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Abstract: Investigated is a novel model in the photo-thermoelasticity theory that takes into account
the impact of porosity and initial stress. A generalized photo-thermoelastic that is initially stressed
and has voids is taken into consideration for the general plane strain problem. The solutions for
the fundamental variables in two dimensions are obtained using the Laplace–Fourier transforms
method in two dimensions (2D). Physical fields such as temperature, carrier concentration, normal
displacement, and change in volume fraction field can all be solved analytically. The plasma of
electrons, thermal load, and mechanical boundary conditions at the porosity medium’s free surface
are used to show certain illustrations. The context of the Laplace–Fourier transformation inversion
operations yields complete solutions. To complete the numerical simulation and compare several
thermal memories under the influence of the porosity parameters, silicon (Si), a semiconductor
porosity material, is used. The main physical variables are described and graphically displayed with
the new parameters.

Keywords: initial stress; semiconductor; photo-thermoelasticity; silicon; porosity; waves

1. Introduction

Temperature variations cause physical changes in some materials. These materials
include semiconductors because of the significant temperature-related changes in their
properties, particularly when light beams impact their surface. The heating process directly
causes the inner and outer atoms to lose some electrons, and these excited electrons swiftly
move toward the semiconductor surface. As a result, the material’s resistance changes since
semiconductors change in resistance as temperature rises, enabling the flow of the electric
current. The thermal effect, which is carried on by internal medium particle vibrations and
collisions, causes the material to deform. Thermal (thermoelastic) deformation (TED) is
the term for this deformation. The second is the electronic deformation (ED) generated by
electron transport processes brought on by the surface’s absorption of light (photo) energy
and the associated diffusion and transfer of electrons. In this case, the photothermal (PT)
theory is applied and the thermoelasticity theory is taken into account. In this case, as a
result of the internal movements of electrons and collisions between particles, the material
becomes porous. The double porosity model depicts a double porous structure with macro
and microporosity, which are associated with pores and fissures, respectively.

Lord–Shulman [1] put out the extended theory of thermoelasticity, which assumes
that a thermoelastic process has one relaxation time. One of the most significant materials
whose physical characteristics are examined is semiconductor material. Unlike copper,
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which is a good electrical conductor, these materials are not effective. Additionally, unlike
glass, they do not act as insulators. With rising temperatures, these materials’ resistance
steadily declines. As a result, they improve as an electrical conductor. Modern industries
with its applications, especially those that rely on electrical circuits such as transistors, place
a high value on semiconductor materials.

Internal physical characteristics and internal structure deformations of semiconductor
materials change at high temperatures. When white light or laser beams touch semiconduc-
tor material, photothermal phenomena develop [2]. Thermal, elastic, and plasma waves
are examined using a sensitive study according to the spectroscopy of photoacoustic pro-
cesses of solid semiconductor material [3]. During thermal and electronic deformation, the
photothermal theory was investigated in two dimensions (2D) [4]. Physical constants are
examined using optical excitation, thermoselasticity theories, and photoacoustic analysis
spectroscopy for a solid semiconductor medium [5,6]. With the aid of photothermal excita-
tion techniques, according to the thermoelasticity models, with dual phase-lags, thermal
memories are applied to the semiconductor medium [7,8]. Hosseini et al. [9,10] studied
Moore–Gibson–Thompson and Green–Naghdi theories subjected to plasma shock loading
when the plasma waves in the photo-thermoelastic semiconductor medium are considered.

The simplest generalization of the conventional theory of elasticity is the theory of
the elastic solid with voids. The void volume is one of the kinematic variables in this
theory, which deals with elastic materials made up of a distribution of tiny porous (voids).
Numerous engineering disciplines, including the petroleum industry, material science, and
biology, use porous materials. An elastic material with vacancies has a nonlinear theory
developed by Nunziato and Cowin [11]. The elastic linear materials with vacancies are the
subject of a hypothesis proposed by Cowin and Nunziato [12]. Dhaliwal and Wang [13]
investigated the sphere of effect theorem in the linear theory of elastic materials with
vacancies. The double porosity model has been extensively studied by several authors,
who then gave a more thorough and cohesive presentation of the flow and deformation
theory in double porous media [14,15]. Ainouz [16] investigated the homogenized double
porosity models for poroelastic media with an interfacial flow barrier. Plane waves and
boundary value concerns in the theory of elasticity for solids with double porosity were
examined by Svanadze [17]. The stability and distinctiveness of double porosity elasticity
were researched by Straughan [18].

Initial stresses are created in the medium for a variety of reasons, including tempera-
ture differences, the quenching process, variances in gravity, and more. The planet should
experience significant initial stresses. Isotropic linear thermoelasticity with hydrostatic
starting load was studied by Montanaro [19]. In a generalized thermoelastic media with
hydrostatic initial stress that was undergoing ramp-type heating and loading, Ailawalia
and Singh [20] investigated the influence of rotation. A generalized thermoelastic half-
space with voids that was initially strained was the subject of an investigation by Abbas
and Kumar [21]. A generalized thermoelastic infinite media with voids subjected to an
instantaneous heat source with fractional derivative heat transfer was explored by Bachher
et al. [22,23] in their investigation of the fractional-order thermoelastic interactions in an
infinite void material generated by distributed time-dependent heat sources.

The generalized photo-thermoelastic initially stressed semiconductor medium with
voids, according to applied mechanical force, is the focus of the current investigation.
According to the exciting semiconductor material, the effect of holes is neglected. For a
homogeneous, isotropic, photo-thermoelastic media with voids, the distributions of carrier
concentration, normal displacement, temperature, and the change in volume fraction field
have been calculated using the Laplace–Fourier transform method. Two-dimensional
analysis in the xz-plane is used to study the problem. Graphical representations are used
for the physical quantities.
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2. Mathematical Model and Basic Equations

Many generalized thermoelasticity models are built by Eringen [24], Green and Lind-
say [25], and Lord and Şhulman [26]. In this problem, the effects of double porosity with
initial stress on a linear isotropic generalized photo-thermoelastic solid semiconductor
medium are investigated. The semiconductor medium is represented in Cartesian coordi-
nates (x, y, z), when z-axis is pointing vertically down into the medium and their origin
is on the surface at y = 0. The photothermal mechanism, which results in the production
of free carriers (plasma wave propagation), is caused by thermal waves on the medium’s
outer surface [27]. The plasma-thermal-elastic wave overlap process in this instance arises
in the setting of a photothermal excitation [1]. In the framework of photothermal theory,
under the influence of double porosity with starting stress in two dimensions (x, z), the
constitutive equations and field equations in the absence of body forces are given according
to the following consideration:

(i) According to [25,28], during the photo-excited process of semiconductor elastic
medium, there is a link between thermal waves and plasma waves:

∂N
∂t

= DE∇2N − N
τ
+ κ T. (1)

The quantity κ = ∂n0
∂T symbolizes the general case of the thermal activation coupling

parameter.
(ii) According to the photo-thermoelastic theory, the equations of motion for semiconduc-

tor materials under the influence of double porosity and initial stress can be expressed
as follows [29]:

(λ + µ + p
2 )∇(∇ ·

→
u ) + (k + µ− p

2 )∇2→u + λo∇φ−

γ̂(1 + vo
∂
∂t )∇T − δn∇N = ρ

..
→
u

}
. (2)

where the term λo∇φ describes the effect of porosity, the term γ̂(1 + vo
∂
∂t )∇T ex-

presses the temperature effect, δn∇N shows the plasma (carrier density) influence
and the expression (λ + µ + p

2 )∇(∇ ·
→
u ) + (k + µ− p

2 )∇2→u describes the mechanical
(stress force) force influence with initial stress.

(iii) The photo-thermoelastic theory’s heat conduction equation for semiconductor media
under the influence of twofold porosity and initial stress can be written as [30]:

K∇2T − ρCE(n1 + τo
∂

∂t
)

.
T − γ̂To(n1 + noτo

∂

∂t
)

.
e +

Eg

τK
N = γ̂To

.
ϕ. (3)

(iv) The double porosity model provides a novel approach to the investigation of sig-
nificant mechanical and civil design problems. When conducting a nondestructive
evaluation (NDE) of composite materials and structures, the phenomenon of coex-
istence of porosity and thermoelasticity is crucial. These substances are frequently
discovered in the earth’s reservoir and crustal rocks. According to the coupling nature
of the thermal waves and the porous potentials, the porous (voids) equation can be
given as [12]:

α∇2 ϕ− λoe− ς1 ϕ−ωo
.
ϕ + γ̂T = ρψ

..
ϕ. (4)

where according to the pores, the volume fraction field is ϕ.

The constitutive relations for the generalized photo-thermoelastic theory in tensor
form with two relaxation times under the influence of double porosity and initial stress can
be expressed as [31]:
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σi I = λur,r δi I + (k + µ)uI i + µuiI+

λo ϕδi I − pδi I − γ̂(1 + vo
∂
∂t )Tδi I + (3λ + 2µ)dnNδi I

}
. (5)

The relationship between the components of displacement and strain can be expressed
as:

e =
∂u
∂x

+
∂w
∂z

. (6)

where γ̂ = (3λ + 2µ + k)αt is parameter dependent on the mechanical source and photo-
thermal properties. On the other hand, αt is the linear thermal expansion coefficient. The
displacement vector

→
u can be analyzed in 2D according to the xz-plane, which can be

expressed as:
→
u = (u, 0, w) ; u = u(x, z, t) , w = w(x, z, t) . (7)

The 2D equivalent of the governing field Equation (2) through (5) is:

(λ + µ + p
2 )(uxx + wxz) + (k + µ− p

2 )(uxx + uzz)+

λo
∂ϕ
∂x − γ̂(1 + vo

∂
∂t )

∂T
∂x − δn

∂N
∂x = ρutt

}
, (8)

(λ + µ + p
2 )(uxz + wzz) + (k + µ− p

2 )(wxx + wzz)+

λo
∂ϕ
∂z − γ̂(1 + vo

∂
∂t )

∂T
∂z − δn

∂N
∂z = ρwtt

}
, (9)

K[ ∂2T
∂x2 + ∂2T

∂z2 ]− ρCE(n1 + τo
∂
∂t )

∂T
∂t − γ̂To(n1 + noτo

∂
∂t )

∂e
∂t+

Eg
τK N = γ̂To

∂φ
∂t

, (10)

(α∇2 − ρψ
∂2

∂t2 −ωo
∂

∂t
− ς1)ϕ− λoe + γ̂T = 0, (11)

σxx = (λ + k + 2µ)
∂u
∂x

+ λ
∂w
∂z
− p− γ̂(1 + vo

∂

∂t
)T + λo ϕ + (3λ + 2µ)dnN, (12)

σzz = (λ + k + 2µ)
∂u
∂z

+ λ
∂w
∂x
− p− γ̂(1 + vo

∂

∂t
)T + λo ϕ + (3λ + 2µ)dnN, (13)

σxz = (k + µ)
∂w
∂x

+ µ
∂u
∂z

, (14)

σzx = (k + µ)
∂u
∂z

+ µ
∂w
∂x

. (15)

The thermal memory (vo,τo) and (no , n1) (are constants) can be selected following the
photo-thermoelectricity theories (classical coupled theory (CD), Lord and Shulman (LS),
and Green and Lindsay (GL) as follows:

The CD theory when n1 = 1 , no = τo = vo = 0.
The LS theory when n1 = no = 1, vo = 0, τo > 0.
The GL theory when n1 = 1, no = 0, vo ≥ τo > 0.
The following non-dimension variables can be used to obtain main fields in the

dimensionless form:
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N = δn
2µ+λ N, xi =

ω∗
C2

xi, ui =
ρC2ω∗

To γ̂ ui, t = ω∗t, τo = ω∗τo,

νo = ω∗νo, T = T
To

, σi j =
σi j
To γ̂ , ω∗ =

ρCEC2
2

K , p = p
βTo

,

ϕ = ψω∗2

C2
2

ϕ, C2
2 = µ

ρ .


. (16)

Equation (16), when used as the primary governing equation (omitting dashes), results
in:

(∇2 − ε1 − ε2
∂

∂t
)N + ε3T = 0, (17)

utt = a1(uxx + uzz) + a2(uxx + wxz)+

a3
∂ϕ
∂x − (1 + vo

∂
∂t )

∂T
∂x − a4

∂N
∂x

}
, (18)

wtt = a1(wxx + wzz) + a2(wzz + uxz)+

a3
∂ϕ
∂z − (1 + vo

∂
∂t )

∂T
∂z − a4

∂N
∂z

}
, (19)

∇2T − a5(n1 + τo
∂

∂t
)

∂T
∂t
− a6(n1 + noτo

∂

∂t
)

∂e
∂t

+ a7N = a8
∂ϕ

∂t
, (20)

(∇2 − a9)ϕ− a10e + a11T = 0. (21)

where,

ε1 =
C2

2
τ DEω∗2

, ε2 =
C2

2
DEω∗ , ε3 =

κC2
2 Toδn

(2µ+λ)DEω∗2
,

a1 = (k + µ− b1)b2, a2 = (λ + µ− b1)b2, b1 = βTo p
2 ,

b2 = 1
ρC2

2
, a3 =

λoC2
2

ψω∗2To γ̂
, a4 = (λ+2µ)

To γ̂ , a5 =
ρCEC2

2
Kω∗ ,

a6 = γ̂2To
ρKω∗ , a7 =

Eg(λ+2µ)

τ K2δn
, a8 =

γ̂C4
2

ψω∗3K , a12 = ε3,

a9 =
C2

2
α (ρψ ∂2

∂t2 +
ωo
ω∗

∂
∂t +

ς1
ω∗2

), a10 = λoTo γ̂ψ

αρC2
2

, b3 = γ̂2Toψ
α ,

a14 = ia2q
a1+a2

, a11 = q2 + ε1 + ε2s, a13 = 1
a1+a2

(q2a1 + s2),

a15 = −a3
a1+a2

, a16 = 1+νos
a1+a2

, a18 = q2 + q2 a2
a1
+ s2

a1
, a19 = iq a2

a1
,

a21 = iq a3
a1

, a22 = iq
a1
(1 + νos), a23 = iq a4

a1
, a24 = q2 + a5s(n1 + τos),

a25 = a6s(n1 + noτos), a26 = iqa25, a27 = a7, a28 = a8s,

a29 = q2 + a9, a31 = a10, a32 = iqa10



. (22)

3. A solution to the Problem

Laplace transform for function ∏(x, z, t) with s(parameter) is expressed as:

L[∏(x, z, t)] =
∞∫

0

∏(x, z, t)e−stdt = ∏(x, z, s). (23)

The formula for the exponential Fourier transform with parameter q is:

f̂ (x, q, s) =
1√
2π

∞∫
−∞

f (x, z, s)e−iqzdz. (24)
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Applying Laplace–Fourier double transform into Equations (17)–(21), yields:

D2N̂ = a11N̂ − a12T̂, (25)

D2û = a13û + a14Dŵ− a15Dϕ̂ + a16DT̂ + a17DN̂, (26)

D2ŵ = a18ŵ + a19Dû + a21 ϕ̂− a22T̂ − a23N̂, (27)

D2T̂ = a24T̂ + a25Dû− a26ŵ− a27N̂ + a28 ϕ̂, (28)

D2 ϕ̂ = a29 ϕ̂ + a31Dû− a32ŵ− b3T̂. (29)

where, d2

dx2 = D2, d
dx = D.

Eliminating N̂(x, q, s), T̂(x, q, s), û(x, q, s), ŵ(x, q, s) and ϕ̂(x, q, s) between Equations
(25)–(29), the following tenth-order ordinary differential equations (ODE) are satisfied by
N, T, u, w and φ̂ is obtained as:

(D10 − AD8 + BD6 − CD4 + ED2 − F)
{

N̂, T̂, û, ŵ, ϕ̂
}
(x, q, s) = 0. (30)

The primary tenth ordinary differential Equation (30) were solved using the factoriza-
tion technique as follows:

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)(D2 − k2

4)(D2 − k2
5)
{

N̂, T̂, û, ŵ, ϕ̂
}
(x, q, s) = 0. (31)

where k2
n(n = 1, 2, 3, 4, 5) are the roots, that they may be taken as real-positive when x → ∞ .

The solution to Equation (30) is expressed as follows:

T̂(x, q, s) =
5

∑
n=1

Mn(q, s)e−knx, (32)

N̂(x, q, s) =
5

∑
n=1

M′n(q, s)e−knx =
5

∑
n=1

a∗n Mn(q, s)e−knx, (33)

û(x, q, s) =
5

∑
n=1

M′′
n (q, s)e−knx =

5

∑
n=1

b∗n Mn(q, s)e−knx, (34)

ŵ(x, q, s) =
5

∑
n=1

M′′′
n (q, s)e−knx =

5

∑
n=1

c∗n Mn(q, s)e−knx, (35)

ϕ̂(x, q, s) =
5

∑
n=1

M
′′′′
n (q, s)e−knx =

5

∑
n=1

d∗n Mn(q, s)e−knx, (36)

where, Mn and M′n, M′′
n , M′′′

n , M
′′′′
n are unknown parameters depending on the parameters

q, s can be determined from boundary conditions.
Where,

A = g2, B = g3, C = g4, E = g5, F = g6

a∗n = −a12
k2

n−a11
, b∗n = k8

n−b4k6
n+b5k4

n−b6k2
n+b7

kn(k2
n−a11)(k4

na25−b8k2
n+b9)

,

c∗n = a19k6
n−c1k4

n+c2k2
n−c3

(k2
n−a11)(k4

na25−c4k2
n+c5)

, d∗n = a31k6
n−d1k4

n+d2k2
n−d3

k6
na25−d4k4

n+d5k2
n−d6

 (37)

The mentioned quantities provide the domain-wide solution of Laplace’s main variable
transformations in terms of the unknowable parameters q and s, which can be obtained
from the subsequent boundary conditions.
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4. Boundary Conditions

Consider that the elastic semiconductor medium is initially in a state of rest at the
vertical plane (free surface), then x = 0. The system is thermally isolated. The Laplace and
Fourier transforms are applied for the following limit conditions:

(I) The plasma boundary condition when the Laplace transform is used at the free sur-
face to transport and photo-generate the carrier density diffusion during the recombination
processes with speed s̃, the plasma boundary condition may be reformulated as follows:

N̂(0, q, s) =
λs̃
De

R(s). (38)

Therefore,

a∗n
5

∑
n=1

Mn =
λ

De
R̂(s). (39)

(II) At the free surface, the isothermal boundary condition sensitive to thermal shock
is defined as:

T̂(0, q, s) = ĥ(s). (40)

The main coefficients of Equation (40) take the form in Appendix A. Therefore,

5

∑
n=1

Mn = ĥ(s). (41)

(III) The traction-free load at the free surface produces the mechanical boundary
conditions (normal stress and tangential stress condition) as follows:

σ̂zz(0, q, s) = −p. (42)

So,

(e1b∗n + λknc∗n + e2 − λod∗n − e3a∗n)
5

∑
n=1

Mn = ĥ(s). (43)

σ̂xz(0, q, s) = 0. (44)

So,

(e4knc∗n + e5b∗n)
5

∑
n=1

Mn = 0. (45)

(IV) The boundary condition of the change in the volume fraction field at the free
surface (ϕ is constant in z-direction), yields:

∂ϕ̂

∂z
= 0. (46)

So,

e6d∗n
5

∑
n=1

Mn = 0. (47)

The quantities h(s) and R(s) are the Heaviside unit step function where ň is a free
chosen constant.
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5. Inversion of the Fourier-Laplace Transforms

It is necessary to obtain the reversal of the previous main expressions in the physical
domain to achieve comprehensive solutions of non-dimensional physical field variable
distributions in 2D. However, the Riemann-sum approximation method employs the
numerical inversion technique for Laplace transform [32].

In the Fourier domain, the inverse of any function f (x, z, t) can be obtained as:

f (x, z, s) =
1

2π

∫ ∞

−∞
f̂ (x, q, s)eiqzdz. (48)

In the Laplace domain, any function’s inverse f (x, z, t) can be obtained as:

f (x, z, t) =
1

2πi

∫ n+i∞

n−i∞
f (x, z, s)estdt. (49)

Using the Fourier series to expand for the function f (x, z, t′) in the closed interval
[0, 2t′], to get the next relationship:

f (x, z, t′) =
ent′

t′
[
1
2

f (x, z, n) + Re
N

∑
k=1

f (x, z, n +
ikπ

t′
)(−1)n]. (50)

where the imaginary unit is i =
√
−1 and Re is the real part. The sufficient N can be chosen

free as a large integer, but can be selected in the notation nt′ ≈ 4.7 [32].

6. Numerical Results and Discussion

For use in numerical simulation, silicon (Si) component is an example of an elastic
semiconductor material (using the MATLAB program). The numerical simulation and
computational findings of fundamental quantity fields, which have various applications in
contemporary industry and plasma physics technology, are performed using the physical
constants of Si. For Si material (from n-type), the physical constants mentioned in Table 1
as follows [33–36] are taken in SI units:

Table 1. The physical constants of Si (semiconductor) medium.

Unit Symbol Value Unit Symbol Value

N/m2 λ
µ

3.64× 1010

5.46× 1010 N p 100

kg/m3 ρ 2330 J/kg K Ce 695

K T0 800 m
s s̃ 2

s τ 5× 10−5 m2 ψ 1.753 × 10−15

m3 dn −9 × 10−31 N α 3.688 × 10−5

m2/s DE 2.5× 10−3 Nm−2 ς1 1.475 × 1010

eV Eg 1.11 Nm−2 λo 1.13849 × 1010

K−1 αt 4.14 × 10−6 Nm−2deg−1 m 2× 106

Wm−1K−1 k 150 Nm−2s−1 ωo 0.0787 × 10−3

To create a numerical simulation for a brief period t = 0.001 when the mechanical
load is P = 1 in the range of 0 ≤ x ≤ 6 when z = −1, the non-dimensional main fields in
2D are created based on the Fourier–Laplace transform inversion approach. At the free
surface of the semiconductor medium, the principal physical field propagates as a wave
(transient) when boundary conditions (thermal, mechanical, and plasma conditions have
an impact on all waves that are propagating) are taken into account. Wave propagation
is significantly influenced by surface conditions. Figure 1 illustrates the primary physical
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distributions of temperature (thermal wave), the change in volume fraction field (volume
fraction field), elastic wave (displacement), carrier charge density (plasma wave), and
mechanical waves (σxx and σxz) with the horizontal distance following three models of
the photo-thermoelasticity theory (CD, LS, and GL). The differences between the CD, LS,
and GL models depend on the various thermal memories; all assessments are completed
in a very short amount of time while taking into account the material constants of voids
(pours) factors. All of the fields in this category (Figure 1 (from Figure 1a to Figure 1f)
meet the requirements that are based on the semiconductor’s surface. During the electronic
and thermoelastic deformation, the thermal wave (temperature, Figure 1a) and plasma
wave (carrier density, Figure 1d) rise first (first range), then reach their maximum points.
This is because of the thermal influence of the light beams. However, the thermal wave
and plasma wave gradually decrease with exponential behavior for all three models in
the second range, which is consistent with the experimental findings [37]. Starting at zero
point at the surface, the volume fraction field distribution has a wave propagation rise
near the surface due to the influence of light thermal to reach the maximum peak value
for all three models. Due to the diminished thermal effect of light, it decreases fast in the
second range to approach the minimum peak value inside the medium before increasing
and decreasing periodically inside the semiconductor medium of the deceleration until it
touches the zero line (the state of equilibrium). Due to increased vibrations of the material’s
interior particles, the elastic wave (displacement component u, Figure 2c) starts at the initial
surface value. It then grows quickly to achieve its highest maximum value (thermoelastic
deformation) with wave propagated. As a result, to reach equilibrium, the elastic wave
diminishes in the second range with exponential wave behavior until it crosses the zero
line. There are two types of mechanical waves plotted: normal stress σxx and tangent stress
σxz. Due to the persistence in the electronic and elastic deformations, the normal stress
distribution σxx (Figure 1e) begins with a negative value at the surface and rapidly falls
in the beginning to approach the peak minimum value close to the surface. To attain the
peak maximum value in the second range, it grows abruptly. After that, it varies with
wave behavior, regularly falling and rising until it reaches the equilibrium condition. The
distribution of tangent stresses σxz starts at zero and rises until it reaches its highest peak
value in the first range. The second range, meanwhile, rapidly drops until it approaches
the minimum peak value. It raises and drops regularly farther away from the surface until
it achieves equilibrium by being congruent with the zero line.

Figure 2a–f shows the behavior of variation in the main physical fields with the
horizontal distance according to two dimensionless cases: the first describes the wave
propagations behavior without the porosity impact (when the porosity parameters are
neglected), but the second case represents the wave propagations behavior under the
influence porosity parameters. The GL model is used for all computations, which are
performed for very short relaxation times under the influence of the photo-thermoelasticity
hypothesis. Due to the effect of porosity, the values of the magnitude of wave propagations
of the main fields are higher with porosity parameters than without porosity parameters.
This figure shows that all wave propagations of the considered fields are significantly
influenced by the porosity parameters. It has been found that porosity has a significant
impact on how the main quantity distributions vary.
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Figure 1. (a–f) Variation of the main physical distributions w.r.t the distance for different relaxation
times under the impact of porosity parameters.
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Figure 2. (a–f) Variation of the main physical distributions w.r.t the distance for different two cases of
porosity under the impact of GL model.

Figure 3 plots the dimensionless physical quantities for Si against the vertical (0 ≤
z ≤ 6) and horizontal (0 ≤ x ≤ 6) distances in three dimensions (3D). The computational
outcomes are derived using the GL model under the influence of porosity parameters.
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According to this figure, changes in the vertical and horizontal distance have a significant
influence on how waves propagate in all physical fields.
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Figure 4 depicts the horizontal distance and various values of dimensionless time
together with the wave propagation of the main field front distribution. All computations
are made according to the GL model when the porosity effect is taken into account under
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the impact of initial stress. From this figure, it can be noticed that the thermal wavefront
propagates faster than with the increase in dimensionless time.
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7. Conclusions

A novel model of double porosity semiconductor material is investigated using the
generalized thermoelasticity theory during photo-excitation transport processes. According
to changes in thermal and elastic relaxation times, the governing equations are derived in
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two dimensions. The dimensionless main equations are solved according to the Laplace–
Fourier techniques. Our discussion shows that when the horizontal distance increases, the
wave distribution of all physical fields approaches the zero line to establish an equilibrium
state. It has been discovered that every field quantity is extremely sensitive to the thermal
relaxation time parameters according to the LS, GL, and CD models. The numerical
simulations of the main fields make it clear that the porosity effect is significant. The
graphic showed that the effects of double porosity on the numerical values of physical
quantities were both increasing and decreasing. The boundary conditions applied to the
surface have a significant impact on the semiconductor material’s tendency to deform
again. The usage of this kind of research in solar cells, electric circuits, and sensors makes it
beneficial. The outcomes of this study should be useful for those exploring the theory of
photo-thermoelasticity based on the double porosity structure. A more realistic model is
now available for further research thanks to the addition of the double porous parameter
to the excited photo-thermoelastic material.
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Nomenclature

λ, µ Lame’s parameters.
δn The distinction between the valence band and the conduction

band’s deformation potential.
T Absolute temperature.

T0 Reference temperature when
∣∣∣ T−T0

T0

∣∣∣ < 1.

γ̂ = (3λ + 2µ + k)αt The thermal expansion of volume.
αt The thermal expansion coefficient.
σij The stress tensor.
ρ The density.
e Cubical dilatation.
Ce Specific heat.
k The thermal conductivity.
DE The carrier diffusion coefficient.
τ Lifetime.
t Time variable.
Eg The energy gap.
ei j The strain tensor.
ui Displacement vector.
N Carrier concentration.
p The initial pressure.
α, λo, ς1, ωo, γ̂1, ψ The constants of voids.
τ0, ν0 Thermal memories.
ϕ The change in volume fraction field.
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Appendix A

The main coefficients of Equation (40) take the form:

A = g2, B = g3, C = g4, E = g5, F = g6, g1 = 1,

g2 = a14a19 − a15a31 + a16a25 + a11 + a13 + a18 + a24 + a29,

}
,

g3 = a11a14a19 − a11a15a31 + a11a16a25 + a12a17a25 + a24a14a19 + a29a14a19−

a21a14a31 + a22a14a25 − a15a18a31 − a15a32a19 − a15a24a31 − a15a25a33 + a16a18a25+

a16a26a19 + a16a25a29 − a16a28a31 + a11a13 + a11a18 + a11a24 + a11a29 − a12a27 + a13a18+

a13a24 + a13a29 + a18a24 + a13a29 + a18a24 + a18a29 + a21a32 − a22a26 + a24a29 + a28a33,


,

g4 = a11a14a19a24 + a11a14a19a29 − a11a14a21a31 + a11a14a22a25 − a11a15a18a19−

a29a14a31 − a11a15a19a32 − a11a15a24a31 − a11a15a25a33 + a11a16a18a25 + a11a16a19a26+

a11a16a25a29 − a11a16a28a31 − a12a17a18a25 + a12a17a19a26 + a12a17a25a29 − a12a17a28a31+

a14a19a24a29 + a14a19a28a33 − a14a21a24a31 − a14a21a33a25 + a14a22a25a29 − a14a22a28a31−

a15a18a24a31 − a15a18a25a33 − a15a19a24a32 − a15a19a26a33 − a15a22a25a32 + a15a22a26a31+

a16a18a25a29 − a16a18a28a31 + a16a19a26a29 − a16a19a28a32 + a16a21a25a32 − a16a21a26a31+

a11a13a18 + a11a13a24 + a11a13a29 + a11a24a18 + a11a29a18 + a11a21a32 − a11a22a26 + a11a24a29+

a11a28a33 − a12a13a27 − a12a18a27 − a12a23a26 − a12a27a29 + a13a18a24 + a13a21a32 − a13a22a26+

a13a24a29 + a13a28a33 + a18a24a29 + a18a28a33 + a21a24a32 + a21a26a33 − a22a26a29 + a22a28a32



,

g5 = a11a14a19a24a29 + a11a14a19a28a33 − a11a14a21a31a24 − a11a14a21a25a33 + a11a14a22a25a29 − a11a14a22a28a31−

a11a15a18a24a31 − a11a15a18a25a33 − a11a15a19a24a32 − a11a15a19a26a33 − a11a15a22a32a25 + a11a15a22a26a31+

a11a16a18a25a29 − a11a16a18a28a31 + a11a16a19a26a29 − a11a16a19a28a32 + a11a16a21a25a32 − a11a16a21a26a31−

a12a14a19a27a29 + a12a14a21a27a31 + a12a14a23a25a29 − a12a14a23a28a31 + a12a14a23a28a31 + a12a15a18a27a31+

a12a15a19a27a32 − a12a15a23a25a32 + a12a15a23a26a31 − a12a17a18a28a31 + a12a17a19a26a29 − a12a17a19a28a32+

a12a17a21a25a32 − a12a17a21a26a31 + a11a13a18a24 + a11a13a18a29 + a11a13a21a32 − a11a13a22a26 + a11a13a24a29+

a11a13a28a33 + a11a18a24a29 + a11a18a28a33 + a11a21a24a32 + a11a21a26a33 − a11a22a26a29 + a11a28a22a32−

a12a13a18a27 − a12a13a23a26 − a12a13a29a27 − a12a21a32a27 − a12a23a26a29 + a12a23a28a32 + a13a24a18a29+

a13a18a28a33 + a13a21a24a32 + a13a21a26a33 − a13a22a26a29 + a13a22a28a32



,

g6 = a11a13a18a24a29 + a11a13a18a28a33 + a11a13a21a24a32 + a11a13a21a26a33−

a11a13a22a26a29 + a11a13a22a28a32 − a12a13a18a27a29 − a12a13a21a27a32−

a12a13a23a26a29 + a12a13a23a28a32

.
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The primary variables in Equation (37) can be stated as follows:

b4 = a11 + a18 + a24 + a29, b5 = a11a18 + a11a24 + a11a29 − a12a27+

a29a18 + a21a32 − a22a26 + a24a29 + a28a33, b6 = a11a18a24 + a11a18a29+

a11a21a32 − a11a22a26 + a11a24a29 + a11a28a33 − a12a18a27 − a12a23a26−

a11a27a29 + a18a24a29 + a18a28a33 + a21a24a32 − a21a26a33 − a22a26a29 + a22a28a32,

b7 = a11a18a24a29 + a11a18a28a33 + a11a21a24a32 + a11a21a26a33 − a11a22a26a29+

a11a22a28a32 − a12a18a27a29 − a12a21a27a32 − a12a23a26a29 + a12a23a28a32,

b8 = a25a18 + a19a26 + a25a29 − a28a31, b9 = a18a25a29 − a18a28a31 + a19a26a29−

a19a28a32 + a21a25a32 − a21a26a31, c1 = a11a19 + a19a24 + a19a29 − a21a31 + a22a25−

a11a19a24 − a11a19a29, c2 = a11a21a31 − a11a22a25 + a12a19a27 − a12a23a25 − a19a24a29−

a19a28a33 + a21a24a31 + a21a25a33 − a22a25a29 + a22a28a31,

c3 = a11a19a24a29 + a11a19a28a33 − a11a21a24a31 − a11a21a25a33+

a11a22a25a29 − a11a22a28a31 + a12a19a27a31 + a12a23a25a29 − a12a23a28a31,

c4 = a18a25 + a19a26 + a25a29 − a28a31, c5 = a18a25a29 − a18a28a31 + a19a26a29−

a19a28a32 + a21a25a32 − a21a26a31d1 = a11a31 + a18a31 + a19a32 + a24a31 + a25a33,

d2 = a11a18a31 + a11a19a32 + a11a24a31 + a11a25a33 + a12a27a31 + a18a24a31+

a18a25a33 + a19a24a32 + a19a26a33 + a22a25a32 − a22a26a31,

d3 = a11a18a24a31 + a11a18a25a33 + a11a19a24a32 + a11a19a26a33 + a11a22a25a32−

a11a22a26a31 − a12a18a27a31 − a12a19a27a32 + a12a23a25a32 − a12a23a26a31,

d4 = a11a25 + a25a18 + a26a19 + a25a29 − a28a31, d5 = a11a18a25 + a11a19a26+

a11a29a25 − a11a28a21 + a29a18a25 − a28a18a31 + a19a26a29 − a19a28a32+

a21a25a32 − a21a26a31, d6 = a11a18a25a29 − a11a18a28a31 + a11a19a26a29−

a11a19a28a32 + a11a21a25a32 − a11a21a26a31
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