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Abstract: In the context of the two-temperature thermoelasticity theory, a novel mathematical–
physical model is introduced that describes the influence of moisture diffusivity in the semiconductor
material. The two-dimensional (2D) Cartesian coordinate is used to study the coupling between
the thermo-elastic plasma waves and moisture diffusivity. Dimensionless quantities are taken for
the main physical fields with some initial conditions in the Laplace transform domain. The linear
solutions are obtained analytically along with unknown variables when some conditions are loaded
at the surface of the homogenous medium according to the two-temperature theory. The Laplace
transform technique in inversion form is utilized with some numerical algebraic approximations in
the time domain to observe the exact expressions. Due to the effects of the two-temperature parameter
and moisture diffusivity, the numerical results of silicon material have been introduced. The impacts
of thermoelectric, thermoelastic, and reference moisture parameters are discussed graphically with
some physical explanations.

Keywords: photothermal theory; two temperature; moisture diffusivity; thermoelasticity; harmonic
wave; semiconductor

1. Introduction

The spread of particles of one substance through those of another is called diffusion.
Diffusion is the process by which concentrated liquids disperse when placed in water
and by which odors disperse through the air. When particles disperse from places of
high concentration, where there are many, to areas of low concentration, where there are
fewer, diffusion occurs naturally. The interaction of moisture, heat, elastic, and electronic
deformation can be seen in numerous engineering issues that are relevant to real-world
applications. Mechanically applied additional stresses can significantly alter temperature
and moisture distribution. As a consequence, there is a need to shed light on the relationship
between mechanical deformation and diffusion induced by temperature and moisture.

An expanded theory of thermoelasticity put out by Lord and Shulman [1] substitutes
a modified Fourier law that takes into account relaxation time parameters and a heat flux
vector for the standard Fourier law. Another generalization of thermoelasticity was created
by Green and Lindsay [2] using entropy inequality to place constraints on the governing
equations. Sherief et al. [3] derived the variation principle for the governing equations
and the equations for generalized thermoelasticity in an anisotropic medium. A new
theory including energy dissipation in the propagation of thermal waves was put forth by
Green and Nagdhi [4–6]. According to conductive temperature (φ) and thermodynamic
temperature (T), Chen [7–9] created the two-temperature theory of thermoelasticity, which
involves two temperature parameters (a). This hypothesis changed into the standard theory
of heat conduction if (a) goes to zero [10].
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A novel, generalized thermoelasticity model by Youssef [11] is based on two tem-
peratures, T and φ, and it predicts that the temperature difference between the two is
proportional to the heat supply

..
φii with a nonnegative constant a. Within the Dual Phase

Lag (DPL) model framework, Ezzat et al. [12] created a two-temperature magneto ther-
moelastic fractional order model. The two-temperature thermoelastic theory with tem-
perature rate dependence was developed by Shivay and Mukhopahyay [13] (TRDTT).
The conductive and thermodynamic temperature dependency on temperature rate is a
foundational element of this theory. To get the expression for thermodynamic and conduc-
tive temperature, the impact of two temperatures on wave thermo-mechanical loading is
investigated [14]. Abouelregal and others [15] introduced the Moore–Gibson–Thomson
equation and a new thermoelasticity model based on fractional calculus, Fourier’s law of
heat, and dual temperature theory was presented.

Sharma et al. [16] investigated the Rayleigh wave growth in an isotropic thermo-
diffusive elastic half-plane. Aouadi [17] investigated the stability issues associated with
a challenging thermoelastic diffusive problem. Lotfy and Hassan [18] employed normal
mode analysis to examine the two-temperature theories in the generalized thermoelasticity.
In the Dual Phase Lag Diffusion (DPLD) model setting, Kumar and Gupta [19] used the
harmonic wave solution to get three coupled dilatational waves. The development of the
Rayleigh wave in a thermoelastic half-plane with mass diffusion was studied by Kumar and
Kansal [20–22]. The frequency equation for Rayleigh surface waves with mass diffusion
in an isotropic thermodiffusive half-plane was developed by Kumar and Gupta [23]. We
shall obtain a solution in the Fourier-transformed domain using the normal mode analysis
technique. Applying the normal mode analysis requires making the assumption that all
relationships are sufficiently smooth on the real axis to allow for the analysis of the normal
modes of all these functions. The precise formulation for the temperature distribution,
thermal stresses, and displacement components was obtained using the normal mode
analysis [24–30]. When using two-temperature thermoelasticity with relaxation durations
to study a variety of issues, Youssef and El-Bary [31] found that the outcomes are qualita-
tively distinct from those obtained when using one-temperature thermoelasticity. Fahmy
et al. [32–36] studied the boundary element modeling and fractional boundary element
solution of ultrasonic wave propagation according to the magneto-thermoviscoelastic
medium in the context of the nonlinear generalized photothermal.

In the context of two-temperature theory, this paper investigates wave propagation
in a photo-thermoelastic semiconductor medium under the effect of moisture using a
moisture diffusivity model. When a photothermal transport process occurs at the free
surface of a semi-infinite semiconducting medium, the problem is solved in two dimensions
using thermoelasticity equations according to the moisture diffusivity. Finally, numerical
computations have been carried out and graphically display when the inversion of Laplace
transform is used.

2. Basic Equations

Assuming thermo-elastic semiconductor material has linear elastic properties and is
transversely anisotropic homogeneous, the medium is examined during the photothermal
transport phase, considering the overlap between plasma-thermal and moisture diffusion.
The main four distributions are the carrier density (electronic diffusion) N(ri, t), moisture
concentration m(ri, t), the temperature changes (thermal) T(ri, t), and the displacement
vector (elastic) u(ri, t) (ri represents the position vector and t represents the time). The
interaction between plasma-thermal-elastic wave and moisture diffusion equations can be
expressed in tensor form as follows [37–39]:

∂N(ri, t)
∂t

= DEN,ii(ri, t)− N(ri, t)
τ

+ κ T(ri, t) (1)
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ρ Ce(DTφ,ii + Dm
T m,ii) = ρ Ce

∂T
∂t
−

Eg

τ
N + γtT0

∂ui,j

∂t
(2)

km

(
Dm m,ii(ri, t) + DT

mT,ii(ri, t)
)
= km

∂m(ri, t)
∂t

−
Eg

τ
N(ri, t) + γmm0Dm

∂ui,j(ri, t)
∂t

(3)

The motion equation in tensor form is written as follows:

ρ
∂2ui(ri, t)

∂t2 = σij,j (4)

The equation of the strain is:

εij =
1
2
(ui,j + uj,i) (5)

According to the two-temperature theory, the relationship between the heat conduction
temperature and the thermo-dynamical heat temperature is as follows:

φ− T = a φ,ii (6)

where a is a two-temperature positive parameter (chosen). The general stress-tensor form
with moisture concentration is:

σij = Cijklεkl − βij(αtT + dnN)− βm
ij m, i, j, k, l = 1, 2, 3 (7)

where DT expresses temperature diffusivity, Dm is the diffusion coefficient of moisture,
Dm

T and DT
m are coupled diffusivities, DE is the carrier diffusion coefficient, m0 refer-

ence moisture, km moisture diffusivity, Cijkl represents the isothermal parameters tensor
of an elastic medium, εkl is the strain tensor, and βij and βm

ij are the isothermal thermo-
elastic coupling tensor material coefficient of moisture concentration, respectively. The
thermal activation coupling is κ = ∂N0

∂T
T
τ , N0 represents the equilibrium carrier concen-

tration [33,35]. The quantities Eg, ρ, τ, (λ, µ), and T0 are the energy gap, the density, the
lifetime, Lame’s elastic constants, and the reference temperature, respectively. On the other
hand, γt = (3λ + 2µ)αT is the volume thermal expansion, αT the linear thermal expan-
sion coefficient, Ce the specific heat parameter, and δn the difference between conductive
deformation potential and valence band.

These are the 2D definitions of the physical quantities:

∂N
∂t

= DE∇2N − N
τ
+ κ T (8)

ρ Ce

(
DT∇2φ + Dm

T∇2m
)
= ρ Ce

∂T
∂t
−

Eg

τ
N + γt T0

∂

∂t

(
∂u
∂x

+
∂w
∂z

)
(9)

km

(
Dm∇2m + DT

m∇2T
)
= km

∂m
∂t
−

Eg

τ
N + γm m0Dm

∂

∂t

(
∂u
∂x

+
∂w
∂z

)
(10)

The motion Equation (4) has the following structure:

ρ
∂2u
∂t2 = (2µ + λ )

∂2u
∂x2 + µ

∂2u
∂z2 − γt

∂T
∂x
− δn

∂N
∂x
− γm

∂m
∂x

(11)

ρ
∂2w
∂t2 = (2µ + λ )

∂2w
∂z2 + µ

∂2w
∂x2 − γt

∂T
∂z
− δn

∂N
∂z
− γm

∂m
∂z

(12)

where γt,m = β αm,T and δn = βdn, β = 3µ + 2λ, ∇2 = ∂2

∂x2 +
∂2

∂z2 .
According to the two-temperature Equation (7), yields:

φ− T = a∇2φ (13)
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The 2D constitutive equation has the following structure:

σxx = (2µ + λ)
∂u
∂x

+ λ
∂w
∂z
− β(αtT + dnN)− γmm (14)

σzz = (2µ + λ)
∂w
∂z

+ λ
∂u
∂x
− β(αtT + dnN)− γmm (15)

σxz = µ(
∂u
∂z

+
∂w
∂x

)− γmm (16)

3. Formulation of the Problem

We can add two scalar potential functions in their non-dimensional form as: u = ∂Π
∂x + ∂Ψ

∂z
and w = ∂Π

∂z −
∂Ψ
∂x . For more simplicity, the non-dimensional variants are introduced:

(x′, z′, u′, w′) = (x,z, u,w)
CT t∗ , t′ = t

t∗

((T′, φ′), N′) = (γt(T,φ),δn N)
2µ+ λ , σ′ = σ

µ , e′ = e, m′ = m
(17)

In the above equations, the dash is removed for convenience, yields:

(∇2 − q1 − q2
∂

∂t
)N + ε3 T = 0 (18)

∇2φ− a1
∂

∂t
T + a2∇2m + a3 N − ε1

∂

∂t
∇2Π = 0 (19)(

∇2 − a4
∂

∂t

)
m + a5∇2T + a6 N − a7∇2Π = 0 (20)(

∇2 − ∂2

∂t2

)
Π− T − N − a8m = 0 (21){

∇2 − α
∂2

∂t2

}
Ψ = 0 (22)

φ− T = α6∇2φ (23)

The stress component takes the following form in the non-dimensional form:

σxx = a9
∂2Π
∂x2 + a10

∂2Π
∂z2 + 2

∂2Ψ
∂z∂x

− a9(T + N))− a11m (24)

σzz = a9
∂2Π
∂z2 + a10

∂2Π
∂x2 − 2

∂2Ψ
∂z∂x

− a9(T + N)− a11m (25)

σxz =
∂2Ψ
∂z2 + 2

∂2Π
∂x∂z

− ∂2Ψ
∂x2 (26)
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where
q1 = kt∗

DEρτCe
q2 = k

DEρCe
a1 =

C2
T t∗

DT
a2 =

Dm
T γt

DT(2µ+ λ)

a3 = ε2a1

a4 =
C2

T t∗

Dm
a5 = DT

m(2µ+ λ)
Dmγt

a6 =
Eg(2µ+ λ)t∗a4

kmδnτ a7 =
γmm0C2

T t∗

km

a8 = γm
2µ+ λ a9 = 2µ+ λ

µ a10 = λ
µ a11 = γm

µ

ε1 =
γ2

t T0t∗

kρ

ε2 =
αT Egt∗

τdnρCe
ε3 = dnkκt∗

αTρCeDE

C2
T = 2µ+ λ

ρ , δn = (2µ + 3λ)dn

t∗ = k
ρCeC2

T

α6 = a
t∗2C2

T
, α = K

µCe

where ε1, ε2, and ε3 can be called the thermoelastic coupling parameter, the thermo-energy
coupling parameter, and the thermoelectric coupling parameter, respectively.

4. Harmonic Wave Analysis

Using the harmonic wave approach, the basic physical fields in 2D solutions are
dissected and can be produced for any function (normal mode analysis) in the manner
of [22]:

G(x, z, t) = G(x) exp(ωt + ibz) (27)

where the function G(x) represents the amplitude of the basic physical quantity G(x, z, t), i =
√

1,
ω presents the complex time frequency, and expresses b the wave number in the z-direction.
Equations (18)–(26) are solved using the normal mode approach, which is defined in
Equation (27) and results in [25]:

(D2 − α1)N + ε3 T = 0 (28)

(D2 − b2)φ− α2 T + a2(D2 − b2)m + a3 N − α3 (D2 − b2)Π = 0 (29)(
D2 − α4

)
m + a5(D2 − b2) T + a6 N − α5 (D2 − b2)Π = 0 (30)

(D2 − α6)Π− T − N − a8 m = 0 (31)

(D2 − α7)φ + βT = 0 (32){
D2 − α8

}
Ψ = 0 (33)

σxx =
(

a9D2 − a10b2
)

Π + 2ibDΨ− a9
(
T + N)

)
− a11m (34)

σzz =
(

a10D2 − a9b2
)

Π− 2ibDΨ− a9
(
T + N

)
− a11m (35)

σxz = −(D2 − b2)Ψ + 2ibDΠ (36)

where D = d
dx , α1 = b2 + q1 + q2ω, α2 = a1ω, α3 = ωε1, α4 = a4ω + b2, α5 = a7ω,

α6 = b2 + ω2, α7 = b2 + ββ = 1
a∗ .

Eliminating φ, T, Π, N, and m between Equations (28)–(31), and (32) yields:

(D10 −Θ1D8 + Θ2D6 −Θ3D4 + Θ4D2 −Θ5)
{

φ, m, N, T, Π
}
(x)e(ωt+ibz) = 0 (37)

where
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Θ1 = (−2b2a2a5−a2a5α1−a2a5α6−a2a5α7−a5a8α3−a2α5+β+α2+α3)
(−a2a5)

,

Θ2 = 1
(a2a5)


b4a2a5 + 2b2a2a5α1 + 2b2a2a5α6 + 2b2a2a5α7 + 2b2a5a8α3 + 2b2a2α5 +
a2a5α1α6 + a2a5α1α7 + a2a5α6α7 + a5a8α1α3 + a5a8α3α7
−b2β− b2α3 − βa8α5 − a2a7ε3 + a2α1α5 + a2α5α7 + a2α5ε3 − a8α2α5
−βα1 − βα4 − βα6 + a3ε3 − α1α2 − α1α3 − α2α4 − α2α6 − α2α7 − α3α4 − α3α7 − α3ε3

,

Θ3 = −1
(a2a5)



−b4a2a5α1 − b4a2a5α6 − b4a2a5α7 − b4a5a8α3 − b4a2α5 − 2b2a2a5α1α6−
2b2a2a5α1α7 − 2b2a2a5α6α7 − 2b2a5a8α1α3 − 2b2a5a8α3α7 + 2b2βa8α5
+b2a2a7ε3 − 2b2a2α1α5 − 2b2a2α5α7 − 2b2a2α5ε3 + b2a8α2α5 − a2a5α1α6α7
−a5a8α1α3α7 + b2βα1 + b2βα4 + b2βα6 + b2α1α3 + b2α3α4 + b2α3α7 +
b2α3ε3 + βa8α1α5 + a2a7α6ε3 + a2a7α7ε3 − a2α1α5α7 − a2α5α7ε3 − a2a8α5ε3 +
a7a8α3ε3 + a8α1α2α5 + a8α2α5α7 + βα1α4 + βα1α6 + βα4α6 − a3α4ε3 − a3α6ε3−
a3α7ε3 + α1α2α4 + α1α2α6 + α1α2α7 + α1α3α4 + α1α3α7 + α2α4α6 + α2α4α7
+α2α6α7 + α3α4α7 + α3α4ε3 + α3α7ε3


,

Θ4 = 1
(a2a5)



b4a2a5α1α6 + b4a2a5α1α7 + b4a2a5α6α7 + b4a5a8α1α3 + b4a5a8α3α7 − b4βa8α5 +
b4a2α1α5 + b4a2α5α7 + b4a2α5ε3 + 2b2a2a5α1α6α7 + 2b2a5a8α1α3α7 − 2b2βa8α1α5
−b2a2a7α6ε3 − b2a2a7α7ε3 + 2b2a2α1α5α7 + 2b2a2α5α7ε3 + b2a3a8α5ε3 − b2a7a8α3ε3
−b2a8α1a2α5 − b2a8α2α5α7 − b2βα1α4 − b2βα1α6 − b2βα4α6 − b2α1α3α4 − b2α1α3α7
−b2α3α4α7 − b2α3α4ε3 − b2α3α7ε3 − a2a7α6α7ε3 + a3a8α5α7ε3 − a7a8α3α7ε3−
a8α1α2α5α7 − βα1α4α6 + a3α4α6ε3 + a3α4α7ε3 + a3α6α7ε3 − α1α2α4α6 − α1α2α4α7
−α1α2α6α7 − α1α3α4α7 − α2α4α6α7 − α3α4α7ε3


,

Θ5 = −1
(a2a5)


−b2α1α3α7 − b2α3α4α7 − b2α3α4ε3 − b2α3α7ε3 − a2a7α6α7ε3 + a3a8α5α7ε3
−a7a8α3α7ε3 − a8α1α2α5α7 − βα1α4α6 + a3α4α6ε3 + a3α4α7ε3 + a3α6α7ε3
−α1α2α4α6 − α1α2α4α7 − α1α2α6α7 − α1α3α4α7 − α2α4α6α7 − α3α4α7ε3

.

(38)

The principle ordinary differential equation (ODE) was fixed by the factorization
method in the manner described in (37):(

D2 −m2
1

)(
D2 −m2

2

) (
D2 −m2

3

)(
D2 −m2

4

)(
D2 −m2

5

){
φ, T, Π, N, m

}
(x) e(ωt+ibz) = 0 (39)

where m2
n(n = 1, 2, 3, 4, 5) represent the roots when x → ∞ . The following is the form that

the solution to Equation (ODE) (39) takes (according to the linearity of the problem):

T(x) =
5

∑
n=1

Dn(b, ω) e−mnx (40)

The solutions of the other values can be represented similarly as:

N(x) =
5

∑
n=1

D′n(b, ω) e−mnx =
5

∑
n=1

H1nDn(b, ω) e−mnx (41)

Π(x) =
5

∑
n=1

Dn
′′ (b, ω) exp(−mnx) =

5

∑
n=1

H2n Dn(b, ω) exp(−mnx) (42)

m(x) =
5

∑
n=1

D′′′n (b, ω) exp(−mnx) =
5

∑
n=1

H3n Dn(b, ω) exp(−mnx) (43)

φ(x) =
5

∑
n=1

D(4)
n (b, ω) exp(−mnx) =

5

∑
n=1

H4n Dn(b, ω) exp(−mnx) (44)

The following form represents the solution to equation:

ψ(x) = D6(b, ω) e−m6x (45)
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where m6 = ±√α8 are the real roots of Equation (33). The displacement components can
first be represented in terms of parameters in accordance with Equation (18) to produce the
stress components:

σxx =
5

∑
n=1

H5n Dn(b, ω) exp(−mnx)− 2ibm6D6 exp(−m6x) (46)

σzz =
5

∑
n=1

H6n Dn(b, ω) exp(−mnx) + 2ibm6D6 exp(−m6x) (47)

σxz =
5

∑
n=1

H7nDn(b, ω) exp(−mnx)− (m2
6 + b2)D6 exp(−m6x) (48)

Since
u(x) = DΠ + i bψ (49)

w(x) = i bΠ− D ψ (50)

Then,

u(x) =
5

∑
n=1

D′′n (b, ω)mne−mnx + ibD6(b, ω) exp(−m6x) (51)

w(x) = ib
5

∑
n=1

D′′n (b, ω) e−mnx + D6(b, ω)m6 exp(−m6x) (52)

where Dn, D′n, D′′n , D′′′n , and D(4)
n , n = 1, 2, 3, 4, 5 are unknown parameters depending on

the parameter b, ω. The relationship between the unknown parameters Dn, D′n, D′′n , D′′′n ,
and D(4)

n , n = 1, 2, 3, 4, 5 can be obtained when using the main Equations (28)–(35) and
(36), which take the following relationship:

H1n = −ε3
mn2 − α1

H2n = (a5a8 − 1)m4
n + (− b2a5a8 − a5a8α1 + α1 + α4 + ε3)m2

n + b2a5a8α1 − a7a8ε3 − α1α4 − α4ε3
m6

n + (−a8α5 − α1 − α4 − α6)m4
n + (b2a8α5 + a8α1α5 + α1α4 + α1α6 + α6α4)m2

n − b2a8α1α5 − α1α4α6
,

H3n = − (m6
n + (−s2 − α1 − α2 − α3)m4

n + (s2α1 + s2α2 − a3ε3 + α1α2 + α1α3 + α3ε3)m2
n + s2a3ε3 − s2α1α2)

((m2
n − α1)(m2

na2 − s2a2 − a8α3)m2
n)

H4n = −β

(mn2 − α7)

H5n =
(
a9m2

n − a10b2)H2n − a9(( 1 + H1n)) − a11H3n

H6n =
(
a9m2

n − a10b2)H2n − a9(( 1 + H1n)) − a11H3n

H6n = 2I b mi H3i

(53)

5. Applications

In this section, we determine the parameters Dn(n = 1, 2, 3, 4, 5, 6). We should sup-
press the unbounded positive exponentials at infinity in the physical problem. The con-
stants D1, D2, D3, D4, D5, and D6 must be selected so that the boundary conditions on the
surface x = 0 (near the vacuum) take the form [40]:

(i) Mechanical boundary condition that the surface of the half-space is traction load

σxx(0, z, t) = −p1 exp(ωt + ibz) (54)

(ii) The half-space’s surface must be traction-free as a displacement boundary condition:

u(0, z, t) = 0. (55)
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(iii) Assuming that the boundary x = 0 is thermally insulated, we have

∂T(0, z, t)
∂x

= 0. (56)

(iv) The carriers have a limited chance of recombining when they reach the sample
surface during the diffusion process. Therefore, the following can be the carrier density’s
boundary condition:

∂N(0, z, t)
∂x

=
s

De
N. (57)

(v) The moisture diffusion condition at the free boundary surface x = 0 is:

m(0, z, t) = 0. (58)

(viii) The conductive temperature condition at the free boundary surface x = 0 is:

φ(0, z, t) = φ0. (59)

6. Numerical Results and Discussions

Temperature, displacement, moisture concentration, carrier density (electronic diffu-
sion), conductive temperature, and normal distribution of stress are some of the physical
quantities with numerical values that are calculated for this problem. Utilizing materials,
the numerical simulation is carried out. The constants have been utilized in S.I. The plot is
made using the unit and the MATLAB program. Table 1 lists the physical constants for Si
and Ge for the lower medium [40]:

Table 1. Physical parameters of Si and Ge materials.

Units Symbol Si Ge

λ 6.4× 1010 0.48× 1011

N/m2 µ 6.5× 1010 0.53× 1011

kg/m3 ρ 2330 5300

K T0 800 723

s τ 5× 10−5 1.4× 10−6

m2/s DE 2.5× 10−3 10−2

m3 dn −9× 10−31 −6 × 10−31

eV Eg 1.11 0.72

K−1 αt 4.14× 10−6 3.4× 10−3

Wm−1K−1 k 150 60

J/(kg K) Ce 695 310

m/s s 2 2

DT
k

ρCe

k
ρCe

(m2(%H2O)/s(K)) Dm
T 2.1× 10−7 2.1× 10−7

(m2s(K)/(%H2O)) DT
m 0.648× 10−6 0.648× 10−6

Reference moisture m0 10% 10%

m2s−1 Dm 0.35× 10−2 0.35× 10−2

cm/cm(%H2O) αm 2.68× 10−3 2.68× 10−3

(kg/msM) km 2.2× 10−8 2.2× 10−8
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6.1. The Effect of Two-Temperature Parameter

In the case of moisture diffusivity, the first group (Figure 1) depicts how the primary
fields in this phenomenon vary depending on the various values of the two-temperature
parameter measured against the horizontal distance x. This category includes two cases,
the first of which is when the two-temperature parameter does not disappear when a 6= 0.
The one-temperature example applies here because the thermodynamic and conductive
temperatures are equal. The two-temperature hypothesis is obtained in contrast when
a > 0. According to Figure 1, the carrier density in the two-temperature case and the one-
temperature wave propagation exhibit the same behavior. The wave propagations have a
different behavior in the other distributions (thermodynamic temperature, displacement,
stress, and conductive temperature). The magnitude of all field distributions from this
category is greatly influenced by the two-temperature parameter. In two instances of a
two-temperature parameter, the physical fields meet the surface boundary criteria.
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6.2. The Impact of Thermoelastic Coupling Parameter

Figure 2 (in the second category) displays the primary physical fields against the
horizontal distance within the framework of photo-thermoelasticity theory with moisture
diffusivity inside the two-temperature theory. All calculations are made under the moisture
diffusivity when ε3 = −7.8× 10−36 and m0 = 10% for Si material. The different types
of the thermoelastic coupling parameter are discussed in each subfigure. The solid lines
(
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thermodynamic temperature distribution (T) is shown in the first subfigure along with
how the distance affects the dimensionless thermoelastic coupling parameters. Starting
from a positive minimum temperature that satisfies the thermally insulated requirement,
the thermodynamic temperature T rises rapidly in the first range until it reaches the
maximum peak temperature close to the surface due to photo-excitation and moisture
diffusivity. The distribution, on the other hand, shrinks in the second range to arrive at the
minimum value distant from the surface. The electronic diffusive distribution is shown
against the distance in variation values of the thermoelastic parameters in the second
subfigure. However, the carrier density, which exhibits a similar quality characteristic, is
not significantly affected by a slight change in the thermoelastic coupling parameters. The
fourth subfigure describes the moisture concentration m distribution versus the horizontal
distance x, while the third subfigure depicts the conductive temperature, which exhibits the
same behavior as the first subfigure. For all three cases, the distribution of moisture content
starts at zero. The distribution adopts an exponential pattern with smooth decrementing
with ε1 = 0.001. On the other hand, due to moisture diffusivity, when ε1 = 0.002 and
ε1 = 0.003 the distribution of moisture concentration dramatically declines in the first
range, and it adopts exponential propagation behavior until it reaches a minimum value
close to the zero line. The fifth subfigure shows how the amplitude of the stress force σ is
increasing as a result of the mechanical loads’ tendency to raise the thermoelastic coupling
parameters’ values. The displacement distribution with horizontal distance caused by
moisture diffusivity and the thermal impact of photothermal stimulation for the rough
surface is shown in the sixth subfigure. For all three thermoelastic coupling parameter
scenarios, the displacement distribution begins at zero and climbs to maximum values
close to the surface before decreasing exponentially until it approaches a minimum value
close to the zero line [41]. These results are in agreement with what has been observed
through practical experiments [42,43].
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Figure 2. The variation of physical field distributions with distance at different values of thermoelec-
tric coupling parameter ε3 under the effect of moisture and ε1 = 0.001.

6.3. The Effect of the Thermoelectric Coupling Parameter

The main physical fields are depicted in Figure 3 (third category) versus a horizontal
distance within the setting of the photo-thermoelasticity theory with moisture diffusivity
inside the two-temperature theory. All calculations are carried out with the impact of
the moisture diffusivity when ε1 = 0.001 and m0 = 10% for Si materiel. All subfigures
discuss three cases of the thermoelectric coupling parameter. The solid lines (
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The thermo-dynamical temperature distribution with variation in the dimensionless ther-
moelectric coupling parameters with distance is shown in the first subfigure. Starting at a
positive minimum value that satisfies the thermally insulated requirement, the thermody-
namic temperature rises quickly in the first range until it reaches the peak maximum value
close to the surface because of photo-excitation and moisture diffusivity. The distribution,
on the other hand, contracts in the second range to approach the minimum value far from
the surface. The carrier density distribution is shown against the distance in variation val-
ues of the thermoelastic parameters in the second subfigure. However, the carrier density,
which exhibits a similar quality characteristic, is not significantly affected by a slight change
in the thermoelastic coupling parameters. The conductive temperature, which behaves
similarly to the dynamical temperature, is depicted in the third subfigure. The distribution
of moisture concentration m against horizontal distance x is shown in the fourth subfigure.
For each of the three scenarios, the moisture concentration distribution starts from a positive
value for all three cases. In the case of ε1 = 0.001, the distribution takes the exponential
behavior with smooth decreasing. Still, on the other hand, when ε1 = 0.002 and ε1 = 0.003,
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the distribution of moisture concentration decreases sharply near the surface, and it takes
an exponential propagation behavior until it reaches a minimum value near the zero line
due to moisture diffusivity. The fifth subfigure shows how the mechanical loads that tend
to raise the value of the thermoelectric coupling parameters enhance the stress force σ
amplitude. The displacement distribution u with horizontal distance caused by moisture
diffusivity and the thermal impact of photothermal stimulation for the rough surface is
shown in the sixth subfigure. For each of the three thermoelectric coupling parameter
situations, the displacement distribution begins at zero, climbs to maximum values near
the surface, and then decreases in an exponential propagation pattern until it reaches a
minimum value close to the zero line.
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6.4. Influence of Reference Moisture

Figure 4 (fourth category) shows the principle physical fields against the distance x
with moisture parameter. All calculations are carried out under the thermoelastic couples
ε1 = 0.001, ε3 = −7.8× 10−36 for Silicon (Si) material. Three cases of reference moisture m0
are shown in Figure 4 with different physical field variations in relation to distance. The first
represents the case of reference moisture when m0 = 10% (
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6.5. The Comparison between Si and Ge Materials

The comparison between the elastic semiconductor materials silicon (Si) and germa-
nium (Ge) is shown in Figure 5 (the fifth category). The values of the physical fields in
this problem have been evaluated numerically when ε1 = 0.001 and ε3 = −7.8× 10−36

under the influence of moisture field and the two-temperature parameter. According to
this figure, the physical constant differences between Ge and Si materials have a significant
impact on all wave propagation of the quantities T, m, u, σ s, and φ.
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7. Conclusions

The two-temperature and photo-thermoelasticity theories are taken into consideration
in the innovative model that is explored in two dimensions. With some initial and bound-
ary conditions, the complicated governing equations are assumed to be dimensionless.
According to thermal relaxation times, the differences between photo-thermoelasticity
theories are taken into account. For the fundamental parameters under consideration,
the impacts of moisture diffusivity are clearly seen in the distributions of wave propa-
gation. However, the two-temperature parameter also has a significant influence on all
wave propagations. It is observed that changes in the two-temperature parameters have a
considerable impact on silicon semiconductor wave propagation. On the other hand, the
model employed is extremely helpful for researchers and engineers working in the field of
renewable energy in terms of enhancing the performance of solar cells, electrical circuits,
and computer processors.
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