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Abstract: Two-dimensional materials present abundant novel properties when used in advanced
applications, which develops considerable focus. In this investigation, the first-principles calculations
are explored to study the structural characteristic of the monolayered SiP2, which is stable even at
1200 K. The SiP2 monolayer is a semiconductor with an indirect bandgap of 2.277 eV. The decent
band alignment and light absorption capacity imply that the application is a suitable photocatalyst
for water splitting. Furthermore, the SiP2 monolayer possesses an ultrafast electron mobility at
33,153 cm2·V−1·s−1 in the transport direction. The excellent Gibbs free energy of the SiP2 monolayer
is also addressed in an examination of the hydrogen evolution reaction.

Keywords: two-dimensional SiP2; semiconductor; photocatalyst; first-principles calculation;
carrier mobility

1. Introduction

With the discovery of graphene in 2004 [1], two-dimensional (2D) materials gradu-
ally have gained considerable research, such as magnetic [2], thermal [3,4] and catalytic
performances [5]. Two-dimensional materials have robust chemical bonds in the two-
dimensional plane, which can even be prepared from corresponding bulk materials by
way of mechanical stripping method [6]. Importantly, 2D materials exhibit excellent me-
chanical [7], magnetic [8] and optical properties [9]. For example, under external biaxial
strain, the bandgap of the arsenene can be transformed from indirect to direct bandgap.
Furthermore, as the strain continues to increase, the optical absorption ability of arsenene
also can be enhanced, enabling optical absorption energy that ranges in 1.2–2.2 eV [10].
The hardness of GeC is weaker than that of graphene, while the obtained Poisson value
(about 0.28) is 1.5 times that of graphene. At the same time, the in-plane stiffness of the GeC
is 41%, and the GeC possesses a small limited strain under biaxial strain [11]. All of this
reveals the promising applications used by 2D materials [12–15]. To further develop the
advanced functional 2D materials and potential applications, some significant methods are
adopted. Contacting two different layered materials as type-II van der Waals can separate
photogenerated electrons and holes, which prolongs the lifetime of the charges when used
as a photocatalyst for water splitting [16–19]. The hydrogen evolution reaction (HER)
ability of the MoS2 monolayer in the inert basal planes can be activated by using different
intrinsic defects [20]. Furthermore, external strain and electric field engineering are also
advantageous for improving the catalytic, electronic and thermal performances [21–23].

Since Fujishima and Honda first reported that TiO2 electrodes can be collectively used as
a photocatalyst for water splitting in 1972 [24], developing 2D materials to decompose the
water became desirable. When the 2D semiconductor absorbs the photons from the light,
the excited electrons can migrate from the valence band (VB) to the conduction band (CB)
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to induce the HER and oxygen evolution reaction (OER), respectively. For example, the
stripped g-C3N4 nanosheets can greatly increase the efficiency of its photocatalytic water
decomposition by increasing the specific surface area in order to increase the activity [25].
Carrier mobility of the photogenerated electrons and holes is also a critical parameter in water
splitting [26], because the higher mobilities can obtain a high utilization of electrons and
holes in oxidations and reductions before recombination. A recent study on photocatalytic
water splitting reported that the GeSe monolayer even possesses ultrahigh electron mobility at
about 32,507 cm2·V−1·s−1 [27]. Recently, 2D SiP2 has been successfully prepared [28], which
presents in an unconventional excitonic state. Subsequently, SiP2 also can be prepared with
h-BN used as a gate-controlled phototransistor, which additionally demonstrates an ultrahigh
sensitivit. All of this demonstrates that SiP2 has excellent electronic and optical properties.
Current investigations have revealed a promising application for nanodevices, while the
critical parameter of carrier mobility has been rarely explored. Furthermore, the suitable band
edge energy of the SiP2 monolayer has also not been studied, even though it may have a
potential application as a photocatalyst. All these things have aroused the exploration of the
advanced applications of the SiP2 monolayer in our work.

In this investigation, the thermal stability and electronic property of the SiP2 mono-
layer are addressed by the first-principles method. The semiconductor nature is obtained
and the band edge positions are also explored as suitable for redox reaction in water
splitting. Additionally, the excellent carrier mobility and the hydrogen evolution reaction
performance are first examined for the promising novel photocatalytic activity of the SiP2
monolayer. The research outline of this investigation is expressed by Figure 1.
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2. Computational Methods

In our simulations, the structural optimization, phonon spectrum, band structure,
carrier mobility and the Gibbs free energy were calculated by Device Studio [Hongzhi-
wei Technology, Device Studio, Version 2021A, China, 2021. Available online: https:
//iresearch.net.cn/cloudSoftware, accessed on 2 June 2023] program, which provides a
number of functions for performing visualization, modeling and simulation. And all that
simulations using DS-PAW software are integrated in Device Studio program [29]. Based
on density functional theory (DFT), the Vienna ab initio simulation package (VASP) was
explored to develop the other first-principles calculations [30]. The generalized gradient
approximation (GGA) method was used with the projector augmented wave potentials
(PAW) to employ the Perdew–Burke–Ernzerhof (PBE) functional, which also explains the
exchange-correlation functional [31,32]. The energy cut-off used was 550 eV. In the first
Brillouin zone (BZ), the Monkhorst–Pack k-point grid was set to 17 × 17 × 1. In addition,
the Heyd–Scuseria–Ernzerhof hybrid method was adopted to calculated the projected
band structure [33]. The vacuum space was set at 25 Å, which can prevent the interaction
between nearby layers. The convergence for the energy is 0.01 meV, while the force is
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controlled at 0.01 eV·Å−1. The PHONOPY code was used to calculated phonon spectra
based on the density functional perturbation theory [34,35].

3. Results and Discussion
3.1. Structural and Stability Performance

The atomic structure of the SiP2 monolayer was optimized with the lattice constant
at 3.460 Å and 10.280 Å in the x and y directions, respectively, as is demonstrated in
Figure 2a. The lattice constant of 3.460 Å is comparable with that of the TMDs materials [36]
and the B2P6 monolayer (about 3.25 Å) [37], showing a promising application as a stable
heterostructure. The simulated scanning tunneling microscopy (STM) images of the SiP2
monolayer obtained are shown in Figure 2b, and such patterns in the simulated STM images
display good agreement with a previous experiment [28]. Moreover, the dynamic stability
of the SiP2 monolayer was investigated by using the density functional perturbation theory
as shown in Figure 2c; one can see that no imagery was found in phonon spectra, suggesting
dynamic stability of the SiP2 monolayer.
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Figure 2. (a) The atomic structure, (b) the simulated STM image and the DS-PAW calculated image (c).
Phonon dispersions spectra of the SiP2 monolayer; the red and blue balls are P and Si atom, respectively.

Then, the thermal stability of the SiP2 monolayer under different temperatures was
further investigated. Using ab initio molecular dynamics (AIMD) calculations, the Nosé–
Hoover heat bath scheme was addressed to further evaluate the thermal stability of the
SiP2 monolayer. A 4 × 2 × 1 supercell of the SiP2 was employed, considering the lattice
translational constraints, which possesses 36 atoms in the simulations. After the total
relaxation under 300–1200 K in 10 ps, the structure of the SiP2 system was still intact,
demonstrated by the inset image in Figure 2a. Such results represent a robust thermal
stability of the SiP2 monolayer even under 1200 K. In addition, a convergence was revealed
by the fluctuations in temperature and total energy of the SiP2 monolayer during the AIMD
calculation under 300–1200 K as shown in Figure 3, further suggesting the accuracy of the
obtained results.

3.2. Band Structure and Carrier Mobility

The projected band structure of the SiP2 monolayer was calculated using the HSE06
functional expressed in Figure 4a. One can see that the SiP2 monolayer is a semiconductor
with an indirect bandgap of 2.277 eV, which displays good agreement with other reported
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results [28]. The conduction band minimum of the SiP2 monolayer is mainly contributed to
by the P atoms, while the valence band maximum is donated to by the P and Si atoms, as is
demonstrated in Figure 4a. By comparing the vacuum level, the band edge positions of the
SiP2 monolayer were calculated, as is shown in Figure 4b. The obtained band alignment of
the SiP2 monolayer suggests a suitable band energy to promote the oxidations and reduc-
tions in water splitting; such decent band energy was also addressed by the WS2 monolayer
in some TMDs materials insinuated in Figure 4b. Furthermore, the light absorption ca-
pacity of the SiP2 monolayer was investigated as a photocatalyst. The anisotropy optical
performance of the SiP2 monolayer is shown in Figure 4c, with the peak of the light ab-
sorption spectrum along the x (or y) direction as 12.8 × 105 cm−1 (or 10.2 × 105 cm−1)
and with the wavelength as 207 nm (or 155 nm), which is higher than that of B2P6
(3.4 × 104 cm−1) [37], CdO (3.56 × 105 cm−1) [38] arsenene (3.01 × 105 cm−1) [39]. Such ex-
cellent light absorption characteristics also demonstrate the potential use as a photocatalyst
to decompose water.
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The carrier mobility of the SiP2 monolayer is calculated by using the Bardeen–Shockley
deformation potential theory [40], because the carrier mobility is also a critical target in
photocatalytic water splitting. The effective masses (m*) of the electron and hole are
obtained by:

m∗ = ±}2

(
d2Ek
dk2

)−1

, (1)

where k and Ek are the wave vector and the corresponding electronic energy, respectively.
In addition, the carrier mobility (µ) of the SiP2 monolayer is calculated from:

µ =
e}3C

kBTm∗meEd
2 , (2)
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where the temperature, the electron charge and the Planck constant are expressed by T, e
and }, respectively. The Boltzmann constant is represented by kB. The change of the band
edge energy of the SiP2 monolayer was evaluated by the deformation potential (Ed), which
is calculated by comparing the vacuum level. In addition, the elastic modulus is used by C,
which is calculated using C =

[
∂2E/∂ε2]/S. The total energy of the SiP2 monolayer is E

and the area of the system is S. The energy difference and the band edge energy under the
external strain of the SiP2 monolayer were obtained, as is shown in Figure 5, and the fitted
elastic modulus are summarized in Table 1.
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Table 1. The calculated effective mass (m*), elastic modulus (C), deformation potential constant (Ei)
and mobility (µ) of the SiP2 monolayer along the transport directions.

Material Direction Carrier m* (me) Ei (eV) C (N/m) µ (cm2·V−1·s−1)

SiP2

x e− 0.138 2.600
454

14,254
h+ –2.807 0.930 1926

y e− 1.713 0.190
70

33,153
h+ –0.681 0.520 3915

The calculated hole carrier of the SiP2 monolayer was 1926 cm2·V−1·s−1 and
3915 cm2·V−1·s−1 along the x and y directions, respectively. Particularly, the electron carrier
presented ultrafast mobility at 14,254 cm2·V−1·s−1 and 33,153 cm2·V−1·s−1, respectively.
Such excellent mobility was even higher than black phosphorus (10,000 cm2·V−1·s−1) [41]
and Li2B6 (6800 cm2·V−1·s−1) [42]. The obtained hole carrier of the SiP2 monolayer was
also higher than that of recently reported 2D materials, such as GeS (1312 cm2·V−1·s−1) [27]
and HfSi2N4 (1182 cm2·V−1·s−1) [7]. Furthermore, one can see that the mobility of the
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electron was about 10 times higher than that of the hole, suggesting a more advantageous
ability to separate electron and hole in water splitting [43].

3.3. Hydrogen Evolution Reaction Performance

As a photocatalyst, the catalytic ability of the SiP2 monolayer also played a significant
role. The Gibbs free energy (∆GH*) of the intermediate product in hydrogen evolution
reaction (HER) is calculated by standard conditions from:

∆GH* = ∆E + ∆Ezpe + T∆S, (3)

where the ∆E is used to represent the total energy of the H-adsorbed SiP2 monolayer system,
as shown in Figure 6a; the representative highly symmetrical adsorption sites are expressed
by yellow balls, which contain 24 possibilities. The ∆Ezpe is the difference in the zero-point
energies, and the ∆S shows the change in the entropy under the adsorption. T is set at 298
K. The active site is highlighted by the “*”. In addition, the hydrogen evolution reaction
characteristic is addressed by two reactions:

∗ + H+ + e− → H∗, (4)

H∗ + H+ + e− → H2 + ∗ (5)
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Figure 6. (a) The favorable H-adsorbed site on the SiP2 monolayer configuration and (b) the calculated
Gibbs free energy of the SiP2 system obtained by using DS-PAW.

Furthermore, the most favorable hydrogen evolution reaction by the H-adsorbed site
on the SiP2 system is illustrated in Figure 6a as cyan balls, and the obtained Gibbs free
energy of such an H-adsorbed SiP2 system was calculated by using 1.11 eV, as shown in
Figure 5b. Obviously, the SiP2 monolayer possesses a novel and more advantageous hydro-
gen evolution reaction than the graphene [44], MoGe2N4 [7] and IV–VI monolayers [27].

4. Conclusions

In this study, the first-principles calculations were explored to systematically investi-
gate the structural, electronic and optical properties and the carrier mobility and hydrogen
evolution reaction of the SiP2 monolayer. The SiP2 monolayer is a semiconductor, which
has a thermal stability even at 1200 K. The decent band edge positions and optical proper-
ties are addressed. Furthermore, the SiP2 monolayer shows anisotropic carrier transport
properties with ultrafast electron mobility at 33,153 cm2·V−1·s−1. The excellent hydrogen
evolution reaction of the SiP2 monolayer was calculated, which is more advantageous than
that of graphene. All these things demonstrate the potential application for using SiP2 as a
photocatalyst to decompose water.
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