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Abstract: Black phosphorus (BP) and heptazine-based crystalline carbon nitride (KPHI) composite
photocatalysts were synthesized by molten salt and ultrasound-assisted liquid phase exfoliation
methods. The structure, morphology and optical properties of the as-prepared BP/KPHI composites
were evaluated by various characterization techniques. In addition, the photocatalytic performance
of BP/KPHI composites for hydrogen production was investigated. The photocatalytic activity of
BP/KPHI composite catalysts could be modulated by changing the loading mass ratio of BP. The
BP/KPHI composite photocatalyst with a mass ratio of 10% exhibited the highest photocatalytic
activity with the hydrogen production rate of 4.3 mmol g−1 h−1, about three times higher than that
of pristine KPHI. Benefiting from the advantages of simplicity, rapidity, high yield and good control-
lability, this nanocomposite photocatalyst has the potential to serve as an excellent photocatalytic
material for solar energy conversion.

Keywords: photocatalysis; hydrogen production; carbon nitride; black phosphorus; molten salt method

1. Introduction

Environmental and energy issues constitute a dual problem for civilization today due
to the worldwide reliance on non-renewable fossil fuels and rising concern about their
influence on the climate. It is both an essential requirement and a fantastic ambition to
power our progress with sustainable resources. There is a great need for hydrogen, a fuel
made from two earthly elements that are renewable: water and sunlight. With the high
energy density, clean and pollution-free characteristics, hydrogen is considered as an ideal
carrier of future energy. Photocatalytic decomposition of water for hydrogen production,
which uses solar energy and photocatalyst to drive the decomposition reaction of water
to produce hydrogen, has been considered to be one of the most ideal technologies for
hydrogen production [1–4]. The design and preparation of low-cost and earth-abundant
photocatalyst is of great importance to scale up photocatalytic water splitting for renewable
hydrogen generation. The effective utilization of visible photons (400–700 nm), which
make up approximately half of the solar energy that reaches the Earth’s surface, is one
of the biggest problems. Yet, conventional semiconductor materials suffer from low light
utilization rate and easy recombination of photoinduced electrons and holes, which severely
limit their practical applications in photocatalytic decomposition of water for the production
of hydrogen [5–7]. Therefore, the design and fabrication of photocatalysts with high
quantum efficiency and high solar energy utilization rate have become the most central
problem in the field of photocatalysis at this stage [8].

Inorganic semiconductor photocatalysts (mainly metal oxides) have stimulated signifi-
cant research interests over the past fifty years, however, the problem of inflexible regulation
of the parameters restricted their practical applications. Conjugated polymer semiconduc-
tors may have the benefit of being simple to modify by synthetic control. Organic materials
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are desirable substitutes for inorganic semiconductor photocatalysts due to their tunability
and performance in versatile applications, including solar cells, photoelectrochemical de-
vices, and light-emitting diodes. Polymeric carbon nitrides, sometimes referred to melon,
are promising photocatalysts for the decomposition of water for hydrogen production.
A portion of visible light is absorbed, and the photogenerated charge carriers (electrons
and holes) can be used in subsequent redox reactions, such as water splitting. It has been
shown lately that the molten salt method can alleviate the structural defects and order of
polymeric carbon nitrides. The molten salts in the process are in the solution state, which
can control the specific rearrangement of its morphology and can also be used to change
the condensation degree of the crystals. Because of their high photo-availability and a
small degree of charge carrier recombination, crystalline carbon nitride has been found
to have superior photocatalytic activity [9]. Heptazine-based crystalline carbon nitride,
abbreviated as KPHI, was synthesized by the molten salt method. However, they also have
certain disadvantages, such as a wide band gap, moderate utilization of visible light and
low separation efficiency of photogenerated carriers, which lead to a certain limitation
of the photocatalytic activity [10]. Therefore, it is necessary to improve the structure and
surface properties of crystalline carbon nitride by mesoporosity, compounding, doping,
organic copolymerization, and other means to overcome the above disadvantages.

Black phosphorus (BP), also known as phosphorene, is an emerging single-element
two-dimensional (2D) material that has recently attracted significant attention [11,12]. BP
has intriguing properties, such as layer-dependent direct band gap, strong visible and
near-infrared light absorption, high carrier mobility, in-plane structural anisotropy, low
toxicity, and biocompatibility. Based on these properties, BP has the potential to function as
a catalyst for water splitting and other photoredox processes. However, a BP photocatalyst
also has drawbacks, such as rapid recombination of photoexcited electron-holes and low
stability. Therefore, it only shows moderate catalytic activity in many photocatalytic
processes [13–15]. To solve these problems, building heterostructured photocatalysts based
on BP can prevent the recombination of photogenerated charge and carriers and greatly
increase photocatalytic activity [16]. Thus, BP-based heterostructured photocatalysts can be
used by combining the advantages of high carrier mobility and broad-spectrum absorption
capability. It is noted that both BP and KPHI materials could be exfoliated into few-
layered and graphene-like two-dimensional nanosheets. The composite of KPHI and
BP could constitute a two-dimensional/two-dimensional (2D/2D) heterostructure. This
can effectively promote the effective electron-hole transfer between them and reduce the
recombination of photoinduced charge carriers [17]. Thus, the efficiency of photocatalytic
hydrogen production from water can be improved [18–23].

In this study, KPHI/BP nanocomposites were prepared by molten salt method and
ultrasound-assisted liquid exfoliation approach. The catalysts were evaluated by scanning
electron microscopy (SEM), transmission electron microscopy (TEM), and energy disper-
sive spectroscopy (EDS), X-ray powder diffraction (XRD), Fourier transform infrared spec-
troscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence
(PL) spectroscopy. In addition, the performance of the prepared catalysts for photolysis of
water to produce hydrogen gas was investigated.

2. Materials and Methods
2.1. Chemical Reagents

Melamine (C3H6N6), lithium chloride (LiCl), potassium chloride (KCl), N-Methylpyrrolidone
(C5H9NO), ethanol (C2H5OH), methanol (CH3OH), and triethanolamine (C6H15NO3) were
bought from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). All reagents
used are analytically purely for the study. The above reagents do not need to be purified
once again and can be used directly. H2PtCl6·6H2O (Pt > 37%) was achieved from the China
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Black phosphorus (BP) crystal
powder (>99.998%) was purchased from Nanjing Xianfeng Nano Material Technology Co.,
Ltd. (XFNANO, Nanjing, China). Nitrogen (N2) and Argon (Ar) gas were obtained from
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Fujian Nanan Chenggong Gas Co., Ltd. (Fujian, China). Deionized water was used in the
experimental procedure.

2.2. Fabrication of Materials
2.2.1. Fabrication of KPHI

Crystalline carbon nitride was prepared by the molten salt method. 8 g of melamine
was weighed into a porcelain boat. Then it was placed in a tube furnace at a temperature of
500 ◦C (constant temperature for 4 h) and cooled to room temperature. 600 mg powder
sample was weighed and ground with 3.3 g KCl and 2.7 g LiCl, and the mixture was placed
in a tube furnace. It was heated to 550 ◦C (nitrogen atmosphere, heating rate of 2 ◦C/min)
at a constant temperature for 4 h. The calcined sample was placed in a beaker with a
small amount of deionized water and ultrasonically dispersed for 5 min. It was filtered
for several times to remove KCl and LiCl. The samples were placed in a vacuum drying
oven at 70 ◦C for 8 h. After cooling to room temperature, the sample was ground to obtain
a solid powder. The solid powder sample is KPHI.

2.2.2. Fabrication of BP/KPHI

Synthesis using ultrasonic-assisted liquid exfoliation method: 0.2 g of crystalline
carbon nitride was weighed on an analytical balance, and 20 mL of N-methylpyrrolidone
was measured in a 50 mL measuring cylinder. Subsequently, BP in mass ratios of 1%, 5%,
10%, 15% and 20% was added in a 50 mL centrifuge tube. The centrifuge tubes were placed
in a thermostatic glass vessel with a circulating water temperature of 5 ◦C, mixed and put
into ultrasonic pulverization. The mixtures were sonicated for 24 h. After homogeneous
mixing, the complexes were washed by centrifugation with ethanol as a solution, and the
liquid was separated by centrifugation. Finally, the two-dimensional composites of KPHI
with different BP mass ratios were obtained.

2.3. Characterization

Morphological studies of the synthesized nanomaterials were carried out by scanning
electron microscopy (Hitachi Co., Tokyo, Japan, Hitachi S-4800). In addition, transmission
electron microscopy (JEOL Co., Tokyo, Japan, JEM 2010 EX 300) was used for morphological
observation of the prepared samples, and energy dispersive X-ray spectrometer was used to
analyze the chemical composition of the photocatalytic materials. X-ray powder diffraction
analysis was performed on the nanomaterials using an x-ray diffractometer (Rigaku Co.,
Tokyo, Japan, Smart lab) equipped with a Cu Kα radiation source (λ = 1.5418 Å) to study
their structural properties. The Fourier transform infrared spectrophotometer (Nicolet,
Madison, USA, Nicolet iS10) was used to determine each functional group. X-ray photo-
electron spectroscopy was tested on an instrument (Thermo Scientific, Waltham, MA, USA,
ESCALAB250) with a monochromatized Al Kα line source (200 W). All binding energies
were referenced to the C 1s peak at 284.8 eV of surface adventitious carbon. A UV-vis
spectrophotometer (Shimadzu Co., Kyoto, Japan, UV-2550) was used to detect the optical
properties of the synthesized nanomaterials while recording the absorption spectra in the
range of 350–550 nm. Photoluminescence (Edingburgh Co., Edingburgh, UK, FLS920)
spectra were studied using a fluorescence spectrophotometer.

2.4. Photocatalytic Activity

The test system used in this experiment mainly consists of a closed gas circulation-
evacuation system (Figure S1, see Supplementary Materials, Ceaulight CEL-SPH2N, Beijing,
China), and a low-temp thermostatic water bath (DC-1006, Hinotek, Zhejiang, China), and a
gas chromatograph (Shimadzu Co., Kyoto, Japan, GC-2014C, thermal conductivity detector,
5A, sieve, high purity Ar as carrier gas). A 300 W Xenon lamp (Perfect Light PLSSXE,
Beijing, China) was used as the light source with >420 nm light irradiation. In order to
keep the temperature of the system constant, circulating cooling water was used. 50 mg
BP/KPHI (10 wt.% mass ratio) catalyst, 80 mL deionized water, 20 mL methanol (sacrificial
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agent), and chloroplatinic acid solution (containing 3 wt.% Pt) were mixed and sonicated for
five minutes in a glass reaction vessel with a volume of 350 mL. An in-situ photodeposition
approach employing chloroplatinic acid as the precursor was used to deposit Pt co-catalyst
on the sample surface. After that, the system is sealed and the gas is removed. Then the
photoirradiation was continued for 5 h. During the experiment, the gas chromatograph
was used to detect the hydrogen amount every hour.

3. Results and Discussion
3.1. Morphology Characterization of Catalysts

In this experiment, SEM, TEM, and EDS spectra were recorded for the preliminary
characterization of the morphology for the catalyst. Figure 1 shows the SEM image of 10%
BP/KPHI composite photocatalyst. It can be found that in the 10% BP/KPHI complex, the
flat-layered BP nanosheets combined well with the KPHI nanosheets with apparent stacking
pore structures. The elemental mapping and EDS results of the BP/KPHI composite further
demonstrate the presence of C, N, P, K, O, and Cl elements (Figures 2 and 3). Furthermore,
the actual mass fraction of BP is ca. 11% for 10% BP/KPHI catalyst (Table S1).

In order to elucidate the composition and chemical structure of the composite pho-
tocatalysts of BP/KPHI with different mass ratios, the catalysts were examined by using
XPS, XRD, and FT−IR. Figure 4 shows the XRD patterns of BP/KPHI composite photo-
catalysts with mass ratios of 5%, 10%, 15% and 20%, respectively. The two diffraction
peaks are attributed to BP/KPHI composite photocatalysts with (002) crystalline planes
at 8.1◦ and 27.5◦. The periodically repeating heptazine units within the facets lead to
the former peak [24–26]. Moreover, the latter diffraction peak is attributed to a layered
stacking of heptazine structures similar to graphite. It was confirmed that the prepared
product contains heptazine-based graphite-like carbon nitride. The BP/KPHI composite
photocatalyst showed three different XRD diffraction peaks at 16.9◦, 26.5◦, 34.2◦, 35.0◦,
and 52.3◦. This is caused by the (020), (021), (040), (111), and (060) crystal planes of BP.
These results confirm the presence of BP/KPHI composite photocatalyst. The crystalline
diffraction peaks of BP are gradually enhanced with the increased BP mass ratio in the
composite photocatalyst.
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Figure 4. XRD patterns of KPHI, 5%BP/KPHI, 10%BP/KPHI, 15%BP/KPHI, 20%BP/KPHI, and BP.

Figure 5 shows the FT−IR spectra of the composite photocatalysts of BP/KPHI with
mass ratios of 5%, 10%, 15%, and 20%. A moderate intensity absorption peak caused by the
stretching vibration of the heptazine ring at 1200–1700 cm−1 and a fingerprint vibration
peak attributed to the heptazine ring at 810 cm−1 could be seen in the figure [27]. A broad
absorption peak caused by the amine vibration of the surface is found near 3000 cm−1. In
addition, there is a characteristic absorption peak at 2170 cm−1 caused by the vibration of
cyano group, probably due to the partial decomposition of the heptazine ring [28,29]. This
figure indicates that the composite sample contains KPHI.
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In order to further analyze the surface composition and chemical bonding forms of
the composite photocatalysts of BP/KPHI with mass ratios of 5%, 10%, 15%, and 20%,
respectively, the prepared photocatalytic composite catalysts were characterized by X-
ray photoelectron spectroscopy (XPS) during the experiments. The spectral peaks of five
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elements, namely C, N, K, O, and P, can be observed in Figure 6. In the high-resolution
spectrum of C 1s, there are three peaks at 284.8, 286.4, and 288.3 eV, respectively, with
the strongest peak at 288.3 eV. The peaks at 286.4 and 288.3 eV mainly originate from
the backbone structure of the polymeric carbon nitride, which is the sp2 hybridization
of carbon atoms in the nitrogen-containing heterocyclic ring. The spectrum at 284.8 eV
is generally attributed to the impurity of carbon. N 1s spectrum can be deconvoluted
into four peaks, the one at 398.8 eV is attributed to the sp2 hybridization of the nitrogen
atom in the heptazine ring (C-N=C), and the one at 400.5 eV is attributed to the ternary
nitrogen N-(C)3 in the heptazine ring. These two structures of carbon and nitrogen atoms
are the main structure of the carbon nitride framework. The peak at 401.3 eV indicates
the presence of an amino group (C-N-H) in the structure, which is mainly present on
the surface of the sample. The peak at 404.1 eV, on the other hand, may be caused by
nuclear or positive charge localization effects. No spectral peaks of Cl 2p and Li 1s were
observed in the high-resolution spectra, which suggests that these elements have been
removed after extensive deionized water washing [30–32]. Due to the presence of K ions in
the synthesized carbon nitride, the resulting framework will be charge compensated in a
manner similar to potassium melonate, which contains the structure of cyano group. This
is consistent with the results described in the FT-IR spectra above. In the spectrum of P 2p,
there are two peaks of typical P 2p binding energy of BP, attributed to P 2p3/2 (129.0 eV)
and P 2p1/2 (130.0 eV). In the XPS spectrum, the peak for the O element was observed. This
signal is mainly derived from the phosphorus oxide formed by the slight oxidation of BP
surface for the sample.
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3.2. Optical Properties of Catalysts

Figure 7 shows the UV-vis DRS spectra of the BP/KPHI composite photocatalyst
with mass ratios of 5%, 10%, 15%, and 20% and pristine KPHI, respectively. The KPHI
samples exhibit typical semiconductor absorption properties. The absorption of incident
light is vital for the photocatalytic process, which excites electrons from the valence band
to the conduction band for the catalyst. The light absorption intensity of the BP/KPHI
sample gradually enhances with increasing BP content, and the edge of the absorption band
gradually redshifts. Thus the absorption and utilization ability of visible light increases, and
more incident photon energy can be absorbed and utilized by the photocatalytic composite
catalyst. Also, the 10% BP/KPHI has a narrower band gap than KPHI (Figure S2). Thus, its
photocatalytic performance is significantly improved.
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Figure 7. UV-vis DRS spectra of KPHI and KPHI/BP composite photocatalysts with different
mass ratios.

3.3. Photocatalytic Activity

The visible light photocatalytic activity was further evaluated by testing the hydrogen
production rate of KPHI/BP composite photocatalysts with different mass ratios of BP.
In this system, 3 wt.% Pt co-catalyst was in-situ photodeposited onto the photocatalyst,
and methanol was utilized as a sacrificial agent. Figure 8 compares the photocatalytic
hydrogen production activity of BP/KPHI hybrids with different mass ratios. It can be
found that there is low hydrogen production rate for pure BP. The composite photocatalysts
of BP/KPHI showed significantly higher hydrogen production activity than pristine KPHI.
With the increasing BP content, the hydrogen production rate of BP/KPHI composite
photocatalyst raised significantly. When the BP content reaches 10%, the BP/KPHI compos-
ite photocatalyst exhibited the highest photocatalytic hydrogen production activity. The
molarity of hydrogen produced for 10% BP/KPHI was 21.5 mmol g−1 after 5 h of light
exposure, and the hydrogen production rate was 4.3 mmol g−1 h−1. However, when the
adding amount of BP exceeded 10%, the photocatalytic hydrogen production activity of
BP/KPHI composite photocatalysts began to decrease. The decreased photocatalytic hydro-
gen production activity was probably due to the shielding effect of the incident light by the
excessive BP loading, which reduced the separation efficiency of photogenerated carriers.
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Figure 8. Average hydrogen evolution rate (HER) of 3 wt.% Pt-deposited KPHI and BP/KPHI
illuminated by visible light (λ > 420 nm) for 5 h.

Control experiments of photocatalytic hydrogen evolution were performed. No
detectable amount of H2 was determined in the absence of catalyst, light or methanol
(Table S2). The effect of other factors was excluded.

As shown in Figure 9, the apparent quantum yield (AQY) of 10% BP/KPHI composite
photocatalyst decreased gradually with the increasing incident light wavelength, which
was consistent with the trend of its UV-vis absorption spectrum (Figure 7). Among them,
the AQY of hydrogen production of 10% BP/KPHI composite photocatalyst was 3.1% at
420 nm. It surpasses most of the previously reported catalysts in the paper (Table S3).
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Crystals 2023, 13, 312 10 of 13

Figure 10 shows the stability test of 10% BP/KPHI composite photocatalyst for hy-
drogen production reaction under visible light illumination (λ > 420 nm) for 25 h. It can
be seen from the figure that hydrogen production increased steadily with the increasing
photoreaction time. Only small fluctuations were observed between each cycle. It indi-
cates that 10% BP/KPHI composite sample has good stability in photocatalytic hydrogen
production reaction.
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Figure 10. Reusability of 10% BP/KPHI catalyst for evolving H2 over five successive experimental runs.

Figure 11 shows the XRD patterns of 10% BP/KPHI composite photocatalyst before
and after the photocatalytic hydrogen production reaction. The peak positions and inten-
sities of the 10% BP/KPHI composite photocatalysts did not change significantly before
and after the photocatalytic decomposition of water reaction, indicating that 10% BP/KPHI
catalyst has good stability during photocatalytic reactions.
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The photogenerated charge separation behavior of KPHI and BP/KPHI was inves-
tigated by photoluminescence (PL) spectroscopy. As displayed in Figure 12, KPHI and
BP/KPHI composite photocatalysts show broad emission peak centered at about 475 nm.
The figure shows that the fluorescence peak of pristine KPHI is stronger, and its photo-
generated charge carriers recombine severely. In contrast, the fluorescence peak intensity
of the BP/KPHI composite photocatalyst doping with BP is greatly reduced, indicating
that it can effectively reduce the recombination probability of photogenerated charge
carriers. However, when the loading ratio of BP exceeded 10%, the fluorescence peak
intensity increased, indicating that excessive BP loading lead to higher recombination of
photogenerated charge carriers.
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4. Conclusions

In this study, black phosphorus and heptazine-based crystalline carbon nitride nanocom-
posites were prepared by molten salt and ultrasonic exfoliation methods. The hybrid of
black phosphorus and heptazine-based crystalline carbon nitride could serve as an ef-
fective photocatalysts for water splitting with the highest hydrogen production rate of
4.3 mmol g−1 h−1, which is about three times higher than that of pristine crystalline carbon
nitride. The superior photocatalytic activity of the hybrid is primarily attributed to the
promoted separation of photoinduced charge carriers and enhanced visible light absorption
ability. Owing to the benefits of simplicity, high-efficiency, cost-effectiveness, and supe-
rior controllability, the heterostructured photocatalysts have the potential to be a superior
photocatalytic material for solar fuel production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13020312/s1, Figure S1: Photocatalytic hydrogen production
equipment (CEL-SPH2N system); Figure S2: Band gap energies of KPHI and 10% BP/KPHI; Table S1:
Analysis result of EDS spectrum from 10% BP/KPHI; Table S2: Photocatalytic hydrogen production
rate in the no-treatment control group; Table S3: Summary of the photocatalytic activities of BP-based
photocatalysts for H2 evolution. References [33–39] are cited in the supplementary materials.
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