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Abstract: A unique methodology due to the effect of stochastic heating is utilized to study the
Moisture Diffusivity influence of an elastic semiconductor medium under the effect of photo-
thermoelasticity theory. Accurately, random processes are applied at the boundary of the semi-
conductor medium. The governing equations are expressed in the one-dimensional form (1D). The
boundary conditions are considered random; the additional noise is regarded as white noise. The
problem is set up to investigate the interaction between moisture diffusivity, thermo-elastic waves,
and plasma waves. The investigation is carried out during a photothermal transport procedure while
taking moisture diffusivity into consideration. The Laplace transform is used to solve the problem.
The numerical solution for field distribution is obtained using the short-time approximation while per-
forming inverse transformations of Laplace. The Wiener process notion has been used to arrive at the
solutions for the stochastic case. Silicon (Si) material is used along several sample paths in a numerical
study based on stochastic simulation. Additionally, a comparison of the stochastic and deterministic
field variable distributions is provided. The effects of thermoelectric, thermoelastic, and reference
moisture parameters of the applied force on all physical distributions are discussed graphically.

Keywords: stochastic process; white noise; sample path; photo-thermoelasticity theory; semiconduc-
tor; moisture diffusivity

1. Introduction

Since the transistor was created in 1947, semiconductors have become increasingly
dominant in our daily lives, particularly in computers and data storage. As the twenty-first
century gets underway, the semiconductor industry is continuously growing. Due to the
substantial reduction in the size of modern microelectronic devices, they run quickly and
generate high power densities. High-resolution thermal measurements are an effective tool
for evaluating and improving device performance as well as for boosting the dependability
of high-power electronic components. Despite the fact that many methods have already
been developed and put into use for semiconductor product characterization and quality
assessment instrumentation, a lot of effort is still being put into creating high-spatial-
resolution techniques that can probe the semiconductors’ thermal transport properties.
Therefore, it is important to study the properties of physical semiconductors with the
study of averages and predictions for some physical quantities. It is useful to study the
interference between the light (optic) energy absorbed on the surface and the subsequent
thermal effect on the electrons and internal particles of semiconductor materials. Therefore,
the importance of studying the interaction between the theory of thermoelasticity and the
photothermal (PT) theory is given.

Thermoelasticity theories, which accept a limiting speed of propagation for thermal
waves, are receiving a lot of attention. Unlike traditional theories that use a parabolic-type
heat equation, these theories, known as generalized theories, involve a heat equation of
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the hyperbolic sort. The current theories at the time predicted limitless speeds of thermal
wave propagation, which is not physically possible. This knowledge led to the generalized
thermoelasticity theories [1–3]. Apart from theoretical considerations, it was found that
in some situations, these theories give wrong values for the temperature differing from
those found by experimentation. The parabolic heat equation derived from Fourier’s law
of heat conduction fails to describe the transient temperature field in situations involving
short times, high frequencies, and small wavelengths [4]. For example, it was shown that,
by submitting a thin slab to an intense thermal shock, its surface temperature is 300 ◦C
larger than the value predicted by this theory. During the early works on generalized
thermoelasticity, authors used to make comparisons with the coupled theory [5,6]. They
have found that for large values of time, the solutions obtained from either theory are
almost identical. For short times, though, the generalized theory gives markedly larger
values for the temperature and stresses than the coupled theory [7,8]. The design and
building of nuclear reactors are one of the most common examples of the importance of
using the generalized theory of thermoelasticity, which gives more accurate results for the
resulting stresses during the initial stages of running the reactor. Other examples where
we need the generalized theories are in the design of plane wings because of the steep
heat gradient encountered during their normal operations and in the recently developed
ultra-fast pulsed lasers in which the rapid change of heating due to the heat pulse operates
in an order of pico-seconds or less [9–12].

Previously to this, Todorovic et al. [13,14] conducted theoretical and experimental
analyses of the micromechanical structures of the thermoelasticity and plasma field. Theo-
retical analysis was used in these investigations to represent two processes that provide
details on the characteristics of carrier’s recombination and transportation in semiconductor
materials. When a laser beam hit a semiconductor sample, the photothermal phenomenon
was examined [15]. A sensitive study of photoacoustic spectroscopy was performed to
measure some of the waves propagating inside semiconductors using the photothermal
approach [16]. When laser spectroscopy is applied, the PT transfers on linked materials
have several uses in contemporary science, mechanical engineering, and electrical engineer-
ing [17,18]. In the context of a two-dimensional deformation of semiconductors, Hobiny
and Abbas [19] employed photothermal and thermoelastic interactions. In the context of
thermoelasticity theories, Lotfy et al. [19–22] created the photothermal approach, which
has numerous uses for semiconductors in contemporary physics. The thermoelasticity
theory dual phase-lags models are investigated during the photothermal excitation [23–26].
The interaction of moisture, heat, and deformation can be seen in numerous engineering
issues relevant to real-world applications. Hygrothermoelasticity occurs when heat and
moisture have an impact on solids. The interaction of generalized heat transmission and
moisture was studied by Szekeres [27,28]. According to Gasch et al. [29], temperature and
moisture changes might result in more damage than mechanical loadings. Szekeres and
Engelbrecht [30] developed equations regulating coupled hygrothermoelasticity using a
basic analogy between heat and moisture.

Stochastic processes are commonly utilized as mathematical models of systems and
phenomena that appear to vary in a random manner. Examples include the growth of a
bacterial population, an electrical current fluctuating due to thermal noise, or the movement
of a gas molecule. It has applications in many disciplines, such as biology, chemistry,
ecology, neuroscience, physics, image processing, computer science, cryptography, and
telecommunications. Applications and the study of phenomena have, in turn, inspired the
proposal of new stochastic processes. Examples of such stochastic processes include the
Wiener or Brownian motion process, used by Louis Bachelier to study price changes on
the Paris Bourse [31]. On the other hand, the above stochastic techniques are used to study
the number of phone calls occurring in a certain period of time [31]. These two stochastic
processes are considered the most important and central in the theory of stochastic processes.
They were discovered repeatedly and independently. A stochastic process can be denoted,
among other ways, by {X(t)}t∈T , {Xt}t∈T , {Xt} or simply as X(t). The Wiener process
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is a stochastic process with stationary and independent increments normally distributed
based on the size of the increments. The Wiener process is named after Norbert Wiener,
who proved its mathematical existence, but the process is also called the Brownian motion
process or just Brownian motion due to its historical connection as a model for Brownian
movement in liquids [32]. The Wiener process playing a central role in the theory of
probability. The Wiener process is often considered the most important and studied
stochastic process, with connections to other stochastic processes. [33]. Other fields of
probability were developed and used to study stochastic processes, with one main approach
being the theory of large deviations [34]. The theory has many applications in statistical
physics, among other fields, and has core ideas going back to the last century [35,36].

In this paper, a moisture diffusivity model is being used to study wave propagation
in a photo-thermoelasticity semiconductor medium under the influence of moisture. The
problem is analyzed in one-dimensional space, during a photothermal transport process,
under some mechanical force and moisture diffusivity. The problem is solved at the
free surface of the semiconductor medium. The governing equations are transformed
using Laplace transforms in one dimension to solve them mathematically. To obtain the
linear solutions of physical quantities, some conditions are applied to the free surface
of the semiconductor medium. To obtain the deterministic solutions, some numerical
approximations are used for the inverse Laplace transforms. Some statistical operations are
applied to obtain stochastic solutions to study the diffusive electrons in the medium. Many
comparisons have been made graphically between deterministic and stochastic solutions
under the influence of different parameters with theoretical discussion.

2. Basic Equations

Consider a thermo-elastic semiconductor material, which has a linear property and is
transversely an isotropic homogeneous. The medium is studied throughout the photother-
mal transport phase, taking into consideration the overlap between plasma-thermal and
moisture diffusion. In this problem, the fundamental four distributions are the temperature
distribution T(ri, t), the carrier density (intensity) N(ri, t), the displacement vector u(ri, t),
and the moisture concentration m(ri, t), (ri represents the position vector in the general
case and t represents the time). The interaction between plasma-thermal-elastic wave and
moisture diffusion equations can be expressed in tensor form as follows [37–39]:

∂N(ri, t)
∂t

= DEN,ii(ri, t)− N(ri, t)
τ

+ κT(ri, t) (1)

ρCe(DTT,ii(ri, t) + Dm
T m,ii(ri, t)) = ρCe

∂T(ri, t)
∂t

−
Eg

τ
N(ri, t) + γtT0

∂ui,j(ri, t)
∂t

(2)

km

(
Dmm,ii(ri, t) + DT

mT,ii(ri, t)
)
= km

∂m(ri, t)
∂t

−
Eg

τ
N(ri, t) + γmm0Dm

∂ui,j(ri, t)
∂t

− (3)

The motion equation can be expressed generally as follow [40]:

ρ
∂2ui(ri, t)

∂t2 = σij,j (4)

The equation for the displacement and strain tensor can be written as [39]:

εij =
1
2
(
ui,j + uj,i

)
(5)

The stress-displacement-plasma-temperature in tensor form with moisture concentra-
tion is [39]:

σij = Cijklεkl − βij(αtT + dnN)− βm
ij m, i, j, k, l = 1, 2, 3 (6)

where DT expresses the temperature diffusivity, Dm is diffusion coefficient of moisture,
Dm

T and DT
m are coupled diffusivities, DE is the carrier diffusion coefficient, m0 is the
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reference moisture, km is the moisture diffusivity, Cijkl represents the isothermal parameter
tensors of an elastic medium, εkl is the strain tensor, βij and βm

ij are the isothermal thermo-
elastic coupling tensor and the material coefficient of moisture concentration respectively.
The parameter of the non-zero thermal activation coupling is κ = ∂N0

∂T
T
τ , N0 represents the

equilibrium carrier concentration. The constants, Eg, τ, ρ, (µ 
, λ), and T0 are known as
the energy gap of the semiconductor, the lifetime, the density, Lame’s elastic constants, and
the absolute temperature, respectively. On the other hand, γt = (3λ + 2µ)αT is the volume
thermal expansion, where αT is the linear thermal expansion coefficient, Ce is the specific
heat, δn is the difference between conductive deformation potential and valence band.

Semiconductor elastic surfaces can be represented by x = ±1 (taken a rod), which are
governed by electrical short (closed circuit), isothermal, and stress loads are freed when the
boundary conditions on the surface are thermally insulated. All quantities are taken in the
x-axis direction. The physical Equations (1)–(3) can be defined in 1D as follows [40]:

∂N
∂t

= DE
∂2N
∂x2 −

N
τ
+ κT (7)

ρCe

(
DT

∂2T
∂x2 + Dm

T
∂2m
∂x2

)
= ρCe

∂T
∂t
−

Eg

τ
N + γtT0

∂

∂t

(
∂u
∂x

)
(8)

km

(
Dm

∂2m
∂x2 + DT

m
∂2T
∂x2

)
= km

∂m
∂t
−

Eg

τ
N + γmm0Dm

∂

∂t

(
∂u
∂x

)
(9)

The equation of motion (4), takes the following form:

ρ
∂2u
∂t2 = (2µ + λ)

∂2u
∂x2 − γt

∂T
∂x
− δn

∂N
∂x
− γm

∂m
∂x

(10)

where γt,m = βαm,T and δn = βdn, β = 3µ + 2λ.
The constitutive relation takes the following form in 1D:

σxx = (2µ + λ)
∂u
∂x
− β(αtT + dnN)− γmm = σ (11)

3. Mathematical Formulation of the Problem

For more simplicity, we introduce the following non-dimensional variables:

(
x′, u′

)
=

(x, u)
CTt∗′

t′ =
t

t∗′
(
T′, N′

)
=

(γtT, δnN)

2µ + λ
, σ′ =

σ

µ
, e′ = e and m′ = m (12)

The dashed is removed for brevity in Equations (7)–(11), using Equation (12), we have:(
∂2

∂x2 − q1 − q2
∂

∂t

)
N + ε3T = 0 (13)

(
∂2

∂x2 − a1
∂

∂t

)
T + a2

∂2m
∂x2 + a3N − ε1

∂2u
∂t∂x

= 0 (14)(
∂2

∂x2 − a4
∂

∂t

)
m + a5

∂2T
∂x2 + a6N − a7

∂2u
∂t∂x

= 0 (15)(
∂2

∂x2 −
∂2

∂t2

)
u− ∂T

∂x
− ∂N

∂x
− a8

∂m
∂x

= 0 (16)

The normal stress component takes the following form:

σxx = a9

(
∂u
∂x
− (T + N)

)
− a10m = σ (17)



Crystals 2023, 13, 42 5 of 25

where

q1 = kt∗
DEρτCe

, q2 = k
DEρCe

, a1 =
C2

T t∗

DT
, a2 =

Dm
T γt

DT(2µ+λ)
, ε2 =

αT Egt∗

τdnρCe
, a3 = ε2a1,

ε1 =
γ2

t T0t∗

kρ , a4 =
C2

T t∗

Dm
, a5 = DT

m(2µ+λ)
Dmγt

, a6 =
Eg(2µ+λ)t∗a4

kmδnτ , a7 =
γmm0C2

T t∗

km
,

a8 = γm
2µ+λ ,ε3 = dnkκt∗

αTρCeDE
, a9 = 2µ+λ

µ , a10 = γm
µ , C2

T = 2µ+λ
ρ ,

δn = (2µ + 3λ)dn, t∗ = k
ρCeC2

T

The parameters ε1, ε2 and ε3 refer to the thermoelastic coupling parameters, the
thermo-energy coupling parameter, and the thermoelectric coupling parameter, respec-
tively.

To solve the problem, we consider the following initial conditions:

u(x, t)|t=0 = ∂u(x,t)
∂t

∣∣∣
t=0

= 0, T(x, t)|t=0 = ∂T (x,t)|
∂t

∣∣∣
t=0

= 0,

m(x, t)|t=0 = ∂m(x,t)
∂t

∣∣∣
t=0

= 0, σ(x, t)|t=0 = ∂σ(x,t)
∂t

∣∣∣
t=0

= 0,

N(x, t)|t=0 = ∂N(x,t)
∂t

∣∣∣
t=0

= 0

(18)

4. The Solution of the Problem

Laplace transform for Γ(x, t) can be defined as:

L(Γ(x, t)) =
−
Γ(x, s) =

∫ ∞

0
e−stΓ(x, t)dt (19)

Using Equation (19) for the fundamental Equations (13)–(17), yields:(
D2 − α1

)−
N + ε3

−
T = 0 (20)

(
D2 − α2

)−
T + a2D2−m + a3

−
N − α3D

−
u = 0 (21)(

D2 − α4

)−
m + a5D2T + a6

−
N − α5D

−
u = 0 (22)(

D2 − s2
)

u− DT − DN − a8D
−
m = 0 (23)

−
σxx = a9

(
D
−
u −

(
T + N

))
− a10

−
m = σ (24)

where
D =

d
dx′ α1 = q1 + q2s, α2 = a1s, α3 = sε1, α4 = a4s, α5 = a7s.

Eliminating
−
T,
−
u,
−
N and

−
m between Equations (20)–(23) yields(

D8 −∏
1

D6 + ∏
2

D4 −∏
3

D2 −∏
4

){
m,
−
N,
−
T,
−
u
}
(x, s) = 0 (25)

where
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Π1 = −{−s2a2a5−a2a5α1−a5a8α3+s2−a2α5+a8α5+α1+α2+α3+α4}
(a2a5−1) ,

Π2 =

{
s2a2a5α1 + a5a8α1α3 − s2α1 − s2α2 − s2α4 − a2a7ε3 + a2α1α5 + a2α5ε3
−a8α1α5 − a8α2α5 + a3ε3 − α1α2 − α1α3 − α1α4 − α2α4 − α3α4 − α3ε3

}
(a2a5−1) ,

Π3 = −

{
s2a2a7ε3 − s2a3ε3 + s2α1α2 + s2α1α4 + s2α2α4 − a3a8α5ε3

+a7a8α3ε3 + a8α1α2α5 − a3α4ε3 + α1α2α4 + α1α3α4 + α3α4ε3

}
(a2a5−1) ,

Π4 =
{s2a3α4ε3−s2α1α2α4}

(a2a5−1) .



(26)

The distinctive equation of Equation (25) is:(
D2 −m2

1

)(
D2 −m2

2

) (
D2 −m2

3

)(
D2 −m2

4

){
T, u, N, m

}
(x, s) = 0 (27)

where, m2
i (i = 1, 2, 3, 4) represent the roots that they may be taken in the positive real part

when x → ∞ . The solution of Equation (ODE) (27) takes the following linear form:

T(x, s) =
4

∑
i=1

Di(s) e−mix (28)

In a similar way, the solutions of the other physical quantities is expressed as:

N(x, s) =
4

∑
i=1

D′ i(s) e−mix =
4

∑
i=1

H1iDi(s) e−mix (29)

u(x, s) =
4

∑
i=1

Di
′′ (s) exp(−mix) =

4

∑
i=1

H2i Di(s) exp(−mix) (30)

m(x, s) =
4

∑
i=1

D′′′ i (s) exp(−mix) =
4

∑
i=1

H3i Di(s) exp(−mix) (31)

σ (x, s) =
4

∑
i=1

D(4)
i (s) exp(−mix) =

4

∑
i=1

H4i Di(s) exp(−mix) (32)

where Di, D′i , D′′i , and Di
′′′ (i = 1, . . . , 4) are unknown parameters depending on s and the

other coefficients are:

H1i = − ε3
k2

i−α1
, H2i =

−a2(a6h1ik2
i +a5k4

i )+a3h1i(k2
i−α4)+(k2

i−α2)(k2
i−α4)

−kiα3α4+k3
i (α3−a2α5)

H3i =
a6h1iα3+a5ki

2α3−(a3h1i+ki
2−α2)α5

α3α4+ki
2(−α3+a2α5)

, H4i = −a9 − a9h1i − a10h3i + a9h2iki.

 (33)

We can obtain those parameters Di using some boundary conditions at the free surface.

5. Boundary Conditions

Assume that certain mechanical, plasma and thermal loads are exposed to the elastic
semiconductor medium. These loads are applied to the free medium (external surface). For
all conditions, the Laplace transforms are taken into account.

(I) The isothermal boundary condition (thermally isolated system) subjected to thermal
shock is taken at the free surface when x = 0 as [41]:

T(0, s) = T0 (34)

Therefore
4

∑
n=1

Di(s) = T0 (35)
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(II) The mechanical normal stress components condition at the free surface x = 0 with
Laplace transform is:

σxx(0, s) = 0 (36)

Therefore,
4

∑
i=1
{a9(mi H2i − ( 1 + H1i))− a10H3i}(Di) = 0 (37)

(III) The plasma boundary condition at the free surface x = 0, with Laplace transform,
yields:
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i
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′ ′= =   (43)
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(38)

Therefore:

Crystals 2022, 12, x FOR PEER REVIEW 7 of 26 
 

 

5. Boundary Conditions 
Assume that certain mechanical, plasma and thermal loads are exposed to the elastic 

semiconductor medium. These loads are applied to the free medium (external surface). 
For all conditions, the Laplace transforms are taken into account. 

(I) The isothermal boundary condition (thermally isolated system) subjected to ther-
mal shock is taken at the free surface when 𝑥 = 0 as [41]: 

0(0, )T s T=  (34)

Therefore 
4

0
1

( )i
n

D s T
=

=  (35)

(II) The mechanical normal stress components condition at the free surface 0x =  
with Laplace transform is: 

(0 , ) 0xx sσ =  (36)

Therefore, 

( ){ }( )
4

9 2 1 10 3
1

(1 ) 0i i i i i
i

a m H H a H D
=

− + − =  (37)

(III) The plasma boundary condition at the free surface 0x = , with Laplace trans-
form, yields: 

(0, ) ( )
e

N s R s
D

= 
 (38)

Therefore: 
4

1
1

( , )i i
i e

H D x s
sD=

= 
 (39)

(Ⅳ) The displacement boundary condition at the free surface 0x =  is; 

(0, ) 0u s =  (40)

Therefore: 
4

2
1

( , ) 0i i
i

H D x s
=

=  (41)

The symbols ℎ(𝑡) and 𝑅(𝑠) represent the unit Heaviside function and the symbol ƛ is a constant. From the above system of boundary conditions, the parameters 𝐷௜ can be 
determined. In this case, the temperature distribution in the linear form can be rewritten 
as: 

1 1 2 2 3 3 4 4( , ) exp( ) exp( ) exp( ) exp( )T x s D k x D k x D k x D k x= − + − + − + −  (42)

6. Inversion of the Fourier-Laplace Transforms 
The dimensionless physical fields in 1D can be obtained by using the inverse of La-

place transform. The numerical Riemann-sum approximation method can be used [42]. In 
this case, the inverse of the function 𝜁ሜ(𝑥, 𝑠) can be obtained as: 

1 1( , ) { ( , )} exp( ) ( , )
2

n i

n i
x t L x s st x s ds

i
ζ ζ ζ

π
+ ∞−

− ∞
′ ′= =   (43)

where; 𝑠 = 𝑛 + 𝑖𝛭 (𝑛, 𝛭 ∈ 𝑅), then the inverted Equation (43) can be rewritten as: 

(39)

(IV) The displacement boundary condition at the free surface x = 0 is;

u(0, s) = 0 (40)

Therefore:
4

∑
i=1

H2iDi(x, s) = 0 (41)

The symbols h(t) and R(s) represent the unit Heaviside function and the symbol
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T(x, s) = D1 exp(−k1x) + D2 exp(−k2x) + D3 exp(−k3x) + D4 exp(−k4x) (42)

6. Inversion of the Fourier-Laplace Transforms

The dimensionless physical fields in 1D can be obtained by using the inverse of Laplace
transform. The numerical Riemann-sum approximation method can be used [42]. In this

case, the inverse of the function
−
ζ (x, s) can be obtained as:

ζ(x, t′) = L−1{ζ(x, s)} = 1
2πi

∫ n+i∞

n−i∞
exp(st′)

−
ζ (x, s)ds (43)

where; s = n + iM (n, M ∈ R), then the inverted Equation (43) can be rewritten as:

ζ(x, t′) =
exp(nt′)

2π

∫ ∞

∞
exp(iβt)ζ(x, n + iβ)dβ (44)

Using the Fourier series, expand for the function ζ(x, t′) in the closed interval [0, 2t′]
to get the next relationship:

ζ(x, t′) =
ent′

t′

[
1
2

ζ(x, n) + Re
N

∑
k=1

ζ(x, n +
ikπ

t′
)(−1)n

]
(45)

where i and Re represent the imaginary and the real part, respectively, N can be chosen to
be free as a large integer, and the notation nt′ ≈ 4.7 [42].
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7. Stochastic Main Physical Fields
7.1. Stochastic of Temperature (Thermal Wave)

Considering a stochastic distribution that can be specified as [43,44] for the temperature
at the boundary:

T0(t) = T(t) + ϕ0(t) (46)

where T(t) = T∗
h(t) , T∗ is a temperature constant and ϕ0(t) is the stochastic process that

satisfies:
E[ϕ0(t)] = 0 (47)

White noise is the most common form of stochastic process ϕ0(t), and the stochastic
process for the function x(t) satisfies the following relation:

E[L{x(t)}] = L[E{x(t)}] (48)

The physical fields, on the other hand, entail a boundary condition during a stochastic
process in this case, the stochastic process in the physical fields is primarily caused by the
random function ϕ0(t). As a result, Equations (42) and (46) produce [43]:

E
[−

T(x, s)
]
= L[E{T(x, t)}]=

−
T(x, s) (49)

The solution for the deterministic case is similar to the mean of all the sample paths of
the temperature field E[T(x, t)]. If the temperature distribution were to be displayed on the
next form:

T(x, s) = θ(x, s) + Θ(x, s)T0(s), or
T(x, s) =

(
A11 + A12T0(s)

)
exp(−k1x) +

(
A13 + A14T0(s)

)
exp(−k2x)+(

A15 + A16T0(s)
)

exp(−k3x) +
(

A17 + A18T0(s)
)

exp(−k4x)

 (50)

Where the main coefficients of Equation (50) can be obtained in the Appendix A. On
the other hand, we have

θ(x, s) = A11 exp(−k1x) + A13 exp(−k2x) + A15 exp(−k3x) + A17 exp(−k4x) (51)

Θ(x, s) = A12 exp(−k1x) + A14 exp(−k2x) + A16 exp(−k3x) + A18 exp(−k4x) (52)

Using Equations (46) and (50), the temperature can be represented as [27,28]:

−
T(x, s) = θ(x, s) + Θ(x, s)

[−
T(s) + ϕ0(s)

]
(53)

Equation (53) can be expressed as: Using the inverse of the Laplace transform approach
of Equation (53):

−
T(x, s) =

{
θ(x, s) + Θ(x, s)

−
T(s)

}
+ Θ(x, s)ϕ0(s) (54)

−
T(x, s) =

−
T1(x, s) + Θ(x, s)ϕ0(s) (55)

where
T1(x, s) =θ(x, s) + Θ(x, s)T(s)

The inverse of the Laplace transform is applied of (55), yields:

T(x, t) = T1(x, t) +
∫ t

0
Θ(x, t− u)ϕ(u)du (56)
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In this case, T1(x, s) represents the deterministic of thermal distribution. However,
Θ(x, t) expresses the Laplace inverse of Θ(x, s). On the other hand, Equation (56) is reduced
as:

T(x, t) = T1(x, t) +
∫ t

0
Θ(x, t− u)dW(u) (57)

where W(u) represents the Wiener process.
The variance of the temperature field must be calculated in order to complete the

stochastic characteristics; in this example, solving Equation (56), yields:

[T(x, t)]2 =
[
T1(x, t)

]2
+

t∫
0

t∫
0

ϕ(u1)ϕ(u2)du1du2Θ(x, t− u1)Θ(x, t− u2)+

2
t∫

0
T1(x, t)ϕ(u)Θ(x, t− u)du

. (58)

The expectation process is applied to both sides of Equation (58), results in:

E[T(x, t)]2 = E
[
T1(x, t)

]2
+

t∫
0

t∫
0

E[ϕ(u1)ϕ(u2)]du1du2Θ(x, t− u1)Θ(x, t− u2)+

2
t∫

0
E[ϕ(u)]T1(x, t)Θ(x, t− u)du

. (59)

Taking into account the following properties:

E[ϕ(u)] = 0, E[ϕ(u1)ϕ(u2)] = δ(u1 − u2). (60)

The following format can be used to express the variance:

Var[T(x, t)] =
t∫

0

t∫
0

Θ(x, t− u1)Θ(x, t− u2)δ(u2 − u1)du1du2. (61)

The following relation is used:

b∫
a

f (x) f (x− x0)dx = f (x0),a < x0 < b. (62)

However, the variance of the thermal field can be rewritten as:

Var[T(x, t)] =
t∫

0

Θ(x, t− u1)Θ(x, t− u2)du1 (63)

According to the path u1 = u2, yields:

Var[T(x, t)] =
t∫

0

[Θ(x, t− u1)]
2du1. (64)

Substituting by t− u1 = ϑ, the variance of the thermal field can be constructed as:

Var[T(x, t)] = −
o∫

t

[Θ(x, ϑ)]2dϑ =

t∫
0

[Θ(x, ϑ)]2dϑ. (65)
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7.2. Deterministic Stress Distribution

The deterministic stress field solution, which can be characterized as [42,43], can be
obtained by using the same method as stated in the preceding section to the deterministic
boundary condition Equations (32) and (36). However:

−
σxx(x, s) = H41D1 exp(−k1x) + H42D2 exp(−k2x) + H43D3 exp(−k3x) + H44D4 exp(−k4x) (66)

7.3. Stochastic Stress Distribution

The stochastic stress distribution can be produced by using the same form of Equation
(46) and following the same steps as in Section 7.1, where:

E
[
−
σxx(x, s)

]
= L[E{σxx(x, s)}] = −σxx(x, s). (67)

The stress field distribution mean across all sample paths is E[σxx(x, s)], which may
be derived similarly to Equation (46) for the deterministic case and written as follows:

σxx(x, s) = Ω(x, s) + S(x, s)T0, or
−
σxx(x, s) =

(
E11 + E12T0(s)

)
exp(−k1x) +

(
E13 + E14T0(s)

)
exp(−k2x)+(

E15 + E16T0(s)
)

exp(−k3x) +
(
E17 + E18T0(s)

)
exp(−k4x)

 (68)

where Ω(x, s) can be expressed as:

Ω(x, s) = E11 exp(−k1x) + E13 exp(−k2x) + E15 exp(−k3x) + E17 exp(−k4x) (69)

and S(x, s) can be represented as:

S(x, s) = E12 exp(−k1x) + E14 exp(−k2x) + E16 exp(−k3x) + E18 exp(−k4x) (70)

Using Equation (46), we have:

−
σxx(x, s) = Ω(x, s) + S(x, s)

[
T + ϕ0(t)

]
(71)

When the inversion property of the Laplace inverse is applied to the Laplace transform
inverse of the above Equation (71), the following results follow:

σxx(x, t) = σ1(x, t) +
∫ t

0
S(x, t− u)ϕ(u)du (72)

where, σ1(x, t) is the deterministic stress distribution and S(x, t) is the inverse of the Laplace
transform of S(x, s). Using the same technique, the variance of stress distribution can be
taken the following form:

Var[σxx(x, t)] =
t∫

0

S2(x, ϑ)dϑ (73)

7.4. Deterministic Displacement Distribution

Given the deterministic of the displacement field Equation (30), where

u(x, s) = H21D1 exp(−k1x) + H22D2 exp(−k2x) + H23D3 exp(−k3x) + H24D4 exp(−k4x) (74)

7.5. Stochastic Displacement Distribution

Using the same above technique, the stochastic of displacement can be derived. How-
ever, the mean displacement field distribution can be expressed as [40,43]:

E[u(x, s)] = L[E{u(x, s)}] = u(x, s) (75)
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The displacement field sample paths can be written as:

u(x, s) = Γ(x, s) + U(x, s)T0,
u(x, s) =

(
D11 + D12T0(s)

)
exp(−k1x) +

(
D13 + D14T0(s)

)
exp(−k2x)+(

D15 + D16T0(s)
)

exp(−k3x) +
(

D17 + D18T0(s)
)

exp(−k4x)

 (76)

where Γ(x, s) and U(x, s) can be written in the following form:

Γ(x, s) = D11 exp(−k1x) + D13 exp(−k2x) + D13 exp(−k3x) + D14 exp(−k4x) (77)

U(x, s) = D12 exp(−k1x) + D14 exp(−k2x) + D16 exp(−k3x) + D18 exp(−k4x) (78)

According to Equation (60), the displacement field can be rewritten in stochastic form
as:

u(x, s) = Γ(x, s) + U(x, s)
[
T(s) + ϕ0(s)

]
(79)

The inverse of the Laplace transform is utilized for Equation (79), yields:

u(x, t) = u1(x, t) +
∫ t

0
U(x, t− u)ϕ(u)du (80)

where u1(x, t) is the deterministic value of the displacement distribution and U(x, t) is the
inverse of the Laplace transform of the function U(x, s).

In the same manner as in Section 7.1, the variance for the displacement distribution
may be calculated. In this instance, the variance for the displacement distribution can be
expressed as:

Var[σxx(x, t)] =
t∫

0

U2(x, ϑ)dϑ (81)

7.6. Deterministic Carrier Density Distribution

The deterministic linear value of the carrier density (plasma) filed is obtained as:

N(x, s) = H11D1 exp(−k1x) + H12D2 exp(−k2x) + H13D3 exp(−k3x) + H14D4 exp(−k4x) (82)

7.7. Stochastic Carrier Density Distribution

Using the same technique of the stochastic properties, the sample paths mean E[N(x, s)]
of plasma distribution field can be expressed as [16,17]:

E
[
N(x, s)

]
= L[E{N(x, s)}] = N(x, s) (83)

Considering the stochastic carrier density distribution can be written as:

N(x, s) = ω(x, s) +Z(x, s)T0,
N(x, s) =

(
B11 + B11T0(s)

)
exp(−k1x) +

(
B13 + B14T0(s)

)
exp(−k2x)+(

B15 + B16T0(s)
)

exp(−k3x) +
(

B17 + B18T0(s)
)

exp(−k4x)

 (84)

The values of ω(x, s) and Z(x, s) can be expressed as:

ω(x, s) = B11 exp(−k1x) + B13 exp(−k2x) + B15 exp(−k3x) + B17 exp(−k4x) (85)

Z(x, s) = B12 exp(−k1x) + B14 exp(−k2x) + B16 exp(−k3x) + B18 exp(−k4x) (86)

The stochastic carrier density distribution can be reformulated as follows when the
stochastic term that is specified by Equation (46) is in effect:

N(x, s) = ω(x, s) +Z(x, s)
[
T + ϕ0(s)

]
(87)
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According to the inverse of the Laplace transform of plasma field, yields:

N(x, t) = N1(x, t) +
∫ t

0
Z(x, t− u)ϕ(u)du (88)

The deterministic plasma (electronic density) is N1(x, t) and Z(x, t) is the Laplace
transform inverse of the function Z(x, s).

In this case, the variance for the electronic field can be represented as:

Var[N(x, t)] =
∫ t

0
Z2(x, ϑ)dϑ (89)

7.8. Deterministic Moisture Concentration Distribution

The deterministic moisture concentration distribution linear solution is obtained from
Equation (31) as:

M(x, s) = H31D1 exp(−k1x) + H32D2 exp(−k2x) + H33D3 exp(−k3x) + H34D4 exp(−k4x) (90)

7.9. Stochastic Moisture Concentration Distribution

According to the stochastic properties, the mean moisture concentration distribution
can be taken the following form [42,44]:

E
[
M(x, s)

]
= L[E{M(x, s)}] = M(x, s) (91)

E[M(x, s)] is the sample paths mean of the moisture concentration distribution. In this
case, the stochastic moisture concentration distribution can be rewritten as:

M(x, s) = φ(x, s) + Φ(x, s)T0,
M(x, s) =

(
C11 + C12T0(s)

)
exp(−k1x) +

(
C13 + C14T0(s)

)
exp(−k2x)+(

C15 + C16T0(s)
)

exp(−k3x) +
(
C17 + C18T0(s)

)
exp(−k4x)

 (92)

where

φ(x, s) = C11 exp(−k1x) + C13 exp(−k2x) + C15 exp(−k3x) + C17 exp(−k4x) (93)

Φ(x, s) = C12 exp(−k1x) + C14 exp(−k2x) + C16 exp(−k3x) + C18 exp(−k4x) (94)

The stochastic moisture concentration distribution can be reformulated as follows
under the influence of the stochastic term indicated by Equation (46):

M(x, s) = φ(x, s) + Φ(x, s)
[
T + ϕ0(s)

]
(95)

The inverse of the Laplace transform is used:

M(x, t) = M1(x, t) +
∫ t

0
Φ(x, t− u)ϕ(u)du (96)

where M1(x, t) is the deterministic moisture concentration distribution and Φ(x, t) is the
Laplace inverse of the function M(x, s).

The variance for the moisture concentration distribution field can be represented as:

Var[M(x, t)] =
∫ t

0
Φ2(x, ϑ)dϑ (97)

8. Numerical Results and Discussions

Physical quantities numerical values are computed during a small period of dimen-
sionless time. Utilizing the physical parameters of the silicon (Si) semiconductor material,
numerical simulation is carried out. The physical constants of silicon have been employed
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in SI units, and the physical quantities, which are listed in Table 1 as follows [40–42], were
plotted using the Mathematica program:

Table 1. Physical constants of Si material.

Units Symbol Si

N/m2
λ 6.4× 1010,

µ 6.5× 1010

kg/m3 ρ 2330

K T0 800

s τ 5× 10−5

m2/s DE 2.5× 10−3

m3 dn −9× 10−31

eV Eg 1.11

K−1 αt 4.14× 10−6

Wm−1K−1 k 150

J/(kgK) Ce 695

m/s s 2

- DT
k

ρCe

m2(%H2O)/s(K) Dm
T 2.1× 10−7

m2s(K)/(%H2O) DT
m 0.648× 10−6

- m0 10%

m2s−1 Dm 0.35× 10−2

cm/cm(%H2o) αm 2.68× 10−3

(kg/msM) km 2.2× 10−8

The computations were carried out numerically for various values of dimensionless
times, specifically, at t = 0.02, t = 0.04 and t = 0.06, in order to demonstrate the theoretical
results obtained from earlier parts. The calculation shows the wave propagations of thermal,
normal stress, carrier (electronic) density, displacement, and moisture. The stochastic
process is simulated, which displays the varying stochastic field distributions within the
medium and contrast the outcomes with deterministic cases. The idea of Brownian motion
or traditional Wiener processes is taken from Desmond and Hingham [18], and it is utilized
to calculate the stochastic integrals necessary for the solution of physical field variables.
Three sample paths of the stochastic process are taken into consideration to compare the
outcomes with deterministic cases for all the physical field distributions. The solutions
of the field distributions in the physical domain for both stochastic and deterministic
cases are obtained in Figures 1–3. Results for deterministic distributions are shown in
Figure 1a–e. The results for the comparison of the deterministic case with the stochastic
case are shown in Figure 2a–e. Finally, the results for the variance are shown in Figure 3a–e.
Figure 1a shows the deterministic distribution of thermal wave propagation. The thermal
wave distribution starts from the highest maximum point and then decreases continuously
without any jumps until reaching the minimum value; then, it coincides with the zero line
until it reaches the equilibrium case inside the semiconductor medium. In Figure 1b, the
deterministic stress distribution begins at zero (surface), satisfying the boundary condition.
When t = 0.04 and t = 0.06, the distributions increase to maximum values, then decrease
gradually to coincide with the zero minimum line. On the other hand, at t = 0.02, the stress
(mechanical) distribution decreases to the negative values with the opposite behavior of
t = 0.04 and t = 0.06, then, increases to coincide with x-axis. In Figure 1c, the deterministic



Crystals 2023, 13, 42 14 of 25

case of carrier density (electronic or plasma wave) starts from a maximum value and then
begins to decrease continuously in a smooth way without jumps till it disappears with
increasing distance to reach the equilibrium state. In Figure 1d, at t = 0.04 and t = 0.06 the
deterministic (elastic wave) displacement distribution gets started from a minimum point
at zero, then increases sharply to reach the maximum value at the surface due to the thermal
effect of light (the vibrations of inner particles increase), then begins to decrease gradually
with exponential behavior before coinciding with the zero line. On the other side, when
t = 0.02, the wave propagation has the opposite behavior. In Figure 1d, the deterministic
cases of moisture distributions, at t = 0.04 and t = 0.06 that begin from the minimum zero
value at the free surface, then increase sharply to reach the maximum peak value, then
decrease in exponential behavior until they coincide with the zero line (equilibrium case).
Nevertheless, when t = 0.02, it decreases sharply to the negative minimum value, then
increases smoothly to coincide with the zero line [45–50].
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Figure 3. (a–e) The variance of temperature, normal stress, carrier density, displacement, and moisture
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In the second category (Figure 2a–e), Figure 2a displays a composite plot of the tem-
perature distribution in a deterministic case and a stochastic case for three sample paths.
From this figure, it is clear a great variation between the stochastic temperature distribution
and the deterministic temperature distribution. Around the boundary, there is a noticeable
difference between the deterministic and stochastic distributions over distinct sample paths,
which later corresponds with the deterministic distribution. Figure 2b shows a composite
plot of the stress distribution for three sample paths in both the deterministic and stochastic
cases. It is evident from this graphic that there is a significant difference between the deter-
ministic stress (mechanical) distribution and the stochastic temperature distribution. The
stochastic and deterministic distributions across different sample paths diverge noticeably
around the boundary; this difference later corresponds to the deterministic distribution.
Figure 2c shows the comparison between the deterministic electronic distributions with the
stochastic one. It is evident from the figure that the distributions are not equal. However,
in general, with increased distance, the stochastic plasma distribution corresponds with
the deterministic plasma distribution. Figure 2d shows the elastic wave distribution that is
stochastically compared to a deterministic one. Close to the border surface, there is a large
fluctuation, and as one goes further into the material, the variation decreases and increases
in correlation with distance. Figure 2e shows the comparison between the deterministic
moisture concentration distributions with the stochastic one. It is evident from the figure
that the distributions are not equal. As in Figure 2b, with increased distance, the stochastic
distribution corresponds with the deterministic distribution.

Figure 3a–e shows that the curve of the variance increases about the boundary of the
semiconductor medium beginning from a maximum point, and after some distance, it
begins to decrease and finally coincides with the zero line (equilibrium case). Figure 3b–d
about the boundary begins from zero; then increases to the highest point, then goes to
zero to coincide with x-axis. From this category, all the deterministic fields distribution
first differs greatly from the stochastic temperature distribution over various sample paths
before they eventually coincide entirely. On the other hand, all the deterministic and
stochastic field distribution is continuous overall the distance. Around the boundary,
there is a noticeable difference between the deterministic and stochastic distributions over
distinct sample paths, which later corresponds with the deterministic distribution.

9. Conclusions

A photo-thermoelastic problem was solved for two types of boundary conditions,
namely, the deterministic and stochastic types. The white noise stochastic process was
chosen as the most common type. It was found that the mean of the stochastic solution
coincides with the deterministic solution for all functions considered. It was also found
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that the deviation of the stochastic solution from its mean decreases with the distance
from the bounding plane, which is the source of the noise. The fluctuations in the solution
due to the noise on the boundary travel inside the medium with a finite speed, as is
the case for the deterministic waves which travel inside the medium with a finite speed.
From numerical results, it is clear that all the deterministic field variables are matched
with the corresponding results reported by Sherief [51], and this validates the present
work. This physical-mathematical model may be utilized to raise semiconductor material
manufacturing effectiveness and product quality. The examination and findings in this
paper will be crucial for understanding how semiconductors like diodes and triodes are
used in contemporary electronics.
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Appendix A

The coefficients of Equation (50) are:

A11 =


−(DeH14H23H42 − DeH13H24H42 − DeH14H22H43 + De H12H24H43 + DeH13H22H44 − DeH12H23H44)/
(De(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41 + H13H24H41+
H13H21H42 − H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42 − H13H24H42 − H12H21H43+
H14H21H43 + H11H22H43 − H14H22H43 − H11H24H43 + H12H24H43 + H12H21H44 − H13H21H44−
H11H22H44 + H13H22H44 + H11H23H44 − H12H22H44)s)



A12 =



(−H23H42h̄ + H24H42h̄ + H22H43h̄− H24H43h̄− H22H44h̄ + H23H44h̄)/
(De(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41+
H13H24H41 + H13H21H42 − H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42−
H13H24H42 − H12H21H43 + H14H21H43 + H11H22H43 − H14H22H43−
H11H24H43 + H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44 + H13H22H44+
H11H23H44 − H12H23H44)s)



A13 =


((DeH14H25H41 − De H13H24H41 − DeH14H21H43 + DeH11H24H43 + DeH13H21H44 − De H11H23H44)T0)/
(De(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



A14 =


(−H23H41h̄ + H24H41h̄ + H21H43h̄− H24H43h̄− H21H44h̄ + H23H44h̄)/
(De(H13H21H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41−
H13H24H41 − H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)


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A15 =


(−DeH14H22H41 − DeH12H24H41 − DeH14H21H42 − DeH11H24H42 − DeH12H21H44 + DeH11H22H44)/
(De(−H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 − H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



A16 =


(H22H41h̄− H24H41h̄− H21H42h̄ + H24H42h̄ + H21H44h̄− H22H44h̄)/
(De(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43−
H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



A17 =


(DeH13H22H41 − De H12H23H41 − DeH13H21H42 + DeH11H23H42 + DeH12H21H43 − De H11H22H43)/
(De(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



A18 =


(−H22H41h̄ + H23H41h̄ + H21H42h̄− H23H42h̄− H21H43h̄ + H22H43h̄)/
(De(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)


The coefficients of Equation (68) are:

E11 =


H41(DEH14H23H42 − DEH13H24H42 − DEH14H22H43 + DEH12H24H43 + DE H13H22H44 − DEH12H23H44)/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41 + H13H24H41 + H13H21H42−
H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42 − H13H24H42 − H12H21H43 + H14H21H43+
H11H22H43 − H14H22H43 − H11H24H43 + H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44+
H13H22H44 + H11H23H44 − H12H23H44)s)



E12 =


(H41(−H23H42h̄ + H24H42h̄ + H22H43h̄− H24H43h̄− H22H44h̄ + H23H44h̄)/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41+
H13H24H41 + H13H21H42 − H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42−
H13H24H42 − H12H21H43 + H14H21H43 + H11H22H43 − H14H22H43 − H11H24H43+
H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44 + H13H22H44 + H11H23H44 − H12H23H44)s)



E13 =


H42(DEH14H23H41 − DEH13H24H41 − DEH14H21H43 + DEH11H24H43 + DEH13H21H44 − DEH11H23H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)


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E14 =


(H42(−H23H41h̄ + H24H42h̄ + H21H43h̄− H24H43h̄− H21H44h̄ + H23H44h̄)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41−
H13H24H41 − H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43−
H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



E15 =


H43(−DEH14H22H41 + DEH12H24H41 + DEH14H21H42 − DEH11H24H42 − DEH12H21H44 + DEH11H22H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



E16 =


(H43(H22H41h̄− H24H41h̄− H21H42h̄ + H24H42h̄ + H21H44h̄− H22H44h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41−
H13H24H41 − H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43−
H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



E17 =


((DEH13H22H41 − DEH12H23H41 − DEH13H21H42 + DEH11H23H42 + DEH12H21H43 − DE H11H22H43)H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



E18 =


(H44(−H22H41h̄ + H23H41h̄ + H21H42h̄− H23H42h̄− H21H43h̄ + H22H43h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41−
H13H24H41 − H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43−
H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)


The coefficients of Equation (76) are:

D11 =


H21(DEH14H23H42 − DEH13H24H42 − DEH14H22H43 + DEH12H24H43 + DEH13H22H44 − DEH12H23H44)/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41 + H13H24H41 + H13H21H42−
H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42 − H13H24H42 − H12H21H43 + H14H21H43+
H11H22H43 − H14H22H43 − H11H24H43 + H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44+
H13H22H44 + H11H23H44 − H12H23H44)s)



D12 =


(H21(−H23H42h̄ + H24H42h̄ + H22H43h̄− H24H43h̄− H22H44h̄ + H23H44h̄))/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41 + H13H24H41+
H13H21H42 − H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42−
H13H24H42 − H12H21H43 + H14H21H43 + H11H22H43 − H14H22H43 − H11H24H43 + H12H24H43+
H12H21H44 − H13H21H44 − H11H22H44 + H13H22H44 + H11H23H44 − H12H23H44)s)


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D13 =


H22(DEH14H23H41 − DEH13H24H41 − DEH14H21H43 + DEH11H24H43 + DEH13H21H44 − DEH11H23H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44+
H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



D14 =


(H22(−H23H41h̄ + H24H41h̄ + H21H43h̄− H24H43h̄− H21H44h̄ + H23H44h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



D15 =


H23(−DEH14H22H41 + DEH12H24H41 + DEH14H21H42 − DEH11H24H42 − DEH12H21H44 + DEH11H22H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



D16 =


(H23(H22H41h̄− H24H41h̄− H21H42h̄ + H24H42h̄ + H21H44h̄− H22H44h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



D17 =


H24(DEH13H22H41 − DEH12H23H41 − DEH13H21H42 + DEH11H23H42 + DEH12H21H43 − DEH11H22H43)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



D18 =


(H24(−H22H41h̄ + H23H41h̄ + H21H42h̄− H23H42h̄− H21H43h̄ + H22H43h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)


The coefficients of Equation (84) are:

B11 =


H11(DEH14H23H42 − DEH13H24H42 − DEH14H22H43 + DE H12H24H43 + DEH13H22H44 − DEH12H23H44)/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41 + H13H24H41 + H13H21H42−
H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42 − H13H24H42 − H12H21H43 + H14H21H43+
H11H22H43 − H14H22H43 − H11H24H43 + H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44
+H13H22H44 + H11H23H44 − H12H23H44)s)



B12 =


(H11(−H23H42h̄ + H24H42h̄ + H22H43h̄− H24H43h̄− H22H44h̄ + H23H44h̄))/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41+
H13H24H41 + H13H21H42 − H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42−
H13H24H42 − H12H21H43 + H14H21H43 + H11H22H43 − H14H22H43 − H11H24H43+
H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44 + H13H22H44 + H11H23H44 − H12H23H44)s)


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B13 =


H12(DEH14H23H41 − DEH13H24H41 − DEH14H21H43 + DEH11H24H43 + DEH13H21H44 − DEH11H23H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



B14 =


(H12(−H23H41h̄ + H24H41h̄ + H21H43h̄− H24H43h̄− H21H44h̄ + H23H44h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



B15 =


H13(−DEH14H22H41 + DEH12H24H41 + DEH14H21H42 − DEH11H24H42 − DEH12H21H44 + DEH11H22H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43−
H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44+
H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



B16 =


(H13(H22H41h̄− H24H41h̄− H21H42h̄ + H24H42h̄ + H21H44h̄− H22H44h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



B17 =


H14(DEH13H22H41 − DEH12H23H41 − DEH13H21H42 + DEH11H23H42 + DEH12H21H43 − DE H11H22H43)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43−
H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44+
H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



B18 =


(H14(−H22H41h̄ + H23H41h̄ + H21H42h̄− H23H42h̄− H21H43h̄ + H22H43h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)


The coefficients of Equation (92) are:

C11 =


H31(DEH14H23H42 − DEH13H24H42 − DEH14H22H43 + DEH12H24H43 + DEH13H22H44 − DEH12H23H44)/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41 + H13H24H41 + H13H21H42−
H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42 − H13H24H42 − H12H21H43 + H14H21H43+
H11H22H43 − H14H22H43 − H11H24H43 + H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44+
H13H22H44 + H11H23H44 − H12H23H44)s)



C12 =


(H31(−H23H42h̄ + H24H42h̄ + H22H43h̄− H24H43h̄− H22H44h̄ + H23H44h̄))/
(DE(−H13H22H41 + H14H22H41 + H12H23H41 − H14H23H41 − H12H24H41+
H13H24H41 + H13H21H42 − H14H21H42 − H11H23H42 + H14H23H42 + H11H24H42−
H13H24H42 − H12H21H43 + H14H21H43 + H11H22H43 − H14H22H43 − H11H24H43+
H12H24H43 + H12H21H44 − H13H21H44 − H11H22H44 + H13H22H44 + H11H23H44 − H12H23H44)s)


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C13 =


H32(DEH14H23H41 − DEH13H24H41 − DEH14H21H43 + DEH11H24H43 + DEH13H21H44 − DEH11H23H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



C14 =



(H32(−H23H41h̄ + H24H41h̄ + H21H43h̄− H24H43h̄− H21H44h̄ + H23H44h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41−
H13H24H41 − H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42
−H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43+
H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44
+H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



C15 =


H33(−DEH14H22H41 + DEH12H24H41 + DEH14H21H42 − DEH11H24H42 − DEH12H21H44 + DEH11H22H44)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



C16 =


(H33(H22H41h̄− H24H41h̄− H21H42h̄ + H24H42h̄ + H21H44h̄− H22H44h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41−
H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42+
H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43−
H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)



C17 =


H34(DEH13H22H41 − DEH12H23H41 − DEH13H21H42 + DEH11H23H42 + DEH12H21H43 − DEH11H22H43)/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41 − H13H24H41 − H13H21H42+
H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42 + H13H24H42 + H12H21H43 − H14H21H43−
H11H22H43 + H14H22H43 + H11H24H43 − H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44−
H13H22H44 − H11H23H44 + H12H23H44)s)



C18 =


(H34(−H22H41h̄ + H23H41h̄ + H21H42h̄− H23H42h̄− H21H43h̄ + H22H43h̄))/
(DE(H13H22H41 − H14H22H41 − H12H23H41 + H14H23H41 + H12H24H41−
H13H24H41 − H13H21H42 + H14H21H42 + H11H23H42 − H14H23H42 − H11H24H42+
H13H24H42 + H12H21H43 − H14H21H43 − H11H22H43 + H14H22H43 + H11H24H43−
H12H24H43 − H12H21H44 + H13H21H44 + H11H22H44 − H13H22H44 − H11H23H44 + H12H23H44)s)


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