity than the
standard compounds Kanamycin and Caspofungin [78].

Literature studies indicate that Schiff-bases having antibacterial activity are obtained
from indole [79,80], pyridine [81–83], isatin [84,85], hydrazide [86,87], benzimidazole [88,89],
thiazolidiones [90,91], thiazole [92], thiosemi-carbazone [93,94], lysine/curcumin [95,96], and
siloxane [76] (Figure 2).

Further study of the literature has shown an important increase in systemic fungal
infections with life-threatening effects [97]. Numerous studies show that Candida (albicans
and non-albicans) and Aspergillus (Asp.) species are responsible for the most severe fungal
infections [98–102]. Thus, the progress of new antifungal species with decreased resistance
and bigger efficacy is a priority [103,104]. A number of lengthy and laborious investigations
have been carried out, and some Schiff ligands have been found to be bright antifungal
agents [105,106]. The researchers also highlighted the existence of different groups such as
methoxy, halogen, and naphthyl, which enhance the ligand’s fungicidal activity [44,107].
While very disseminated, new literature clearly accentuates the remarkable potential of
antifungal drug research in the metal complex domain [108–111].

In another study, ligands, Schiff-bases type and their Cr(III), Fe(III), Mn(II), Cu(II),
Zn(II), Ni(II), and Cd(II) metals, mononuclear chelate complexes have been obtained from
4-((1-5-acetyl-2,4-dihydroxyphenyl)ethylidene) amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-
3(2H)-one ligand, a tridentate ligand, were synthesized and used for in vitro determinations
to establish their antimicrobial activity as compared with Gram-negative and Gram-positive
bacterial and fungal organisms. In this study the MOE 2008 was used for heading the
screen potential of drugs using molecular docking through the protein sites of the novel
coronavirus, and the research was constructed to molecular docking free from the validation
through MD simulations [112].

Some of the compounds were analyzed for their application for in vitro antimicrobial
activities against four bacterial strains (S. aureus, B. subtilis, P. aeruginosa, E. coli) and also
two fungal strains (A. niger, C. albicans) using the method of serial dilution, and the results
have shown that the metal(II) complexes are not better than free Schiff-base ligands because
they are more harmful (Figure 3).

The complex [Cu(L2)(CH3COO]·H2O was discovered to have antifungal activity
against Candida albicans that was comparable to conventional medicaments. The molecular
docking of the ligand H2L2 and its Cu(II) complex using the C. albicans sterol 14-alpha
demethylase enzyme implies hydrophobic binding. The research “in silico” brings out that
the named compounds can be employed as drugs active in orally derived forms [113].
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2.2. Antioxidant Activity

Much interest has been aroused in the identification of compounds with antioxidant ca-
pacity. Natural antioxidants are known to be the most expensive, which is why researchers
have opted for the widespread use of synthetic antioxidants, this being more effective and
cheaper. Thus, some metal complexes have been investigated in order to act as efficient
traps of reactive oxygen species (ROS) behaving as antioxidants [43].

A series of Schiff-bases starting from diamine, sulfanilamide, hydroxyquinoline, thio-
carbohydrazide, and benzohydrazide, with substituted ketone or aldehyde and their Co(II),
Zn(II), Cu(II), Fe(II), Ni(II), Pd(II), Cd(II), and Ru(II), metal complexes were studied to
determine their effect on the antioxidant activity. The compounds having methyl and
nitro-substituents presented higher antioxidant activities than the ones with 4-hydroxy
groups, conducting to an improvement in the antioxidant activity [114,115].

A study elaborated by Inan et al. [98] evidences the antioxidant potency by the L-ascorbic
acid-standard method (DPPH). The complexes presented higher activity as compared with
the ligand, this fact being due to the coordination binding of the metal ion with the organic
ligand. [Cu(II)-(furfural-MAP)2Cl2] and [Ni(II)-(furfural-MAP)2Cl2] presented the higher
antimicrobial activity, meanwhile [Zn(II)-(furfural-MAP)2Cl2] had a mild activity. The
differences in the antioxidant activities of the complexes are due to their coordination
sphere and redox characteristics [116].

Kizilkaya et al. [117] studies the antioxidant activities of synthesized Schiff-bases ob-
tained using 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging
and 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging and decreasing their
activity. Due to the revealing of good antioxidant activity, the synthesized compounds (3, 5,
and 7) have the potential to be used as synthetic antioxidant agents [117].

Devi and Pachwania [118] have obtained complexes containing new diorganotin(IV)
and starting from ligands like R2SnL (where R: methyl, butyl, phenyl, and ethyl) of Schiff-
base ligands. The antioxidant activity of the complexes was evaluated using the mea-
surement of DPPH (1,1-Diphenyl-2-picrylhydrazyl). The complex Ph2SnL3 possessed the
highest antioxidant potential, having the smallest (2.95µM) IC50 value of all obtained com-
pounds. The authors examined the biological profile of the compounds; then the complexes
were screened for antimicrobial applications in vitro versus different fungal and bacterial
strains using the method of serial dilution. Experiments showed that the Bu2SnL3 and
Ph2SnL3 complexes were the most active antimicrobial agents [118].

In another research study, Devi and collaborators [113] obtained 16 new Ni(II), Cu(II),
Co(II) and Zn(II) complexes starting from four Schiff-base ligands, synthesized through
4-(benzyloxy)-2-hydroxybenzaldehyde with various aminophenol derivatives condensa-
tion reaction. Some of the compounds were tested for their antioxidant properties in vitro
applications and the obtained metal(II) complexes were found to have a significant poten-
tial and presented an important decolorizing the purple-colored solution of DPPH with a
good efficiency as compared to free ligands and the Cu(II) complexes, which were the best,
showed an IC50 value in the range of 2.98 to 3.89 µM [113].

The antioxidant activities of macroacyclic Schiff-base ligands (N4O2), obtained by con-
densation of 2-hydroxybenzaldehyde or 2-hydroxy-3-methoxybenzaldehyde with polyamine
and the copper(II) and cobalt(II) complexes, have been investigated [114,119]. The disk dif-
fusion method and DPPH free radical scavenging were utilized to assess the characteristics
(antibacterial and antioxidant) of the obtained compounds in vitro. The findings of this
investigation clearly showed that all of the synthesized complexes have biological features
that could aid in the prevention of disease progression and the development of innovative
therapeutic medicines.

The new class of tetradentate Schiff-bases and the copper complexes of their having a
tetramethyldisiloxane spacer between the coordination bounding groups were measured as
additives in the obtaining of mass of S. platensis to determine their effect on the antioxidant
activity of the 70 wt percent extract in ethanol based on spirulina biomass. The antioxidant
activity determined from experiments in the presence of copper(II) complexes for S. platensis
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biomass showed the potential to change in the direction of having increased activities in
experiments [76]. The improved antioxidant activity of these compounds after coordination
with different types of metals constitutes an important research direction.

2.3. Redox Activity of the Studied Schiff-Bases and Their Complexes with Different Metals

Cyclic voltammetry (CV) has become an electroanalytical method of great interest in
many fields of chemistry. It is used to study redox processes, to understand reaction intermedi-
ates, and to obtain the stability of reaction products. The complexes presented complex redox
behavior, including different oxidation/reduction processes not only of the central metal atom
but also of the ligand. Electrochemical methods supply a remarkable manner for the research
of the redox behavior for different types of metal complexes [120–122].

Tsantis et al. [123] identified the novel track to lanthanoid (Ln) multielectron redox
transfer [124], presenting the redox activity of tetradentate N, N, O, O-Schiff-bases. The
studies of reactivity and electrochemical ones made on K3 mononuclear complexes [Ln(bis-
Rsalophen)] demonstrated that the complexes oxidation potential can be adjusted through
the changing of the substituent at the ligand and that the complexes can act as formal
two-electron reducers.

Andrez et al. have shown that the redox activity of the ligands is influenced by the
reversible storage of e- and by the redox active ligands coordinated to cobalt ions and the
important role played by the bounded alkali cations in these types of processes [125].

The determinations of cyclic voltammograms for the synthesized H2Lx siloxane lig-
ands and Cu(II) complexes showed that they have electroactivity. The irreversible electron
and quasireversible transfer processes undergoes in both of the complexes with the central
Cu atom and ligands. The CuL3, CuL4 and CuL1, complexes are studied in the oxida-
tion/reduction processes with a smallest potential value than CuL2 complexes because of
the substituents which are attached at the aromatic rings [76].

3. Schiff-Base Complexes as Catalysts

Among the many co-catalysts commonly used in many studies, the complexes starting
from Schiff-base ligands with transition metals are a class of highly sought-after materials
because of their ease of obtaining and the multitude of metal centers that can be embedded
into the N2O2 coordination realm [50,126]. Their structure enables a wide range of sub-
stituents to be added. This chemical flexibility for the covalent stability of such catalysts on
a support can be used. Exceptional studies have been published on this topic [127–129].

Various Schiff-base metal complexes have strong activity as catalysts and have been
used in a variety of processes to improve the product selectivity and yield. The most
relevant ways of synthesis and the thermogravimetric stability of the ligands have a
significant influence on their applications in the catalysis field as metal complexes [130,131].

The Schiff-base complexes of the transition metal ion are effective catalysts in both
homogeneous and heterogeneous processes, and their activity varies depending on metal
ions used, ligands, and the coordination sites. The high catalytic activity of the metal
complexes is due to the ability of Schiff-bases to settle down a wide range of metals at
different oxidation states, allowing them to govern the ability and performance of metal
ions in a wide range of important catalytic reactions [132].

Racles et al. effectively assessed the catalytic activity of Congo red (CR) in photode-
composition under natural light without the use of any extra oxidation agents or pH
modifications. An important catalytic activity was determined for the Co-complex of CX
and EBPy, which presented a particular behavior: a discoloration efficiency of almost 82%
after 80 min of sunlight exposure and 50% discoloration after 6 min [133].

The Schiff-base complexes of V, Mn, Fe, Co, Ni, Cu, and Zn ions from polymers,
were utilized as catalysts for the peroxidation of several alkenes, including limonene,
cyclohexene, styrene, trans-stilbene, verbenone, cis-stilbene, linear alkene, cyclooctene,
α-methyl styrene, and α-pinene. The different Schiff-bases and various types of oxidants
were explored. The data obtained for the complexes of polymer-supported first-row
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transition metals for alkene peroxidation have been shown to be very interesting and
significant to material and catalytic scientists because of their special properties as compared
to unsupported catalysts and metals from the periodic table. Additionally, the authors
presented challenges and opportunities for future study [134].

4. Conclusions

Because of their capacity to cast complexes with different types of metal ions and their
pharmacological properties, the Schiff-bases are a relevant class of chemical molecules.
The complexes have presented an increasing interest over the last few years because of
their various applications in biological processes and possible uses in designing new
interesting therapeutic agents. But still, it needs to explore the biological applications of
the transition metal complexes, already synthesized, and to obtain new complexes with
improved properties accordingly. Schiff-base complexes have been intensively studied
in the antimicrobial domain, showing antibacterial activity against Gram-positive and
Gram-negative bacteria, and also having antifungal potential. The most recent studies on
Schiff-bases and their complexes as antibacterial have been reviewed herein. It is good to
notice that antibacterial and antitumor activities are higher for the Schiff-base compounds
complexed with metals. Therefore, the antimicrobial action of the Schiff-base compounds
reviewed herein should be taken into account for increasing the development of novel
metal complexes with enhanced antimicrobial capacities.

We conclude this study by emphasizing that it is expected that this short review
presentation will be of real use for inorganic chemistry researchers who are working with
Schiff-base ligands or who are just starting out in this interesting field. We would be
honored if readers considered this short review useful and helpful for their future work, as
we enjoyed editing it.
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