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Abstract: A new ethylene derivative was synthesized as a precursor for the [3+2] cycloaddition
(32CA) reaction to access a novel spirooxindole embodied with benzimidazole with a pyridine
spacer. The chalcone derivatives 3a–j is obtained with condensation of the acetyl derivative with
aryl aldehydes. The one-pot multi-component reaction of the ethylene derivative, 5-Cl-isatin, and
octahydroindole-2-carboxylic acid enables the construction of a highly functionalized quaternary
center spirooxindole scaffold in a high chemical yield. A study using the Molecular Electron Density
Theory (MEDT) explains the complete regio- and stereoselectivity of the reaction, resulting in the
exclusive formation of the ortho/endo-cycloadduct under kinetic control. The low activation Gibbs
free energy is the result of the supernucleophilic character of the in situ-generated azomethine ylide
and the strong electrophilic character of the ethylene derivatives.

Keywords: [3+2] cycloaddition reaction; spirooxindole; MEDT (Molecular Electron Density Theory)

1. Introduction

The skeleton of a spirooxindole core structure is present in many natural alkaloids and
attracts many synthetic chemists because this privileged structure plays an important role
in drug discovery and medication enhancement [1–5]. There are diverse synthetic tools that
are accessible and reproducible for the construction of chiral spirooxindole frameworks
with pharmacological relevant targets [6–10]. Spirooxindoles are a prominent class of
compounds that possess many medication targets including treatment of cancer [11–15],
anti-inflammatory [16], SARS-CoV-2 [17,18], anti-diabetics [19–21], and others [22–27]. This
rigid spirocyclic scaffold has an outstanding ability for the physicochemical properties’
improvement compared to other mono-cyclic structures [28]. Therefore, the construction of
spirooxindoles based on chiral quaternary centers has attracted significant attention from
many researchers and remains a challenging task.

Several synthetic approaches have the ability to access spirooxindoles; among them are
the use of nano-catalysis [29], organocatalyst oxidative annulations [30–33], microwave irra-
diations [34], sonochemical strategy [35], NHC (N-Heterocyclic carbene) catalyst-mediated
[3+2] cycloaddition annulation [36], and transition metal catalysts [37,38] (e.g., Ru, Rh, Pd,
etc.) that require a specific olefin or indolinone-based alkene moiety in the precursor struc-
ture. A mild condition, facile, and eco-friendly approach to compose the spirooxindoles are
still required to a great extent.

The one-pot multi-component [3+2] cycloaddition (32CA) reaction is among the
most versatile eco-friendly and atom-economy strategies that enable the synthesis of
spirooxindole-based chiral functionality. Many spirooxindole molecules were developed
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based on this approach and were discovered to be competitive and highly effective for their
valuable anti-disease pharmacological potential.

Azomethine ylides (AYs) are highly reactive intermediates in 32CA reactions, resulting
in the formation of diverse hetero/carbocyclic molecules, particularly spirooxindoles
and others [39,40]. These three-atom components (TACs) have been extensively studied
and explored in many total syntheses of biologically active natural as well as synthetic
products from 32CA reactions. Recent Molecular Electron Density Theory (MEDT) [41]
studies of the chemical reactivity of these TACs suggested that these organic species
may present pseudodiradical, pseudo(mono)radical, carbenoid, and even zwitterionic natures
depending on the substitution, and consequently, the term of “1,3-dipole” is not justified for
these reactions [42].

In this work, we designed a new olefin for the 32CA reaction, which is crucial for
accessing the desired spirooxindoles. The mechanism of the 32CA reaction is studied from
the perspective of MEDT.

2. Materials and Methods
2.1. Synthesis of Chalcones (3a–j) and Spiro-Compounds (6a–j)
2.1.1. Synthesis of Chalcones (3a–j)

The arylaldehyde derivative 2a–j (2 mmol) was added to ketone derivative 1 (0.5 g,
2 mmol) in an ethanol solution of potassium hydroxide (40 mmol of potassium hydroxide
in 40 mL of ethanol). The reaction mixture was subsequently stirred at room temperature
for 12 h and neutralized with a solution of 30% acetic acid, leading to a precipitate. It was
filtered, dried, and recrystallized in EtOH to give compounds 3a–j.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(4-methoxyphenyl)prop-2-en-
1-one 3a
1H-NMR (DMSO-d6, 400 MHz) δ 13.03 (1H, NH, s), 8.28 (1H, Py-H, d, J = 8.1 Hz), 8.20 (1H,
Py-H, d, J = 8.1 Hz), 7.79 (2H, ArH, d, J = 8.8 Hz), 7.74 (1H, ArH, d, J = 8.1 Hz), 7.61 (1H,
ArH, d, J = 7.3 Hz), 7.56 (1H, =CH, d, J = 16.1 Hz), 7.35 (1H, COCH, d, J = 16.1 Hz), 7.26
(2H, ArH, m), 7.01 (2H, ArH, d, J = 8.8 Hz), 3.81 (3H, OCH3, s), 2.71 (3H, CH3, s); 13C-NMR
(DMSO-d6, 100 MHz) δ 194.1, 162.3, 156.9, 150.7, 149.4, 146.6, 144.6, 138.01, 135.6, 135.0,
131.6, 127.5, 124.0, 122.7, 120.0, 119.1, 115.1, 112.9, 56.0, 24.0; Anal. for C23H19N3O2; Calcd:
C, 74.78; H, 5.18; N, 11.37; Found: C, 75.15; H, 4.89; N, 11.14.

1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-mesitylprop-2-en-1-one 3b
1H-NMR (DMSO-d6, 500 MHz) δ 12.99 (1H, NH, s), 8.22 (1H, Py-H, d, J = 8.0 Hz), 8.15 (1H,
Py-H, d, J = 8.0 Hz), 7.68 (1H, ArH, d, J = 7.9 Hz), 7.64 (1H, =CH, d, J = 16.4 Hz,), 7.56 (1H,
ArH, d, J = 7.9 Hz), 7.23 (1H, ArH, t, J = 7.5 Hz), 7.18 (1H, ArH, t, J = 7.5 Hz), 6.92 (1H,
COCH, d, J = 16.4 Hz), 6.89 (2H, ArH, s), 2.70 (3H, CH3, s), 2.28 (6H, CH3, s), 2.19 (3H, CH3,
s); 13C-NMR (DMSO-d6, 126 MHz) δ 194.1, 165.4, 157.4, 149.5, 144.6, 139.3, 138.2, 137.6,
135.8, 134.5, 131.0, 129.7, 124.0, 122.7, 120.0, 119.0, 112.9, 23.8, 20.3; Anal. for C25H23N3O;
Calcd: C, 78.71; H, 6.08; N, 11.02; Found: C, 78.75; H, 6.05; N, 11.07.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(p-tolyl)prop-2-en-1-one 3c
1H-NMR (DMSO-d6, 400 MHz) δ 12.64 (1H, NH, s), 8.30 (1H, Py-H, d, J = 8.0 Hz), 8.23 (1H,
Py-H, d, J = 8.0 Hz), 7.72 (2H, ArH, d, J = 7.9 Hz), 7.69–7.65 (2H, ArH, m), 7.58 (1H, =CH, d,
J = 16.0 Hz), 7.45 (1H, COCH, d, J = 16.0 Hz), 7.29–7.22 (4H, ArH, m), 2.72 (3H, CH3, s), 2.33
(3H, CH3, s); 13C-NMR (DMSO-d6, 101 MHz) δ 194.0, 158.1, 155.4, 152.2, 150.1, 146.5, 140.9,
138.2, 134.6, 133.0, 130.8, 129.9, 125.8, 122.6, 120.0, 118.9, 24.1, 21.5; Anal. for C23H19N3O;
Calcd: C, 78.16; H, 5.42; N, 11.89; Found: C, 78.21; H, 5.37; N, 11.85.

1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(m-tolyl)prop-2-en-1-one 3d
1H-NMR (DMSO-d6, 500 MHz) δ 13.00 (1H, NH, s), 8.25 (1H, Py-H, d, J = 8.1 Hz), 8.21
(1H, Py-H, d, J = 8.1 Hz), 7.63 (1H, ArH, d, J = 2.0 Hz), 7.57 (2H, ArH, d, J = 7.8 Hz), 7.53
(1H, =CH, d, J = 16.0 Hz), 7.45 (1H, COCH, d, J = 16.0 Hz), 7.30 (1H, ArH, t, J = 7.6 Hz),
7.24 (2H, ArH, d, J = 7.8 Hz), 7.22–7.18 (2H, ArH, m), 2.69 (3H, CH3, s), 2.30 (3H, CH3, s);
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13C-NMR (DMSO-d6, 126 MHz) δ 194.0, 157.2, 150.6, 149.5, 146.5, 138.8, 138.2, 136.7, 135.8,
134.8, 134.6, 132.25, 129.9, 129.4, 127.9, 126.8, 126.1, 123.7, 122.7, 119.1, 112.9, 24.1, 21.4; Anal.
for C23H19N3O; Calcd: C, 78.16; H, 5.42; N, 11.89; Found: C, 78.20; H, 5.36; N, 11.86.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(4-nitrophenyl)prop-2-en-1-one 3e
1H-NMR (DMSO-d6, 400 MHz) δ 12.85 (1H, NH, s), 8.35 (1H, Py-H, d, J = 8.1 Hz), 8.30 (1H,
Py-H, d, J = 8.1 Hz), 8.25 (1H, ArH, d, J = 8.1 Hz), 8.10 (2H, ArH, d, J = 8.8 Hz), 7.79–7.58
(4H, ArH, CH=CH, m), 7.34–7.17 (3H, ArH, m), 2.76 (3H, CH3, s); 13C-NMR (DMSO-d6, 101
MHz) δ 200.2, 157.8, 150.5, 149.8, 138.7, 133.9, 130.5, 123.4, 119.1, 24.5; Anal. for C22H16N4O3;
Calcd: C, 68.74; H, 4.20; N, 14.58; Found: C, 68.12; H, 4.01; N, 13.98.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(4-chlorophenyl)prop-2-en-1-
one 3f
1H-NMR (DMSO-d6, 400 MHz) δ 12.71 (1H, NH, s), 8.53 (1H, Py-H, d, J = 8.1 Hz), 8.37 (1H,
Py-H, d, J = 8.1 Hz), 8.14–8.05 (2H, ArH, m), 8.02–7.96 (1H, ArH, m), 7.91 (2H, ArH, d, J =
8.1 Hz), 7.83 (1H, ArH, d, J = 6.6 Hz), 7.70 (2H, ArH, d, J = 7.3 Hz), 7.42 (1H, ArH, d, J = 4.4
Hz), 7.38 (1H, ArH, d, J = 4.4 Hz), 2.74 (3H, CH3, s); 13C-NMR (DMSO-d6, 101 MHz) δ 193.8,
157.4, 150.6, 149.67, 144.7, 138.4, 136.1, 135.4, 134.4, 133.9, 131.2, 129.9, 128.8, 126.0, 123.2,
119.2, 23.9; Anal. for C22H16ClN3O; Calcd: C, 70.68; H, 4.31; N, 11.24; Found: C, 71.21; H,
4.13; N, 11.91.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(4-bromophenyl)prop-2-en-1-
one 3g
1H-NMR (DMSO-d6, 400 MHz) δ 13.04 (1H, NH, s), 8.42 (1H, Py-H, d, J = 8.1 Hz), 8.27 (1H,
Py-H, d, J = 8.1 Hz), 7.73 (2H, d, J = 8.1 Hz), 7.64 (1H, d, J = 8.8 Hz), 7.61-755 (3H, m), 7.41
(1H, d, J = 5.9 Hz), 7.26 (3H, m), 2.60 (3H, CH3, s); 13C-NMR (DMSO-d6, 101 MHz) δ 193.8,
157.3, 150.5, 149.6, 144.8, 138.4, 136.3, 134.4, 134.2, 132.8, 132.5, 131.8, 131.4, 126.9, 124.9,
122.7, 120.0, 119.0, 112.9, 24.2; Anal. for C22H16BrN3O; Calcd: C, 63.17; H, 3.86; N, 10.05;
Found: C, 63.85; H, 3.74; N, 10.12.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(3-fluorophenyl)prop-2-en-1-
one 3h
1H-NMR (400 MHz, DMSO-d6) δ 12.91 (1H, NH, s), 8.50 (1H, Py-H, d, J = 8.1 Hz), 8.39 (1H,
Py-H, d, J = 8.1 Hz), 8.27 (1H, ArH, d, J = 7.3 Hz), 8.00 (1H, d, J = 8.1 Hz), 7.79 (2H, d, J =
9.5 Hz), 7.54–7.43 (3H, m), 7.31 (2H, d, J = 8.1 Hz), 6.79 (1H, s), 2.75 (3H, CH3, s); 13C-NMR
(DMSO-d6, 101 MHz) δ 193.78, 164.9, 159.0, 157.5, 150.6, 150.2, 150.1, 149.7, 144.7, 138.5,
137.4, 136.1, 134.3, 127.5, 126.5, 125.2, 119.1, 112.7, 25.0; Anal. for C22H16FN3O; Calcd: C,
73.94; H, 4.51; N, 11.76; Found: C, 73.19; H, 4.23; N, 11.44.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-(4-fluorophenyl)prop-2-en-1-
one 3i
1H-NMR (DMSO-d6, 400 MHz) δ 13.06 (1H, NH, s), 8.30 (1H, Py-H, d, J = 8.1 Hz), 8.26 (1H,
Py-H, d, J = 8.1 Hz), 7.92 (2H, ArH, dd, J = 8.8, 5.1 Hz), 7.74 (1H, ArH, d, J = 9.5 Hz), 7.63
(1H, ArH, d, J = 7.3 Hz), 7.49 (1H, CH=, d, J = 16.1 Hz), 7.34 (1H, =CH, d, J = 16.1 Hz), 7.27
(4H, ArH, m), 2.73 (3H, CH3, s); 13C-NMR (DMSO-d6, 101 MHz) δ 193.9, 165.4, 163.0, 157.3,
150.6, 149.6, 145.1, 144.6, 138.3, 135.6, 134.6, 132.5, 131.6, 126.2, 124.0, 122.6, 120.0, 119.1,
116.6, 115.3, 112.0, 24.2; Anal. for C22H16FN3O; Calcd: C, 73.94; H, 4.51; N, 11.76; Found: C,
73.29; H, 4.31; N, 11.84.

(E)-1-(6-(1H-Benzo[d]imidazol-2-yl)-2-methylpyridin-3-yl)-3-phenylprop-2-en-1-one 3j
1H-NMR (DMSO-d6, 400 MHz) δ 13.07 (1H, NH, s), 8.30 (1H, Py-H, d, J = 8.1 Hz), 8.26 (1H,
Py-H, d, J = 8.1 Hz), 7.86–7.81 (2H, ArH, m), 7.75 (1H, ArH, d, J = 8.1 Hz), 7.65–7.59 (2H,
ArH, =CH(β), m), 7.52 (1H, =CH(α), d, J = 16.1 Hz), 7.45 (2H, ArH, d, J = 5.9 Hz), 7.29–7.21
(3H, ArH, m), 2.74 (3H, CH3, s); 13C-NMR (DMSO-d6, 101 MHz) δ 194.1, 157.3, 150.6, 149.56,
146.4, 144.6, 138.3, 135.6, 134.9, 134.6, 131.6, 129.6, 129.5, 128.8, 126.3, 124.1, 122.7, 120.1,
119.1, 112.9, 24.2; Anal. for C22H17N3O; Calcd: C, 77.86; H, 5.05; N, 12.38; Found: C, 77.81;
H, 5.09; N, 12.42.
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2.1.2. Synthesis of Spiro-Oxindole Derivatives (6a–j)

Enones 3a–j (0.5 mmol), 5-chloro isatin (91 mg, 0.5 mmol), and octahydroindole-2-
carboxylic acid (84.62 mg, 0.5 mmol) were dissolved in 20 mL of dry MeOH in a 100 mL
round-bottom flask. Then, the reaction mixture was heated for 3 h at 60–65 ◦C. After the
reaction was completed, as monitored with thin-layer chromatography (TLC), the desired
spiro-oxindole derivatives 6a–j was purified by flash column chromatography by using
n-hexane/ethyl acetate (4:2).

Spiro-oxindole derivative 6a
1H-NMR (DMSO-d6, 400 MHz) δ 12.94 (s, 1H, NH), 10.12 (s, 1H, NH), 8.11 (m, 2H, Py-H),
7.73 (d, J = 7.3 Hz, 1H, ArH), 7.56 (d, J = 8.1 Hz, 1H, ArH), 7.54–7.50 (m, 2H, ArH), 7.49
(s, 1H, ArH), 7.33–7.17 (m, 3H, ArH), 6.89 (dd, J = 7.0, 4.8 Hz, 2H, ArH), 6.55 (d, J = 8.8
Hz, 1H, ArH), 5.06 (d, J = 11.7 Hz, 1H, COCH), 4.06–3.91 (m, 1H), 3.84 (t, J = 11.0 Hz, 1H),
3.72 (s, 3H, OCH3), 3.53–3.37 (m, 1H, aliphatic-H), 3.15–2.96 (m, 1H, aliphatic-H), 2.08 (dt,
J = 11.0, 5.5 Hz, 1H, aliphatic-H), 2.03–1.90 (m, 1H, aliphatic-H), 1.85 (s, 3H, CH3),
1.59–1.41 (m, 3H, aliphatic-H), 1.37–1.22 (m, 2H, aliphatic-H), 0.90–0.66 (m, 3H, aliphatic-H);
13C-NMR (DMSO-d6, 101 MHz) δ 198.4, 179.8, 158.6, 157.9, 150.3, 149.8, 144.5, 141.5, 138.8,
135.5, 132.0, 131.8, 130.7, 130.2, 129.2, 128.2, 126.3, 126.1, 124.2, 122.8, 120.0, 118.5, 114.4,
112.9, 111.8, 71.4, 65.8, 57.2, 56.6, 55.6, 51.4, 41.7, 36.7, 28.1, 27.9, 24.9, 24.7, 22.8, 21.6, 19.8,
19.1; Anal. for C39H36ClN5O3; Calcd: C, 71.17; H, 5.51; N, 10.64; Found: C, 70.95; H, 4.12;
N, 11.24.

Spiro-oxindole derivative 6b
1H-NMR (DMSO-d6, 500 MHz) δ 12.88 (s, 1H, NH), 10.17 (s, 1H, NH), 8.06 (d, J = 8.1 Hz,
1H, Py-H), 7.71 (d, J = 8.1 Hz, 1H, Py-H), 7.68 (d, J = 7.9 Hz, 1H, ArH), 7.51 (d, J = 7.2
Hz, 1H, ArH), 7.25–7.17 (m, 4H, ArH), 6.79 (d, J = 16.4 Hz, 2H, ArH), 6.49 (d, J = 8.2 Hz,
1H, ArH), 5.43 (d, J = 12.1 Hz, 1H, COCH), 4.42–4.33 (m, 1H), 4.21–4.13 (m, 1H), 3.01 (d,
J = 4.5 Hz, 1H, aliphatic-H), 2.68 (s, 3H, CH3), 2.63 (s, 3H, CH3), 2.12 (s, 3H, CH3), 2.08 (q,
J = 5.7 Hz, 1H, aliphatic-H), 1.86 (s, 3H, CH3), 1.76 (dd, J = 15.3, 11.8 Hz, 1H, aliphatic-H),
1.52 (dd, J = 10.8, 5.9 Hz, 2H, aliphatic-H), 1.48–1.40 (m, 2H, aliphatic-H), 1.29–1.21 (m,
2H, aliphatic-H), 0.95–0.89 (m, 1H, aliphatic-H), 0.85–0.80 (m, 1H, aliphatic-H), 0.74 (d,
J = 12.7 Hz, 1H, aliphatic-H); 13C-NMR (DMSO-d6, 126 MHz) δ 199.0, 179.9, 161.5, 158.0,
150.1, 149.8, 144.4, 141.6, 138.6, 138.4, 135.9, 135.7, 135.5, 131.8, 131.7, 130.2, 130.0, 129.8,
127.6, 126.5, 126.1, 124.2, 123.5, 122.8, 120.0, 118.6, 112.9, 112.0, 71.9, 67.8, 64.6, 57.3, 47.4,
41.8, 38.1, 28.3, 27.6, 27.3, 24.7, 23.0, 22.3, 21.7, 20.8, 19.9; Anal. for C41H40ClN5O2; Calcd: C,
73.47; H, 6.02; N, 10.45; Found: C, 73.42; H, 6.07; N, 10.40.

Spiro-oxindole derivative 6c
1H-NMR (DMSO-d6, 500 MHz) δ 12.90 (s, 1H, NH), 10.07 (s, 1H, NH), 8.09–8.04 (m, 2H,
Py-H), 7.65 (ddd, J = 29.4, 5.9, 3.3 Hz, 1H, ArH), 7.53 (s, 1H, ArH), 7.48 (d, J = 2.3 Hz, 1H,
ArH), 7.42 (d, J = 8.2 Hz, 2H, ArH), 7.24 (dd, J = 8.3, 2.2 Hz, 1H, ArH), 7.23–7.17 (m, 2H,
ArH), 7.09 (d, J = 8.1 Hz, 2H, ArH), 6.51 (d, J = 8.2 Hz, 1H, ArH), 5.05 (d, J = 11.8 Hz, 1H,
COCH), 3.95–3.89 (m, 1H), 3.85–3.79 (m, 1H), 3.02 (d, J = 4.3 Hz, 1H, aliphatic-H), 2.22 (s,
3H, CH3), 2.03 (ddd, J = 9.3, 5.6, 3.6 Hz, 1H, aliphatic-H), 1.95–1.90 (m, 1H, aliphatic-H), 1.80
(s, 3H, CH3), 1.49–1.44 (m, 2H, aliphatic-H), 1.41–1.37 (m, 1H, aliphatic-H), 1.25 (dd, J = 9.6,
3.6 Hz, 2H, aliphatic-H), 0.96–0.89 (m, 1H, aliphatic-H), 0.87–0.77 (m, 2H, aliphatic-H), 0.67
(d, J = 10.5 Hz, 1H, aliphatic-H); 13C-NMR (DMSO-d6, 126 MHz) δ 198.3, 179.7, 172.6, 157.8,
150.2, 149.8, 141.5, 138.8, 136.9, 136.2, 132.0, 130.2, 129.6, 128.0, 126.3, 126.1, 118.5, 111.8,
71.4, 71.3, 65.6, 57.1, 51.7, 41.8, 36.6, 29.5, 28.1, 27.8, 24.9, 22.7, 21.6, 21.2, 19.7, 14.5; Anal. for
C39H36ClN5O2; Calcd: C, 72.94; H, 5.65; N, 10.91; Found: C, 72.22; H, 5.14; N, 11.10.

Spiro-oxindole derivative 6d
1H-NMR (DMSO-d6, 500 MHz) δ 12.90 (s, 1H, NH), 10.07 (s, 1H, NH), 8.10 (d, J = 8.1 Hz,
1H, PyH), 8.06 (d, J = 8.1 Hz, 1H, PyH), 7.68 (d, J = 8.0 Hz, 1H, ArH), 7.52 (d, J = 7.6 Hz,
1H, ArH), 7.38 (t, J = 2.0 Hz, 1H, ArH), 7.33 (d, J = 7.9 Hz, 1H, ArH), 7.24 (dd, J = 8.4, 2.2
Hz, 2H, ArH), 7.18 (m, 3H, ArH), 6.98 (d, J = 8.8 Hz, 1H, ArH), 6.50 (d, J = 8.2 Hz, 1H,
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ArH), 5.07 (d, J = 12.0 Hz, 1H, COCH), 3.97–3.92 (m, 1H), 3.84–3.80 (m, 1H), 3.02 (d, J = 4.3
Hz, 1H, aliphatic-H), 2.28 (s, 3H, CH3), 2.07–2.04 (m, 1H, aliphatic-H), 1.93 (td, J = 5.9, 5.1,
2.2 Hz, 1H, aliphatic-H), 1.80 (s, 3H, CH3), 1.47 (dd, J = 11.7, 6.5 Hz, 2H, aliphatic-H), 1.39
(d, J = 5.1 Hz, 1H, aliphatic-H), 1.27–1.21 (m, 3H, aliphatic-H), 0.93 (dt, J = 13.0, 3.2 Hz, 1H,
aliphatic-H), 0.84–0.81 (m, 1H, aliphatic-H), 0.68 (d, J = 10.8 Hz, 1H, aliphatic-H); 13C-NMR
(DMSO-d6, 126 MHz) δ 198.4, 179.7, 157.9, 150.2, 149.8, 144.5, 141.4, 139.9, 138.9, 138.1, 135.5,
131.9, 130.2, 128.8, 128.8, 128.0, 127.8, 126.3, 126.1, 125.2, 122.75, 120.0, 118.4, 112.9, 111.8,
71.33, 65.7, 57.2, 52.1, 41.8, 36., 34.02, 29.5, 28.1, 27.8, 24.9, 22.7, 21.6, 19.7, 18.0; Anal. for
C39H36ClN5O2; Calcd: C, 72.94; H, 5.65; N, 10.91; Found: C, 72.92; H, 5.61; N, 10.89.

Spiro-oxindole derivative 6e
1H-NMR (DMSO-d6, 400 MHz) δ 12.96 (s, 1H, NH), 10.16 (s, 1H, NH), 8.24 (d, J = 8.1 Hz,
1H, Py-H), 8.20 (d, J = 8.8 Hz, 2H, ArH), 8.12 (d, J = 8.1 Hz, 1H, Py-H), 7.96 (d, J = 8.1 Hz,
2H, ArH), 7.73 (d, J = 7.3 Hz, 1H, ArH), 7.65 (s, 1H, ArH), 7.57 (d, J = 7.3 Hz, 1H, ArH),
7.26 (m, 3H, ArH), 6.55 (d, J = 8.1 Hz, 1H, ArH), 5.26 (d, J = 11.7 Hz, 1H, COCH), 4.14 (t,
J = 11.0 Hz, 1H), 4.02 (d, J = 7.3 Hz, 1H), 3.07 (d, J = 3.7 Hz, 1H, aliphatic-H), 2.12–2.01 (m,
2H, aliphatic-H), 1.84 (s, 3H, CH3), 1.48 (dd, J = 11.4, 6.2 Hz, 2H, aliphatic-H), 1.42 (dd,
J = 8.4, 4.8 Hz, 1H, aliphatic-H), 1.33–1.23 (m, 2H, aliphatic-H), 1.10–1.04 (m, 1H, aliphatic-
H), 1.01–0.93 (m, 1H, aliphatic-H), 0.86 (d, J = 12.5 Hz, 1H, aliphatic-H), 0.72 (d, J = 11.7 Hz,
1H, aliphatic-H); 13C-NMR (DMSO-d6, 101 MHz) δ 198.3, 179.5, 157.9, 150.2, 149.9, 148.4,
147.0, 144.5, 141.5, 138.8, 135.5, 131.7, 129.8, 129.8, 127.7, 126.3, 126.1, 124.1, 124.0, 123.2,
120.6, 118.0, 113.0, 111.9, 71.3, 57.2, 51.9, 46.0, 41.7, 38.7, 35.9, 28.0, 24.9, 19.8; Anal. for
C38H33ClN6O4; Calcd: C, 67.80; H, 4.94; N, 12.48; Found: C, 68.10; H, 4.21; N, 12.16.

Spiro-oxindole derivative 6f
1H-NMR (DMSO-d6, 400 MHz) δ 12.94 (s, 1H, NH), 10.12 (s, 1H, NH), 8.17 (d, J = 8.1 Hz,
1H, Py-H), 8.10 (d, J = 8.1 Hz, 1H, Py-H), 7.73 (d, J = 7.3 Hz, 1H, ArH), 7.65 (d, J = 8.1 Hz,
2H, ArH), 7.58–7.54 (m, 3H, ArH), 7.50 (s, 1H, ArH), 7.28 (d, J = 8.1 Hz, 3H, ArH), 6.54 (d,
J = 8.1 Hz, 1H, ArH), 5.12 (d, J = 11.7 Hz, 1H, COCH), 4.01–3.95 (m, 2H), 3.06 (d, J = 3.7 Hz,
1H, aliphatic-H), 2.11–2.08 (m, 1H, aliphatic-H), 1.98 (d, J = 9.5 Hz, 1H, aliphatic-H), 1.83
(s, 3H, CH3), 1.51 (d, J = 6.6 Hz, 2H, aliphatic-H), 1.27 (d, J = 9.5 Hz, 2H, aliphatic-H), 1.05
(d, J = 5.9 Hz, 1H, aliphatic-H), 0.97 (d, J = 13.2 Hz, 2H, aliphatic-H), 0.84 (d, J = 3.7 Hz,
1H, aliphatic-H), 0.71 (d, J = 12.5 Hz, 1H, aliphatic-H); Anal. for C38H33Cl2N5O2; Calcd: C,
68.88; H, 5.02; N, 10.57; Found: C, 68.12; H, 4.93; N, 11.05.

Spiro-oxindole derivative 6g
1H-NMR (CDCl3, 500 MHz) δ 8.82 (s, 1H, NH), 8.18 (d, J = 7.3 Hz, 1H), 7.76 (s, 1H, NH),
7.58 (s, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.6 Hz, 1H), 7.26 (dd,
J = 6.1, 2.9 Hz, 2H), 7.22 (d, J = 2.1 Hz, 1H), 7.19 (d, J = 8.9 Hz, 1H), 6.58 (d, J = 8.6 Hz,
1H), 4.96 (d, J = 10.9 Hz, 1H, COCH), 4.32–4.23 (m, 1H), 3.69 (t, J = 10.7 Hz, 1H), 3.08
(d, J = 4.0 Hz, 1H), 1.95 (s, 3H, CH3), 1.73 (td, J = 12.0, 6.1 Hz, 2H), 1.55 (d, J = 7.2 Hz,
1H), 1.53 (d, J = 6.9 Hz, 1H), 1.42–1.35 (m, 2H), 1.27 (d, J = 4.9 Hz, 1H), 1.01 (dd, J = 29.6,
14.0 Hz, 2H), 0.93–0.89 (m, 1H), 0.80 (d, J = 15.9 Hz, 1H); 13C-NMR (CDCl3, 126 MHz) δ
197.4, 180.9, 159.3, 139.5, 138.1, 132.0, 130.0, 129.7, 127.9, 127.7, 125.9, 124.2, 121.1, 118.4,
111.7, 71.73, 71.01, 66.99, 57.6, 52.8, 41.9, 37.7, 31.0, 29.8, 29.5, 28.3, 27.64, 24.7, 23.0, 19.7;
Anal. for C38H33BrClN5O2; Calcd: C, 64.55; H, 4.70; N, 9.90; Found: C, 64.78; H, 4.80;
N, 10.15.

Spiro-oxindole derivative 6h
1H-NMR (CDCl3, 500 MHz) δ 8.91 (s, 1H, NH), 8.11 (d, J = 7.7 Hz, 1H), 7.73 (s, 1H, NH),
7.59 (d, J = 14.0 Hz, 2H), 7.32–7.27 (m, 3H), 7.27 (d, J = 4.7 Hz, 1H), 7.21 (d, J = 2.3 Hz, 2H),
7.16 (dd, J = 8.2, 2.2 Hz, 2H), 6.93–6.90 (m, 1H), 6.54 (d, J = 8.7 Hz, 1H), 4.96 (d, J = 11.6 Hz,
1H, COCH), 4.31–4.25 (m, 1H), 4.23–4.15 (m, 1H), 3.08 (d, J = 4.6 Hz, 1H), 1.96 (s, 3H, CH3),
1.79–1.72 (m, 3H), 1.66–1.61 (m, 2H), 1.57 (d, J = 3.0 Hz, 1H), 1.09–1.05 (m, 1H), 1.02–0.97 (m,
1H), 0.93 (d, J = 7.2 Hz, 2H), 0.84 (d, J = 3.0 Hz, 1H); 13C-NMR (CDCl3, 126 MHz) δ 197.0,
183.4, 161.1, 149.2, 144.4, 139.0, 129.9, 127.2, 125.7, 123.7, 119.0, 115.4, 111.1, 72.0, 71.8, 71.0,
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57.6, 46.4, 41.9, 41.0, 37.7, 32.2, 29.3, 28.5, 28.3, 27.8, 27.6, 26.5, 24.4, 24.0, 23.1, 20.9, 19.8, 17.7,
17.6, 17.38, 14.73; Anal. for C38H33ClFN5O2; Calcd: C, 70.64; H, 5.15; N, 10.84; Found: C,
71.02; H, 4.93; N, 11.14.

Spiro-oxindole derivative 6i
1H NMR (DMSO-d6, 500 MHz) δ 12.90 (s, 1H, NH), 10.07 (s, 1H, NH), 8.13 (d, J = 8.2 Hz,
1H, Py-H), 8.06 (d, J = 8.2 Hz, 1H, Py-H), 7.68 (d, J = 7.8 Hz, 1H, ArH), 7.61 (dd, J = 9.0,
5.5 Hz, 2H, ArH), 7.52 (d, J = 9.1 Hz, 2H, ArH), 7.26–7.22 (m, 2H, ArH), 7.18 (td, J = 7.6, 7.2,
1.5 Hz, 1H, ArH), 7.13–7.08 (m, 2H, ArH), 6.50 (d, J = 8.2 Hz, 1H, ArH), 5.08 (d, J = 11.8 Hz,
1H, COCH), 3.94–3.86 (m, 2H), 3.01 (s, 1H), 2.05 (q, J = 4.7 Hz, 1H), 1.96–1.92 (m, 1H), 1.79 (s,
3H, CH3), 1.48–1.43 (m, 2H), 1.29–1.17 (m, 4H), 1.13 (t, J = 7.1 Hz, 1H), 1.06–1.02 (m, 1H),
0.67 (d, J = 13.0 Hz, 1H); 13C-NMR (DMSO-d6, 126 MHz) δ 198.4, 179.6, 162.6, 160.7, 157.9,
150.2, 149.8, 144.4, 141.5, 138.9, 136.1, 135.5, 131.9, 130.2, 130.1, 130.0, 128.0, 126.2, 126.1,
124.1, 122.8, 120.0, 118.4, 115.7, 115.5, 112.9, 111.8, 71.3, 71.3, 65.6, 57.1, 51.2, 41.8, 36.3, 31.5,
28.1, 27.8, 24.9, 22.7, 22.6, 19.7, 14.6, 14.5; Anal. for C38H33ClFN5O2; Calcd: C, 70.64; H, 5.15;
N, 10.84; Found: C, 70.60; H, 5.11; N, 10.89.

Spiro-oxindole derivative 6j
1H-NMR (DMSO-d6, 400 MHz) δ 13.00 (s, 1H, NH), 10.18 (s, 1H, NH), 8.17 (d, J = 8.1 Hz,
1H, Py-H), 8.14 (d, J = 8.1 Hz, 1H, Py-H), 7.74 (d, J = 8.1 Hz, 1H, ArH), 7.63–7.54 (m, 4H,
ArH), 7.39–7.17 (m, 6H, ArH), 6.57 (d, J = 8.1 Hz, 1H, ArH), 5.16 (d, J = 11.7 Hz, 1H, COCH),
4.06–3.97 (m, 1H), 3.92 (t, J = 10.6 Hz, 1H), 3.08 (d, J = 3.7 Hz, 1H), 2.06 (dt, J = 11.0, 5.9
Hz, 1H), 1.97 (q, J = 6.6, 5.9 Hz, 1H), 1.87 (s, 3H, CH3), 1.55–1.39 (m, 3H), 1.38–1.24 (m,
2H), 1.10–1.02 (m, 1H), 0.91 (dt, J = 38.8, 13.9 Hz, 2H), 0.73 (d, J = 11.7 Hz, 1H); 13C-NMR
(DMSO-d6, 101 MHz) δ 198.4, 179.8, 158.0, 150.3, 149.9, 144.5, 141.5, 140.0, 138.9, 135.5, 132.0,
130.2, 129.0, 128.2, 128.0, 127.2, 126.3, 126.2, 124.2, 122., 120.1, 118.5, 112.9, 111.9, 71.5, 71.4,
65.7, 57.2, 52.2, 41.8, 36.7, 28.1, 27.8, 25.0, 22.8, 19.8; Anal. for C38H34ClN5O2; Calcd: C,
72.66; H, 5.46; N, 11.15; Found: C, 72.57; H, 5.42; N, 11.19.

2.2. Computational Protocol

“The ωB97X-D [43] functional, together with the standard 6-311G (d,p) [44] basis set,
was used throughout this MEDT study. Solvent effects of methanol were taken into account
by full optimization of the gas-phase structures at the same computational level using
the polarizable continuum model (PCM) [45,46] in the framework of the self-consistent
reaction field (SCRF) [47–49]. The global electron density transfer (GEDT) [50] values were
computed using the equation GEDT(f) = Σqf, where q is the natural charges [51,52] of
the atoms belonging to one of the two frameworks (f) at the TS geometries. Global and
local Conceptual DFT (CDFT) indices [53,54] were calculated using the equations given in
reference [54]. The Gaussian 16 suite of programs was used to perform the calculations [55].
Molecular geometries were visualized using the GaussView program” [56].

3. Results and Discussion
3.1. Experimental Characterization

A variety of chalcones were prepared using acetyl derivative 1 previously reported
by our research group [57] followed by the [3+2] cycloaddition reactions to obtain the
desired spiro-compounds 6a–j. The general synthetic strategy for the formation of the
desired compounds is shown in Scheme 1. Chalcones 3a–j were synthesized from 1-(6-
(1H-benzo[d]imidazole-2-yl)-2-methylpyridin-3-yl)ethan-1-one 1. This ketone was then
condensed with aryl aldehyde derivatives (2a–j) using the Claisen–Schmidt reaction. The
neutralization of the reaction mixture with dilute acetic acid followed by recrystalliza-
tion gave compounds 3a–j with yields ranging between 65 and 95%. The structures of
the final products were confirmed on the basis of spectral studies. IR, 1H-NMR, 13C-
NMR, and an elemental analysis were used to characterize all the newly synthesized com-
pounds. The IR spectrum of (E)-1-(6-(1H-benzo[d]imidazole-2-yl)-2-methylpyridin-3-yl)-3-
(4-methoxyphenyl)prop-2-en-1-one (3a) showed a strong absorption band at
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3428 cm−1 corresponding to benzimidazole NH. A sharp absorption at 1592 cm−1 corre-
sponds to carbonyl stretching. The 1H-NMR spectrum showed a singlet peak at
δ 13.03 ppm, which was assigned to benzimidazole NH. The two doublet peaks at
δ 8.28 and 8.20 ppm correspond to pyridine CH/CH. The doublet peaks for α,β-unsaturated
protons appear at δ 7.56 (CHβ)/7.35 (CHα) ppm, and the singlet peak at δ 3.81 ppm cor-
responds to the protons of the methoxy group (OCH3). The 13C-NMR spectrum showed
a peak at δ 194.10 ppm, which was assigned to the carbonyl group (C=O), while all other
peaks for carbons are observed in their expected region, which supported its structure.
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Scheme 1. Synthesis of chalcones (3a–j) and spiro-compounds (6a–j).

The synthesis of spiro-derivatives (6a–j) from the three-component reaction was
achieved via a 32CA protocol (Scheme 1). The reaction of enones (3a–j) with 5-chloro
isatin, and octahydroindole-2-carboxylic acid, was carried out at 60 ◦C in MeOH for 3 h to
produce the target compounds in good to moderate yields. The structure of the synthesized
spiro-compounds was confirmed through spectroscopic analyses. For instance, the IR
spectrum for (3a) showed specific signals for the functional groups such as 3436 cm−1 for
NH and 1729 cm−1 and 1690 cm−1 for the two carbonyl groups (C=O). The 1H-NMR data
for compound (3a) confirm its structure; the peaks at δ 12.94 and 10.12 ppm refer to NH
in benzimidazole and isatin, respectively, in the region of 8.11 until 6.55 ppm related to
aromatic protons; the one at δ 3.72 ppm belongs to the methoxy group, while those from
5.06 to 0.66 ppm indicate the aliphatic protons. The 13C-NMR spectrum also supports the
proposed structure. The two peaks at δ 198.41 and 179.79 ppm were assigned to carbonyl
groups (C=O), and a spiro-carbon peak appears at δ 71.38 ppm, while all other peaks for
carbons are observed in their expected region.

3.2. MEDT Study of the 32CA Reaction between AY 7 and Ethylene 3j

In order to understand the experimental outcomes, the 32CA reaction between AY 7
and ethylene 3j is theoretically studied in this section within the MEDT [41].
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3.2.1. Analysis of Conceptual DFT (CDFT) Reactivity Indicators

The reactivity indicators defined within the CDFT [53,54] have demonstrated to be
useful tools to predict and understand reactivity in polar reactions [58]. The global reactivity
indices, namely, the electronic chemical potential µ, chemical hardness η, electrophilicityω,
and nucleophilicity N, for AY 7 and ethylene 3j are gathered in Table 1.

Table 1. ωB97X-D/6-311G (d,p) electronic chemical potential µ, chemical hardness η, electrophilicity
ω, and nucleophilicity N indices, in eV, of AY 7 and ethylene 3j.

µ η ω N

Ethylene 3j −4.41 7.11 1.36 3.43
AY 7 −3.15 6.96 0.71 4.77

The electronic chemical potential µ [59] of AY 7, µ = −3.15 eV, is higher than that of
ethylene 3j, µ = −4.41 eV, indicating that in a polar 32CA reaction, the GEDT [50] will take
place from AY 7, acting as a nucleophile, to ethylene 3j, acting as an electrophile. Thus, the
studied 32CA reaction is classified as of a forward electron density flux (FEDF) [60].

AY 7 has an electrophilicity ω index [61] of 0.71 eV, which allows for classifying it as a
moderate electrophile based on the electrophilicity scale [54,62], and a nucleophilicity N
index [63] of 4.77 eV, which allows for categorizing it as a strong nucleophile based on the
nucleophilicity scale [54,62]. The very strong nucleophilic character of AY 7, higher than
4.0 eV, indicates that it is a supernucleophile [58,62]. On the other hand, ethylene 3j has
electrophilicityω and nucleophilicity N indices of 1.36 and 3.43 eV, respectively, thus being
classified as a strong electrophile and as a moderate nucleophile.

The supernucleophilic character of AY 7 together with the strong electrophilic character
of ethylene 3j suggest that the present 32CA reaction of FEDF will be highly polar [58],
which is known to enhance reaction rates.

3.2.2. Study of the Competitive Reaction Paths

Owing to the non-symmetry of the reagents, the 32CA reaction between AY 7 and
ethylene 3j can take place along two ortho/meta-regioisomeric reaction paths and two
endo/exo-stereoisomeric paths (see Scheme 2). Note that as the octahydroindole substituent
of AY 7 hinders one of its two diastereoisomeric faces, only the less hindered approach has
been studied. The Gibbs free energy profiles corresponding to the four competitive reaction
paths are represented in Figure 1, while full thermodynamic data are given in Table S1 in
the Supplementary Material.

The stationary points located in the four reaction paths show that this 32CA reaction
follows a one-step mechanism. For each channel, a molecular complex (MC) strongly
stabilized by weak intermolecular interactions between the two reagents was found. Given
the thermodynamic equilibrium between them, only the most stable one, MC-on, was
considered the energy reference to obtain relative energies. Formation of this MC is
exergonic by 5.3 kcal·mol−1 (see Figure 2). Considering the presence of MC-on, the acti-
vation Gibbs free energies of the selected isomeric paths range between 15.0 (TS-on) and
19.4 (TS-mx) kcal·mol−1, while reaction Gibbs free energies are found between −17.8 (10j)
and −23.9 (6j) kcal·mol−1. The high exergonic characteristic of the reaction indicates that it
is irreversible under the experimental conditions and, therefore, the product of a kinetic
control will be obtained. In this sense, the Eyring–Polanyi kinetics equation [64] yields a
product percentage relation of 97 (6j):0.7 (8j):2.2 (9j):0.1 (10j), indicating that the reaction is
completely ortho/endo-selective via TS-on, leading to 6j exclusively. These results are fully
consistent with the experimental data.
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tances of 2.068 and 2.731 Å, respectively, is the most asynchronous one. An analysis of the 
intrinsic reaction coordinate (IRC) path [65] from the highly asynchronous TS-on towards 
CA-on indicates that the formation of the second C1–C5 single bond begins when the first 
C3–C4 single bond is completely formed (see Figure S1 in Supplementary Material). Con-
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AY 7 with ethylene 3j in methanol at 60 ◦C.

The optimized geometries of the four TSs in methanol are displayed in Figure 2.
The C3(1)–C4 and C1(3)–C5 distances at the four TSs indicate that, except for the most
unfavorable TS-mx, the other three TSs correspond to asynchronous C–C single bond
formation processes in which the shorter C–C distance involves the most electrophilic
β-conjugated C4 carbon of ethylene 3j. The most favorable TS-on, with C3–C4 and C1–C5
distances of 2.068 and 2.731 Å, respectively, is the most asynchronous one. An analysis
of the intrinsic reaction coordinate (IRC) path [65] from the highly asynchronous TS-on
towards CA-on indicates that the formation of the second C1–C5 single bond begins when
the first C3–C4 single bond is completely formed (see Figure S1 in Supplementary Material).
Consequently, the present 32CA reaction takes place through a non-concerted two-stage
one-step mechanism [66].



Crystals 2023, 13, 1085 10 of 13

Crystals 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

-25

-20

-15

-10

-5

0

5

10

15

7 + 3j MC-on
5.3

TS-mx 
14.2

TS-on 
9.8

TS-ox 13.1
TS-mn 12.3

10j 
17.8

6j 
23.9

8j 19.6
9j 19.7

G

 
Figure 1. ωB97X-D/6-311G (d,p) Gibbs free energy profile, in kcal·mol–1, for the 32CA reaction of AY 
7 with ethylene 3j in methanol at 60 °C. 

The optimized geometries of the four TSs in methanol are displayed in Figure 2. The 
C3(1)–C4 and C1(3)–C5 distances at the four TSs indicate that, except for the most unfa-
vorable TS-mx, the other three TSs correspond to asynchronous C–C single bond for-
mation processes in which the shorter C–C distance involves the most electrophilic β-con-
jugated C4 carbon of ethylene 3j. The most favorable TS-on, with C3–C4 and C1–C5 dis-
tances of 2.068 and 2.731 Å, respectively, is the most asynchronous one. An analysis of the 
intrinsic reaction coordinate (IRC) path [65] from the highly asynchronous TS-on towards 
CA-on indicates that the formation of the second C1–C5 single bond begins when the first 
C3–C4 single bond is completely formed (see Figure S1 in Supplementary Material). Con-
sequently, the present 32CA reaction takes place through a non-concerted two-stage one-
step mechanism [66]. 

 
Figure 2. ωB97X-D/6-311G (d,p) optimized geometries in methanol of the TSs involved in the 32CA 
reaction of AY 7 with ethylene 3j. Distances are expressed in angstroms, Å, while GEDT values, in 
red, are given in average number of electrons, e. 

Finally, an analysis of GEDT [50] at the most favorable TS-on allows quantifying the 
polar characteristic of this 32CA reaction. GEDT values lower than 0.05 e correspond to 

Figure 2. ωB97X-D/6-311G (d,p) optimized geometries in methanol of the TSs involved in the 32CA
reaction of AY 7 with ethylene 3j. Distances are expressed in angstroms, Å, while GEDT values, in
red, are given in average number of electrons, e.

Finally, an analysis of GEDT [50] at the most favorable TS-on allows quantifying the
polar characteristic of this 32CA reaction. GEDT values lower than 0.05 e correspond to
non-polar processes, while values higher than 0.20 e characterize polar processes. The
GEDT values at the four TSs are given in Figure 2. The GEDT at TS-on is 0.26 e. This
high value, which is a consequence of the supernucleophilic character of AY 7 and the
strong electrophilic character of ethylene 3j (see Table 1), corroborates the highly polar
character of this 32CA reaction, which accounts for its low activation Gibbs free energy of
15.0 kcal·mol−1 via TS-on. The direction of the flux of the electron density, from AY 7 to
ethylene 3j, consolidates the classification of this 32CA reaction as FEDF [60], as predicted
with the analysis of the CDFT indicators.

4. Conclusions

A new series of spirooxindoles based on benzimidazole with a pyridine spacer was
synthesized in a high yield via a 32CA reaction approach using a wide range of reagents
with varying substitutions. The desired compounds were obtained with full regio- and
stereoselectivity, as confirmed by the Molecular Electronic Density Theory (MEDT) study
of the 32CA reaction, with reagents containing the simplest substitution (R = H) as a case
study reference.

The activation Gibbs free energy of the reaction via the most favorable TS-on is
15.0 kcal·mol−1—the reaction being strongly exergonic with 23.9 kcal·mol−1. The MEDT
study accounts for the total ortho/endo-selectivity, as TS-on is 3.3 and 2.5 kcal·mol−1 lower
in energy than the corresponding exo- and meta-TSs, respectively. No diastereoisomer of
the final products is detected, due to the presence of the octahydroindole substituent at
AY 7, which hinders one of its two diastereoisomeric faces. The low energy barrier of the
wide range of reactions reported herein is the result of the supernucleophilic character of the
reactive AY 7 generated in situ and the strong electrophilic character of the α,β-unsaturated
carbonyl compounds, which render these 32CA reactions of FEDF highly polar. This favors
bond formation through a non-concerted two-stage one-step mechanism in which the first
single bond formation involves the hexahydroindole carbon of AY 7 and the β-conjugated
carbon of ethylene derivative 3j.
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Given the well-known pharmacological applications of spirocyclic compounds, the
new products reported herein could be useful for drug discovery application, which will
be considered in the near future by our research group.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13071085/s1, IUPAC name for the spiro-oxindole derivatives;
Table S1: Full thermodynamic data. Figure S1: IRC of the most favorable endo/exo-reaction path via
TS-on. Cartesian coordinates, electronic energies, and imaginary frequencies of the stationary points
involved in the 32CA reaction of AY 7 with ethylene derivative 3j.
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