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Abstract: We report the time-efficient synthesis of quinolin-8-yl 4-chlorobenzoate (3) via an O-
acylation reaction between 8-hydroxyquinoline (1) and 4-chlorobenzoyl chloride (2) mediated by
triethylamine in acetonitrile under heating at 80 ◦C for 20 min in the Monowave 50 reactor. This
protocol is distinguished by its short reaction time, operational simplicity, and clean reaction profile.
The structure of 3 was fully characterized through a combination of analytical techniques, including
NMR, IR, and UV–Vis spectroscopy, MS spectrometry, differential scanning calorimetry (DSC),
thermogravimetry (TG), and crystallographic studies. Interestingly, X-ray diffraction analyses of 3
show that the crystal structure is characterized by C-H···N, C-H···O, Cl···π, and π···π interactions.
The molecular conformation presents an orthogonal orientation between aromatic rings in the solid
state. The calculated interaction energies using the CE-B3LYP model show that dispersion forces
act in a higher proportion to build the crystal, which is consistent with the few short hydrogen
interactions detected. Electrostatic potential maps suggest the formation of σ-holes over the Cl atoms.
Although they can behave as both Lewis acid and base sites, Cl··Cl interactions are absent due to the
shallow depth of these σ-holes. Quantum chemical descriptors and global reactivity descriptors were
examined using the B3LYP method with the 6-31G(d,p) basis set implemented in CrystalExplorer.
Finally, compound 3 exhibited low activity against HOP-92 and EKVX non-Small-cell lung and UO-31
Renal cancer cell lines, with a growth inhibition percentage (GI%) ranging from 6.2% to 18.1%.

Keywords: 8-hydroxyquinoline; X-ray crystallography; Hirshfeld surface maps; molecular orbitals;
cancer

1. Introduction

Quinoline consists of a pyridine fused with a benzene ring at two adjacent carbon
atoms. It is a weak tertiary base (pKb of 4.85) that shows both electrophilic and nucle-
ophilic substitution reactions with analogs to benzene and pyridine [1]. Synthetic and
naturally occurring quinolines have been used as potent pharmacophores due to their
wide range of biological activities, such as anti-malarial [2], antibacterial [3], antiviral [4],
antifungal [5], antipsychotic [6], anti-inflammatory [7], analgesic [7], anti-asthmatic [8],
anti-leishmanial [9], and anti-hypertensive activities [10]. Modern medicinal chemistry is
significantly impacted by quinoline analogues, which have resulted in several anticancer
drugs that are either commercially available on the market or in different stages of clinical
trials involving different mechanisms of action [11–16]. A significant number of protein
kinase inhibitors are based on quinoline (Figure 1), including cabozantinib (Cabometyx®)
used for the treatment of advanced renal cell carcinoma (RCC) and medullary thyroid
carcinoma (MTC), which acts as a multi-targeted tyrosine kinase inhibitor, including vas-
cular endothelial growth factor receptor 2 (VEGFR2), hepatocyte growth factor receptor
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(c-MET/HGFR), and proto-oncogene tyrosine-protein kinase receptor (RET) [12,17], bo-
sutinib is employed to treat the chronic myelogenous leukemia (CML), which act as a
strong inhibitor of Bcr-Abl kinase [12,18], and lenvatinib is used to treat the thyroid cancer
and in combination with other medicines to treat advanced renal cell carcinoma (RCC)
and hepatocellular carcinoma (HCC), acting as a multi-targeted kinase inhibitor against
vascular endothelial growth factor receptors (VEGFR 1–3), fibroblast growth factor recep-
tors (FGFR 1–4), and platelet-derived growth factor receptors (PDGF-R) [12,19]. There are
relevant quinoline-based topoisomerase inhibitors, including camptothecin (CPT), that
act as inhibitors of DNA topoisomerase I; however, it has a poor pharmacokinetic profile,
including low stability and solubility (Figure 1) [11]. The α-hydroxy lactone ring (E-ring)
constitutes the most critical component of its structure, which engages with the topoiso-
merase enzyme through one hydrogen bond of the hydroxy group in position 20 with
Asp533, alongside two hydrogen bonds of the lactone with amino groups on Arg364 [11].
To address the limitations of camptothecin, numerous semisynthetic derivatives of CPT
have been effectively synthesized so far. Figure 1 illustrates that irinotecan is effective in
treating Colorectal cancer, whereas topotecan is used to treat Small-cell lung, Cervical, and
Ovarian cancers [20].
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The varied physical, chemical, and biological characteristics exhibited by a certain
set of quinoline derivatives have made them a subject of considerable interest in drug
design and medicinal chemistry for the past two decades [21–23]. In particular, clioquinol
and nitroxoline are the most well-known 8-hydroxyquinoline derivatives due to their
broad range of targets. For instance, nitroxoline displayed more potent anticancer activity
with an IC50 of 5–10 fold less than clioquinol [24]. In vitro and in vivo studies confirmed
that nitroxoline acted as an antiangiogenic agent [25]. It should be noted that biological
properties are much broader and cover antiviral [23], anti-mycobacterial [23], antiproto-
zoal [23], anti-neurodegenerative [23], antimicrobial [26], analgesic [27], anti-asthmatic [27],
and anticancer [22,23], among other activities. In addition, the position of the hydroxyl
group in close proximity to the pyridine core renders 8-hydroxyquinoline derivatives
significant bidentate chelating agents, capable of forming complexes with a diverse range
of metal ions [28–31]. Over the past few years, there has been a modest exploration of
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the functionalization of the hydroxyl group situated at position 8 of the quinoline frame-
work. A search in the Reaxys database showed three different synthetic approaches to
prepare quinolin-8-yl 4-chlorobenzoate (3), with up to 84% yield using solvents such as
dichloromethane, N,N-dimethylformamide, and toluene, and bases such as potassium
carbonate and triethylamine, under stirring at room temperature or heating at 120 ◦C for
reaction times ranging from 20 min to 6 h [32–34]. It is interesting to note that the X-ray
crystallography of this compound was not present in the Cambridge Structural Database
(CSD) when searched using the ConQuest software. Hence, an analysis of spectroscopic,
thermal, and X-ray crystallographic data was conducted in this study to obtain valuable
insights. Additionally, the synthesis of 3 was performed utilizing a Monowave 50 reactor
through a triethylamine-mediated O-acylation reaction involving the precursors 1 and 2
in acetonitrile at 80 ◦C for 20 min. Lastly, anticancer studies of 3 were screened against
60 human cancer cell lines by the National Cancer Institute (NCI, Germantown, MD, USA).

2. Materials and Methods
2.1. General Information

The reactions were followed by Thin Layer Chromatography (TLC) and analyzed by
a UV lamp (254 or 365 nm). 1H and 13C NMR spectra were recorded in CDCl3 at 298 K
on a Bruker Avance 400 spectrophotometer operating at 400.1 and 100.6 MHz, respec-
tively. 1H and 13C NMR spectra were processed using as internal standards the residual
non-deuterated signal (δ = 7.26 ppm) and the deuterated solvent signal (δ = 77.16 ppm),
respectively. IR spectra were obtained using a Shimadzu FTIR 8400 spectrophotometer
equipped with an ATR accessory, operating at room temperature. A methanol solution
(50 µM) was utilized to obtain the UV–Vis spectra using an Evolution 201 UV–Vis spec-
trophotometer. Differential scanning calorimetry (DSC) and thermogravimetric analysis
(TGA) were performed in a thermogravimetry/differential thermal analyzer STA7200. By
conducting microanalyses with a CHNS elemental analyzer, we found that the measured
values were consistent with the theoretical values within a range of ±0.4%. A direct inlet
probe operating at 70 eV was used in the SHIMADZU-GCMS 2010-DI-2010 spectrome-
ter to collect the mass spectra. All reactions were conducted in a reactor, Monowave 50,
employing a borosilicate glass vial (10 mL) with a silicone cap [35]. The reaction vessel’s
temperaturcternal contact sensor situated at the cavity bottom. The X-ray diffraction data
were obtained at ambient temperature, 298 (2) K, using MoKα radiation (λ = 0.71073 Å)
and measurements of ω scans in an Agilent SuperNova, Dual, Cu at Zero, Atlas four-circle
diffractometer equipped with a CCD plate detector. The collected frames were integrated
with the CrysAlis PRO software package [36]. Absorption correction was performed by the
CrysAlis PRO software package using the empirical absorption correction, implemented
in the SCALE3 ABSPACK scaling algorithm [36]. The structure of 3 was solved using an
iterative algorithm [37] and then completed by a different Fourier map.

2.2. Synthesis of Quinolin-8-yl 4-Chlorobenzoate (3)

A mixture of starting materials 1 (72 mg, 0.50 mmol) and 2 (64 µL, 0.50 mmol) in
the presence of Et3N (84 µL, 0.60 mmol) in CH3CN (2.0 mL) were added in a processing
vial (10 mL) equipped with a magnetic stir bar. The Monowave 50 reactor was used to
heat the reaction mixture at 80 ◦C with a 20 min hold time and stirred at 600 rpm in
AFAP mode (As Fast As Possible). The reaction mixture was cooled, the solvent was
eliminated under reduced pressure, and the resulting reaction mixture was purified by
column chromatography on silica gel using a mixture of dichloromethane/n-hexane (2:1,
v/v) as an eluent to give the desired compound 3 as colorless needles (129 mg, 91%
yield). Under normal pressure and ambient temperature, compound 3 was subjected to
recrystallization in methanol to obtain colorless prisms. Rf (CH2Cl2) = 0.65. M.p. 162 ◦C.
FTIR–ATR: ν = 3086, 3036, 1730 (ν C=O), 1627 (ν C=N), 1593 (ν C=C), 1490 (ν C=C), 1404 (ν
C–C), 1387 (ν C–C), 1370 (ν C–C), 1287 (ν C–N and ν C–C), 1258 (ν C–C(=O)–O and ν C–N),
1231, 1176, 1160, 1087 (ν O–C–C), 1064, 1042, 1007, 854, 820, 794, 760 (ν C–Cl), 706, 680,
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525 cm−1. UV–Vis (methanol) λmax (ε, L·mol−1·cm−1): 205 (47,000, π→ π*), 229 (49,600, π
→ π*), 243 (26,400, π→ π*), 278 (8400, n→ π*) nm. 1H NMR (400 MHz, CDCl3): δ = 7.43
(dd, J = 8.2, 4.2 Hz, 1H, H–3), 7.52 (d, J = 8.8 Hz, 2H, Hm), 7.55–7.61 (m, 2H, H–6, H–7), 7.78
(dd, J = 7.2, 2.4 Hz, 1H, H–5), 8.20 (dd, J = 8.4, 1.2 Hz, 1H, H–4), 8.29 (d, J = 8.8 Hz, 2H,
Ho), 8.88 (dd, J = 4.0, 1.6 Hz, 1H, H–2) ppm. 13C{1H} NMR (101 MHz, CDCl3): δ = 121.6
(CH, C–7), 121.9 (CH, C–3), 126.3 (CH, C–5), 126.4 (CH, C–6), 128.1 (C, Ci), 129.1 (2CH,
Cm), 129.7 (C, C–4a), 132.1 (2CH, Co), 136.1 (CH, C–4), 140.2 (C, Cp), 141.4 (C, C–8a), 147.7
(C, C–8), 150.8 (CH, C–2), 164.8 (C, C=O) ppm. Anal. calcd. for C16H10ClNO2 (283.70): C,
67.74; H, 3.55; N, 4.94. Found: C, 67.97; H, 3.57; N, 4.96. MS (EI, 70 eV) m/z (%): 285/283
(4/12) [M+•], 141/139 (33/100), 113/111 (15/44), 69 (30), 57 (23), 43 (22).

2.3. Refinement and Data Collection Strategy

The presentation of crystallographic data and refinement details can be found in
Table 1. The refinement process involved the anisotropic nature of non-hydrogen atoms.
Meanwhile, hydrogen atoms were added geometrically at a distance of 0.93 Å from carbon
and refined as rising contributions. This process was carried out using isotropic displace-
ment parameters, which were set at 1.2 times the Ueq value of the parent atom. The
refinement of crystal structure was executed using SHELXL2018/3 [38], and Mercury [39]
was employed to perform molecular and supramolecular graphics.

Table 1. Crystallographic data of compound 3.

Crystal Data Compound 3

CCDC 2,241,325
Chemical formula C16H10ClNO2

Mr 283.70
Solvent for crystallization Methanol

Crystalline system, space group Monoclinic, P21/c
a, b, c (Å) 12.0532 (14), 13.3785 (17), 8.4098 (13)
α, β, γ (◦) 90, 98.392 (13), 90

Volume, (Å3) 1341.6 (3)
ρ, kg m−3 1.405

Z 4
Temperature, (K) 298 (2)

Radiation type Mo Kα

µ (mm−1) 0.28
Theta range for data collection 3.045◦ < 2θ < 26.368◦

Index range
−15 ≤ h ≤ 15,
−16 ≤ k ≤ 16,
−10 ≤ l ≤ 10

Data collection

Diffractometer SuperNova, Dual, Cu at zero, Atlas

Absorption correction
Multi-Scan method

CrysAlis PRO 1.171.41.119a (Rigaku Oxford
Diffraction, 2021)

Tmin, Tmax 0.503, 1.000
No. of measured, independent and

observed reflections [I > 2σ(I)] 14,107, 2744, 2176

Rint 0.050
(sin θ/λ) max (Å−1) 0.625

Refinement

R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.06
No. of reflections 2744

Refined parameters 182
No. of restraints 0

H-atoms treatment H-atom parameters constrained
∆ρmax, ∆ρmin (e Å−3) 0.17, −0.37
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2.4. Computational Methods

The crystallographic information contained in the cif (crystallographic information
file) file was used to perform computational calculations. Hirshfeld (HF) surfaces mapped
over dnorm were used to investigate the close contacts further [40]. Electrostatic potentials
mapped on HS were calculated employing the program TONTO by the B3LYP method
with the 6-31G(d,p) basis set [41,42]. Energy frameworks were computed based on CE-
B3LYP interaction energies (kJ mol−1) using the B3LYP method with the 6-31G(d,p) basis
set [43]. The models in CrystalExplorer were used to calculate molecular pair energies [44],
which are depicted with cylinders connecting molecular centroids (radii proportional to
the magnitude of the interaction). Quantum chemical (frontier molecular orbitals and
HOMO-LUMO energy gap) and global reactivity descriptors were calculated by the B3LYP
method and 6-31G(d,p) basis set, using CrystalExplorer. TONTO program was utilized to
perform these calculations.

3. Results and Discussion
3.1. Chemistry

The synthesis of heteroaromatic esters is often achieved through the esterification
reactions of acyl chlorides and hydroxyheteroaromatic compounds [45,46]. This chemical
transformation has been widely applied in the pharmaceutical industry, organic chemistry,
and material science due to its operational efficiency, reduced reaction times, and the fact
that the starting materials are economical and commercially available [45,46]. Over the
past twenty years, three distinct synthetic strategies have been reported for the synthesis
of quinolin-8-yl 4-chlorobenzoate (3), yielding up to 84% under various solvents such
as dichloromethane, N,N-dimethylformamide, and toluene, and different bases such as
potassium carbonate and triethylamine, stirring at room temperature and heating at 120 ◦C
for reaction times ranging from 20 min to 6 h [32–34]. Reaxys and CSD databases do
not show information about its IR and UV–Vis spectra, thermal behavior, single-crystal
X-ray diffraction, or anticancer studies. Moreover, we use the Monowave 50 reactor as an
alternative protocol for the synthesis of quinoline-containing ester 3 under mild reaction
conditions. Recently, Kappe’s group studied some relevant organic transformations with
the conductively heated Monowave 50 reactor, finding that in most cases the reaction
time, stirring efficiency, yield, heating, and cooling performance are similar to the results
obtained with a standard microwave apparatus [47]. The Monowave 50 reactor was used
to perform the triethylamine-mediated synthesis of compound 3 using equimolar amounts
of reactants 1 and 2 in acetonitrile under different temperatures and reaction times (Table 2).
The optimum outcome was achieved by heating in AFAP mode at 80 ◦C with a hold time of
20 min and 600 rpm stirring speed (Entry 1, Table 2). Following the removal of the solvent
under reduced pressure, the crude mixture is subjected to flash column chromatography
purification to afford quinoline-containing ester 3 with a 91% yield. In Entries 2 and 3,
Table 2, the yields of 3 were reduced when the reaction was conducted for 20 min below
80 ◦C. In Entry 4, Table 2, a decrease in the yield of 3 was observed when the reaction time
was shortened from 20 to 10 min at 80 ◦C. Consistent with expectations, compound 3 was
obtained in moderate yield (52%), under conventional heating at 20 ◦C for 20 min (Entry 5,
Table 2). This synthetic approach is distinguished by its short reaction time and operational
simplicity and requires a slight excess of base (1.2 equiv), in comparison with previously
reported data (2.0 equiv) [33,34]. According to the environmental risk-based ranking of
solvents proposed by Tobiszewski’s group, solvents that are carcinogenic, toxic, or produce
other effects are found in the lower part of the ranking [48]. Importantly, acetonitrile (rank
31) is higher than toluene and dichloromethane (ranks 59 and 61, respectively), which have
been used to synthesize compound 3. Without any discussion, N,N-dimethylformamide is
treated as an undesirable solvent. Despite the benefits of acetonitrile in the pharmaceutical
industry, it has adverse health effects and a relatively poor environmental profile.
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Table 2. Synthesis of the quinolin-8-yl 4-chlorobenzoate (3) a.
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1 80 20 91
2 60 20 88
3 40 20 76
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5 b 20 20 52
a Reaction conditions: 1 (0.50 mmol), 2 (0.50 mmol), and Et3N (0.60 mmol) in CH3CN (2.0 mL) at 40–80 ◦C for
10–20 min using the Monowave 50 reactor. b Absence of the Monowave 50 reactor. c The ester was purified by
column chromatography.

3.2. NMR Analysis

We analyzed the 1H and 13C NMR spectra of quinolin-8-yl 4-chlorobenzoate (3)
(Figures S5 and S6). 1H-NMR spectra displayed three doublets of doublets at 7.43, 8.20, and
8.88 ppm assigned to H–3, H–4, and H–2 protons of the π-deficient pyridine ring, respec-
tively (Figure 2 and Table 3). Furthermore, the H–2 proton is the most deshielded due to its
closeness to the pyridinic nitrogen atom. Moreover, the benzene fused to the pyridine ring
showed a doublet of doublets at 7.78 ppm associated with the H–5 proton and a multiplet
ranging from 7.55 to 7.61 ppm assigned to the H–6 and H–7 protons. Additionally, the
ester and chloro groups cause Hm protons (7.52 ppm) to be more shielded compared with
Ho protons (8.29 ppm). The absence of a proton signal detected from the hydroxyl group
attached to the quinoline ring served as confirmation of the successful O-acylation process.
These assignments were also confirmed by the COSY spectrum (Table 3 and Figure S9).
The H–2 proton at 8.88 ppm displayed a correlation with a signal at 7.43 ppm, which was
identified as the H–3 proton. From this signal, we detected the next correlation at 8.20 ppm,
corresponding to the H–4 proton. A COSY cross peak was observed between the H–5
proton at 7.78 ppm and a multiplet ranging from 7.55 to 7.61 ppm, which was assigned to
the H–6 and H–7 protons that were strongly coupled to each other. Finally, the Ho proton
signal at 8.29 ppm displayed a cross peak with a doublet located at 7.52 ppm, which was
identified as the Hm protons. In summary, the COSY technique is in principle sufficient to
assign all protons of quinolin-8-yl 4-chlorobenzoate (3) with safety.

Analysis of the 13C-NMR and DEPT-135 spectra for compound 3 indicated the ex-
istence of eight aromatic methines, five quaternary aromatic carbons, and one carbonyl
carbon (Figure 2 and Table 3). The HSQC spectrum allowed the assignation of all methine
carbons C–7, C–3, C–5, C–6, Cm, Co, C–4, and C–2 at 121.6, 121.9, 126.3, 126.4, 129.1, 132.1,
136.1, and 150.8 ppm, respectively (Figure S7). The assignment of all quaternary carbons
Ci, C–4a, Cp, C–8a, C–8, and C=O was performed with the HMBC spectrum (Table 3 and
Figure S8). A 3J(C,H) spin coupling was observed between the H–2 and H–3 protons and
C–8a (141.4 ppm) and C–4a (129.7 ppm), respectively. Moreover, the aromatic quaternary
carbon C–8 (147.7 ppm) is the most deshielded due to its closeness to the oxygen atom,
which had a 2J(C,H) spin coupling to the H–7 proton. Analysis of the spectra revealed that
the Ho protons exhibited two 3J(C,H) spin couplings with Cp at 140.2 ppm and C=O at
164.8 ppm. Conversely, Ci at 128.1 ppm displayed a single connectivity with Hm protons.
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Figure 2. (A) Structure of compound 3; (B) Correlations of 3 based on COSY and HMBC experiments.

Table 3. NMR assignments and correlations of compound 3 using 1D and 2D experiments.

Number δH (mult, J in Hz) δC (ppm) COSY HMBC

2 8.88 (dd, J = 4.0, 1.6) 150.8 H–3 (3J)
C–3 (2J)

C–8a (3J)
C–4 (3J)

3 7.43 (dd, J = 8.2, 4.2) 121.9 H–2 (3J)
H–4 (3J)

C–4a (3J)
C–2 (2J)

4 8.20 (dd, J = 8.4, 1.2) 136.1 H–3 (3J)
C–5 (3J)

C–8a (3J)
C–2 (3J)

4a – 129.7 – –

5 7.78 (dd, J = 7.2, 2.4) 126.3 H–6 (3J)

C–4a (2J)
C–6 (2J)

C–8a (3J)
C–4 (3J)
C–7 (3J)

6 7.55–7.61 (m) 126.4 H–5 (3J)
H–7 (3J)

C–5 (2J)
C–8 (3J)

C–4a (3J)

7 7.55–7.61 (m) 121.6 H–6 (3J)

C–6 (2J)
C–8 (2J)

C–8a (3J)
C–5 (3J)

8 – 147.7 – –

8a – 141.4 – –

C=O – 164.8 – –

i – 128.1 – –

o 8.29 (d, J = 8.8) 132.1 Hm (3J)
Cp (3J)

C=O (3J)

m 7.52 (d, J = 8.8) 129.1 Ho (3J)
Cp (2J)
Ci (3J)

p – 140.2 – –

3.3. Vibrational Analysis

The IR spectrum of 3 is illustrated in Figures S2 and S3. The ester group possesses
two asymmetrically coupled vibrations, namely C-C(=O)-O and O-C-C, which appear in
the region of 1250–1310 cm−1 and 1111 cm−1, respectively [49,50]. For compound 3, we
observed C–C(=O)–O and O–C–C stretching vibrations at 1258 and 1087 cm−1, respectively.
Moreover, the C=O stretching vibration of compound 3 was assigned at 1730 cm−1, which
is within the typical range of 1715–1730 cm−1 for the carbonyl band of α,β-unsaturated and
benzoate esters [49,50].
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Generally, C=N and C=C stretching bands are observed as combinational bands.
In this work, the C=N stretching vibration is observed at 1627 cm−1. In contrast, C–N
stretching modes appear in the range of 1200–1400 cm−1, which are overlapped with C–C
and C–O vibrations [49,50]. In this regard, Krishnakumar et al. and Bahgat et al. reported
C–N stretching vibrations of 8-hydroxyquinoline at 1273/1286 cm−1 and 1286/1339 cm−1,
respectively [51,52], whereas in this study, compound 3 showed C–N stretching bands at
1258 and 1287 cm−1.

The (hetero)aromatic compounds displayed C–H stretching modes in the 3000–3100 cm−1

range [49], whereas in this study, compound 3 exerted C–H stretching bands at 3036 and
3086 cm−1. Furthermore, the out-of-plane (“oop”) bending of aromatic C–H bonds is
observed in the 675–900 cm−1 range [49]. In this work, the out-of-plane vibrations of the
quinoline ring are assigned at 706, 820, and 854 cm−1, while the benzene ring showed
another out-of-plane C–H bending vibration at 794 cm−1, confirming the para-substitution.
Previous studies have reported the in-plane bending vibrations of aromatic C–H bonds
in the range of 1000–1300 cm−1 [49]. For compound 3, we observed these vibrations in
benzene and quinoline rings at 1007, 1042, 1064, 1160, 1176, and 1231 cm−1.

Vibrational frequencies of C=C bonds in (hetero)aromatic compounds can be found
within the 1400–1600 cm−1 range [49]. For example, Fernandes et al. described that
the 8-hydroxyquinoline and the 4,7-dichloroquinoline had a C=C stretching vibration at
1578 cm−1 [50]. Moreover, Saral et al. described that the 2-chloroquinoline-3-carboxaldehyde
had a C=C stretching band at 1612 cm−1 [53]. In this work, the C=C stretching modes of
compound 3 were identified at 1490 and 1593 cm−1. While the expected range of C–C
stretching vibrations is 1250–1450 cm−1, and these vibrations are usually mixed with C–N
and C–O vibrations, the present study designates the C–C stretching vibrations of benzene
and quinoline rings at 1258, 1287, 1370, 1387, and 1404 cm−1.

The stretching mode of the C–Cl bond in compound 3 is detected at 760 cm−1, in
agreement with previously reported data (580–750 cm−1) [54]. It could shift to a higher
value due to the presence of the ester group.

3.4. UV–Vis Analysis

The study of 8-hydroxyquinoline derivatives remains an intriguing subject due to their
innumerable applications in photoluminescence [55], electroluminescence [56], organic pho-
tovoltaic devices [57], and selective detection of various metal ions due to their high chelat-
ing ability [28–31]. For that reason, we conducted UV–Vis studies for 8-hydroxyquinoline
(1) and quinolin-8-yl 4-chlorobenzoate (3) in the range of 200–400 nm in methanol solution
(50 µM). As illustrated in Figure 3, compound 3 exhibited four distinct bands across the
range of 200–300 nm with differing levels of intensity. Absorption bands at 205/229 nm
(ε = 47,000/49,600 L·mol−1·cm−1) and 243 nm (ε = 26,400 L·mol−1·cm−1) are attributed to
π→ π* transitions of quinoline and 4-chlorobenzoate chromophores, respectively [32,54].
Additionally, the quinoline-containing ester is associated with an absorption band at 278 nm
(ε = 8400 L·mol−1·cm−1), which is attributed to the n→ π* transition. As shown in Table 4,
the incorporation of the 4-chlorobenzoyl group into 8-hydroxyquinoline (1) caused a hyp-
sochromic effect in π→ π* transitions from 208 to 205 nm and 235 to 229 nm, as well as in
the n→ π* transition from 312 to 278 nm. In addition, we observed a strong hypochromic
effect in π→ π* and n→ π* transitions.
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Figure 3. UV–Vis spectra of 8-hydroxyquinoline (1) and quinolin-8-yl 4-chlorobenzoate (3).

Table 4. UV–Vis data of 8-hydroxyquinoline (1) and quinolin-8-yl 4-chlorobenzoate (3) in methanol
solution (50 µM).

Compound λmax (nm) ε × 104 (L·mol−1·cm−1) Assignment

1 208, 235
312

5.68, 7.12
1.36

π→ π*
n→ π*

3 205, 229, 243
278

4.70, 4.96, 2.64
0.84

π→ π*
n→ π*

3.5. TG and DSC Analysis

The thermograms TGA and DSC of compound 3 were recorded separately, as illus-
trated in Figure 4. The thermal stability of 3 was investigated in a nitrogen atmosphere,
with a heating rate of 10 ◦C min−1 and a gas flow of 25 mL min−1, over a temperature
range of 25 to 400 ◦C. According to the TGA curve, compound 3 exhibits a melting process
ranging from 199 to 269 ◦C. The DSC thermogram of 3 indicates an endothermic peak at
162 ◦C (∆H = 120.5 J g−1), which coincides with its melting point.
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3.6. Molecular Structure

CSD database version 5.41 (date of the search: March 2023) using ConQuest software
version 2020.1 did not show results for molecules with the exact structural formula. How-
ever, a molecular analog named 2-aminoquinolin-8-yl 4-chlorobenzoate was found [58].
Figure 5a shows the molecular structure of 3. The dihedral angle between the planar frag-
ments that contain the aromatic moieties has a value of 89.30◦, suggesting an orthogonal
conformation (Figure 5b). It is interesting that the presence of one amine group substituting
the quinoline ring in the analog 2-aminoquinolin-8-yl 4-chlorobenzoate distorts this orthog-
onality, changing the dihedral angle to 72.58 and 79.21◦ due to the presence of N-H···N
hydrogen bonds [58].
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Figure 5. (a) Molecular structure of 3 with anisotropic thermal vibration ellipsoids drawn at the 50%
probability level. (b) Dihedral angle between planar fragments in the molecule is shown.

3.7. Supramolecular Structure and Computational Study

In the supramolecular structure of 3, C3-H3···N10 i hydrogen bonds join pairs of
inversion-related molecules (Figure 6a), which are further connected by longer C11-H12···O7 ii

(symmetry codes: (i) 1− x,1− y,−z; (ii) x,y,1 + z) hydrogen interactions, forming molecular
chains along the [001] direction (Figure 6b and Tables 5 and 6). Inside the chains, the molec-
ular orientation influenced by the C-H···(N, O) hydrogen bonds facilitates the interaction
between the chlorine atom and the quinoline ring, forming Cl1···π contacts with distances
of 3.7692(12) Å and symmetry code 1 − x,1 − y,−z (Figure 6c). Two neighboring chains
interact by van der Waals forces and Cl1···π contacts, involving the chlorobenzoate ring of
a neighboring molecule, with distances of 3.7631(12) Å and symmetry code x,1/2 − y,−1/2
+ z (Figure 6d). In addition, π···π (symmetry code 2 − x,1 − y,1 − z) and C13−H13···O18
iii (symmetry code: (iii) 2 − x,1 − y,1 − z; Tables 5 and 6) interactions help to keep the
molecular chains connected through the (001) plane (the plane contained in the ab plane)
involving the quinoline rings and with distances between π···π centroids of 3.8859(13) Å
(Figure 6d and Tables 5 and 6).

Table 5. Selected hydrogen-bond geometry (Å, ◦) for 3.

Compound 3

D-H···A D-H H···A D···A D-H···A

C3-H3···N10 i 0.93 2.52 3.431(3) 167

C11-H12···O7 ii 0.93 2.69 3.578(3) 161

C13-H13···O18 iii 0.93 2.78 3.587(3) 145
Symmetry codes: (i) 1 − x,1 − y,−z; (ii) x,y,1 + z; (iii) 2 − x,1 − y,1 − z.
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Table 6. Selected CrystalExplorer CE-B3LYP interaction energies (kJ/mol) for 3. N is the number of
molecules with a molecular centroid-to-centroid distance R (Å). Electron density was calculated using
B3LYP/6-31G(d,p) model energies. Symop is the symmetry operation.

N Symop/Description R Eele Epol Edis Erep Etot

1 1 − x,1 − y,−z
C-H···N, and Cl1···π 5.62 −20.8 −3.7 −41.7 39.0 −37.0

1 x,y,1 + z
C-H···O 7.40 −7.6 −1.8 −21.3 7.3 −23.4

2 x,1/2 − y,−1/2 + z
Cl1···π 6.64 −6.6 −2.1 −31.3 16.7 −25.5

1 2 − x,1 − y,1 − z
C-H···O and π···π 8.78 −17.5 −5.1 −44.4 25.4 −45.3

Scale factors to determine Etot: Eele = 1.05; Epol = 0.74; Edis = 0.87; Erep = 0.61.

The pairwise interaction energies described as electrostatic (Eele), polarization (Epol),
dispersion (Edis), and exchange repulsion (Erep) terms show that the crystal packing is
controlled mainly by dispersion forces (Table 6). Electrostatic forces are important only
in the formation of short hydrogen bonds, which, in the case of 3, correspond mostly
to C3-H3···N10 i (Figure 6a and Tables 5 and 6). However, this contribution in C13-
H13···O18 iii is also high compared with other interactions in the crystal (Figure 6d and
Tables 5 and 6). In addition, Figure 7 shows the energy framework diagrams for pairs of
molecules described as having electrostatic (red) and dispersion (green) contributions to the
total nearest-neighbor pairwise interaction energies (blue). For compound 3, the absence
of enough short hydrogen bonds induces the crystal to be controlled by dispersion forces,
which appear with cylinders of a higher radius compared with the observed contributions
from electrostatic cylinders.
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H12···O7 ii hydrogen bonds helping in the formation of chains in the [001] direction. (c) Cl1···π
contacts. (d) π···π and C13-H13···O18 iii interactions helping in the packing. The red circle shows
pairwise interaction energies.

C-H···O, C-H···N, π···π, Cl···π and other interactions were analyzed using the Crys-
talExplorer program through Hirshfeld surfaces mapped over dnorm [44]. In these maps,
interactions smaller than the sum of the van der Waals (Vdw) radii are represented with
negative values painted on the surface as red spots. Interactions close to the limit of the
Vdw radii are shown in white, and interactions larger are emphasized on the surface in
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blue. The intense red spots in the HS (Figure 8) correspond to the shorter interactions
C3-H3···N10 i. However, in terms of contributions to the total HS, these hydrogen bonds
only provide 6.3%. This is consistent with the low contribution from electrostatic forces
to the total packing. Table 6 and Figure 6d show that the highest pairwise interaction is
detected for the combination of π···π (symmetry code 2− x,1− y,1− z) and C13-H13···O18
iii interactions, the π···π contacts being the most important considering the dispersion term
in the determination of the total energy (Table 6).
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Molecular electrostatic potentials (ESP) mapped on Hirshfeld surfaces were calculated
by the B3LYP method using the 6-31G(d,p) basis set using the crystallographic informa-
tion [41]. Figure 9 shows the potentials mapped over the range±0.05 a.u. [42]. The strongest
negative electrostatic potential is observed surrounding the nitrogen atom of the quino-
line ring (−1.73 eV) and the oxygen atoms (−1.78 eV) of the ester group (Figure 9). The
strongest electropositive electrostatic potential is observed surrounding the aromatic hy-
drogen atoms of both 4-chlorobenzoate (+1.42 eV) and quinoline rings (+1.02 and +1.22 eV),
which explain the short C3-H3···N10 i hydrogen bonds and the high pairwise interac-
tion energy in the contact comprised by the combination of π···π and C13-H13···O18 iii

interactions (Figure 9). The EPS map over the Cl atom from the 4-chlorobenzoate group
suggests the formation of one σ-hole, which could behave as both Lewis acid and base
(+0.016 and −0.53 eV, respectively). However, the σ-hole does not have enough depth, as
observed in the 2-oxo-2H-chromen-7-yl 4-chlorobenzoate [59], 4-(4-chlorophenyl)-1-(2-(4-
chlorophenyl)-2-ethanone)-1H-imidazole [60], and quaternary salts of N-halomethylated
and non-N-halomethylated ammonium [61], which avoid the formation of Cl···Cl interac-
tions. Although these Cl···Cl interactions were not detected in 3, the negative electrostatic
potential over the chlorine atom allows the formation of Cl1···π interactions (Figure 9).
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Figure 9. ESPs mapped on Hirshfeld surfaces were mapped over the range −0.05 a.u. (red), through
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In order to acquire a deeper understanding of the reactivity and chemical stability of
compound 3, we calculated the frontier molecular orbital energies (HOMO and LUMO)
using the B3LYP method and a 6-31G(d,p) basis set in CrystalExplorer. The crystallographic
information files (.cif) and TONTO were utilized in this computational study [41]. In
Figure 10, the HOMO and LUMO orbitals are extended throughout the entire molecule,
except for the 4-chlorophenyl moiety. Based on the calculations, the HOMO and LUMO
energy levels were determined to be –6.55 eV and –1.72 eV, respectively. The band gap is a
crucial factor in assessing the electrical transport characteristics and chemical reactivity of
a molecule [62,63]. The determination of the band gap of compound 3 resulted in 4.83 eV,
which suggests a high degree of electron cloud stability and contributes to its observed
high chemical stability and low reactivity. These findings are supported by Figure 4, which
shows no evidence of decomposition within the temperature range of 25 to 400 ◦C.
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Table 7 shows the values for global reactivity descriptors of compound 3, including its
ionization potential (IP), electron affinity (EA), electrophilicity index (ω), chemical potential
(µ), electronegativity (χ), and hardness (η). According to Koopmans’ theorem, the energy
levels of the HOMO and LUMO of common molecules can be correlated to their ionization
potential (IP) and electron affinity (EA) values, respectively [64]. The electronegativity (χ)
can be calculated based on the average energy values of the HOMO and LUMO, given
by the equation χ = (IP + EA)/2 [62]. The HOMO−LUMO energy gap is associated with
the concept of hardness (η), which is a useful indicator of chemical stability [65,66]. The
electrophilicity index (ω) is defined as ω = µ2/2η, where µ represents the chemical potential,
which is calculated as µ = −(IP + EA)/2 [67]. Overall, compound 3 exhibits moderate
electrophilicity, as indicated by the electrophilicity index value of 1.77 eV. The chemical
potential value of –4.14 eV and the moderate electronegativity of 4.14 eV suggest a moderate
ability to attract electrons toward the molecule. The high value of the hardness (η), as
indicated by the band gap, suggests that the molecule has a significant resistance to electron
transfer, leading to reduced chemical reactivity.

Table 7. HOMO/LUMO energies (eV) and global reactivity descriptors (eV) for compound 3.

Parameters Compound 3

HOMO Energy –6.55
LUMO Energy –1.72

HOMO–LUMO Energy Gap 4.83
Ionization Potential (IP) 6.55
Electron Affinity (EA) 1.72

Electrophilicity Index (ω) 1.77
Chemical Potential (µ) –4.14
Electronegativity (χ) 4.14

Hardness (η) 4.83

3.8. In Vitro Antitumor Studies

The antitumoral activity of 3 was screened by the NCI (USA) against 60 human cancer
cell lines, including Melanoma and Leukemia, and cancers of Breast, Prostate, Renal,
Ovarian, Colon, Central nervous system, and non-Small-cell lung. A mean graph showing
the growth percentage (G%) of treated cells in contrast to untreated control cells is utilized
to report the outcomes of compound 3 (NSC D-832410/1) assessment in the NCI 60-cell
panel at a single dose of 10 µM [68,69]. Table S1 presents the one-dose mean graph for
compound 3 obtained through the NCI 60-cell line screening program. Lethality is indicated
by a negative value in the growth inhibition percentage (GI%), whereas a decrease in the
growth percentage (G%) results in an increase in the growth inhibition percentage (GI% =
100–G%) [68,69]. Table 8 displays the most important anticancer results for compound 3.
Despite the low activity in 3, the findings can provide valuable insights into how chemical
structure and anticancer activity are connected.

Table 8. Remarkable anticancer results for compound 3.

Mean Growth Percentage Most Sensitive Cell Lines Growth Inhibition
Percentage (GI%)

102.4

HOP-92 (non-Small-cell lung cancer) 6.2
EKVX (non-Small-cell lung cancer) 6.4

UO-31 (Renal cancer) 18.1
SK-MEL-2 (Melanoma) −13.9

OVCAR-3 (Ovarian cancer) −15.4
BT-549 (Breast cancer) −16.4

Compound 3 shows low anticancer activity against HOP-92 and EKVX non-Small-
cell lung cancer cell lines with a growth inhibition percentage (GI%) of 6.2% and 6.4%,
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respectively (Table 8 and Table S1). However, the most significant anticancer effect is
observed in the UO-31 Renal cancer cell line with a GI% of 18.1%. Despite the compound’s
low anticancer activity, it is noteworthy for its high selectivity towards the UO-31 Renal
cancer cell line. Overall, anticancer studies of quinoline derivatives have shown different
mechanisms of action involving the inhibition of topoisomerase, tyrosine kinases, tubulin
polymerization, carbonic anhydrase, telomerase, quinone reductase 2 (QR2), farnesyltrans-
ferase, proteasome, poly(ADP-ribose) polymerase-1 (PARP-1), histone deacetylase (HDAC),
nuclear factor kappa B (NF-kB), heat shock protein 90 (Hsp90), histone acetyltransferase
(HAT), as well as DNA intercalating agents, iron chelators, free-radical regulators, Bcl-2
family protein modulators, among others [11–16]. In particular, quinoline-based drugs
available on the market or in the clinical trial phase mainly act as inhibitors of protein
kinases, topoisomerases, or directly intercalating DNA [12]. Notably, multi-targeted tyro-
sine kinase inhibitors, such as cabozantinib and lenvatinib, are utilized in the treatment of
advanced renal cell carcinoma (RCC) [12,17,19]. Thereby, the moderate activity of 3 against
the UO-31 Renal cancer cell line could be explained by its behavior as a potential inhibitor
of protein kinases.

4. Conclusions

We report the utilization of the Monowave 50 reactor for the triethylamine-mediated
synthesis of ester 3 in high yield under mild reaction conditions. This procedure stands out
for its brief reaction duration, operational simplicity, and clean reaction profile. The anti-
cancer evaluation, IR, UV–Vis spectra, thermal behavior, and crystal structure of compound
3 introduce information that is missing from the literature. X-ray diffraction analyses of 3
show that C-H···N, C-H···O, Cl···π, and π···π interactions are present in the supramolecular
structure. The molecular conformation of 3 in the solid state presents an orthogonal orien-
tation between quinoline and 4-chlorobenzoate rings. CE-B3LYP interaction energies show
that dispersion forces act in a higher proportion than electrostatic forces to assemble the
crystal, which can be explained by the absence of enough short hydrogen bonds. Moreover,
electrostatic potentials suggest the formation of σ-holes over the Cl atoms to behave as
both Lewis acid and base; however, Cl···Cl interactions are absent due to the slight depth
of σ-holes. Quantum chemical descriptors and global reactivity descriptors were examined
using the B3LYP method with the 6–31G(d,p) basis set implemented in CrystalExplorer.
Finally, quinolin-8-yl 4-chlorobenzoate (3) displayed low activity against HOP-92, EKVX
non-Small-cell lung, and UO-31 Renal cancer cell lines with a growth inhibition percentage
(GI%) ranging from 6.2% to 18.1%. Even compounds with low activity can contribute to a
better understanding of how chemical structure and biological activity are connected.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst13040694/s1. Figure S1: EI-MS spectrum for compound 3;
Figure S2: FT-IR spectrum for compound 3; Figure S3: Expansion of the IR spectrum for compound 3;
Figure S4: UV–Vis spectra for compounds 1 and 3; Figure S5: 1H NMR spectrum for compound 3;
Figure S6: 13C{1H} NMR and DEPT-135 spectra for compound 3; Figure S7: HSQC 2D C–H correlation
spectrum for compound 3; Figure S8: HMBC 2D C–H correlation spectrum for compound 3; Figure
S9: COSY 2D C–H correlation spectrum for compound 3; Table S1: Mean growth, %GI, and lethality
values displayed by the tested compound 3 against 60 NCI human cancer cell lines at 10 µM; Table
S2: Experimental bond lengths (Å) and bond/valence angles (◦) obtained from single crystal X-ray
measurements for compound 3.
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