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Abstract: The aim of this work was to scrutinize the physiochemical properties of a new pyridazin-
3(2H)-one derivative with potential pharmaceutical effectiveness via density functional theory (DFT)
and molecular docking analysis. The compound 2-(2-(4-fluorophenyl)-2-oxoethyl)-6-methyl-5-(4-
methylbenzyl)pyridazin-3(2H)-one (FOMMP) was synthesized and characterized by FT-IR, UV-Vis,
1H-NMR, 13C-NMR, ESI-MS, and single-crystal XRD analysis. In addition, the geometrical structure
of the molecule was analyzed. Frontier molecular orbital (FMO) analysis showed a low energy gap
that suggests the chemical reactivity of the title compound. The electrophilicity index (ω) points
towards the probable biological activity of FOMMP. The molecular electrostatic potential (MEP)
was used to assess the local reactivity properties and suggests that the nitrogen atom sites are
electronegative. Computational and experimental UV-spectral analyses were performed to attain the
bandgap associated with electronic transitions while the charge transfer length helped us determine
that the excitation mode associated with the electronic transitions is long-ranged. Natural hybrid
orbital (NHO) and natural bond orbital (NBO) analyses depicted the prominent acceptor-donor
interactions in terms of the stabilization energies. Hirshfeld surface analysis was performed to
analyze the intermolecular interactions in the crystal structure. In addition, a molecular docking
study was executed to evaluate the potential of the protease inhibitors (PIs) against SARS-CoV-2.

Keywords: pyridazinone; crystal structure; DFT; SARS-CoV-2; molecular docking

1. Introduction

Heterocyclic compounds, in particular pyridazine derivatives, have attracted great
interest from researchers for many years due to their wide range of biological and phar-
macological properties, including antiviral [1,2], antimicrobial [3,4], antitubercular [5],
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analgesic and anti-inflammatory [6,7], anticancer [8], anti-HIV [9], anti-Alzheimer [10],
antihypertensive [11], anticonvulsant [12], and antileishmanial activities [13]. Thus, several
pyridazinone derivatives have been commercialized as agrochemical agents, such as her-
bicides, fungicides, and insecticides [14–17]. On the other hand, in order to examine the
influence of different substituents on the structures and to reveal the relationship of these
groups with their biological properties, the determinations of the geometrical and structural
properties of these derivatives have become essential. Recently, DFT calculations have
become a very important and commonly used tool in developing a relationship between
experimental and theoretical data by providing evidence related to molecular geometry,
electrical and spectroscopic properties, and also in predicting the properties of molecules
with a high accuracy [18–25]. In the present study, new pyridazinone compound, i.e., 2-(2-
(4-fluorophenyl)-2-oxoethyl)-6-methyl-5-(4-methylbenzyl)pyridazin-3(2H)-one (FOMMP),
was prepared and identified using FT-IR, UV-Vis, 1H-NMR, 13C-NMR, and mass spectrom-
etry (Scheme 1), and the molecular structure of FOMMP was confirmed by single-crystal
XRD analysis. In addition, the geometrical structure, FMO analysis, electrophilicity index
(ω), and MEP, NBO, and NHO analyses of FOMMP were carried out using the DFT/B3LYP
method with a 6-311++ G (d,p) basis set. In addition, a docking study was performed to
explore the potential of the studied molecules against the SARS-CoV-2 disease through the
study of their binding modes to the active site of protein 5R82.
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Scheme 1. Synthetic route for the preparation of FOMMP.

2. Materials and Methods
2.1. Materials and Instruments

Reactions were checked with TLC using aluminum sheets with silica gel 60 F254
(Merck, Darmstadt, Germany). Melting points were measured using a Buchi-Tottoli appa-
ratus (Flawil, Switzerland). The FT-IR spectrum was recorded with Perkin-Elmer Fourier
Transformer FT Pargamon 1000 PC Spectrophotometer (400–4000 cm−1) (Shelton, CT, USA).
1H and 13C NMR spectra were recorded in CDCl3 on a Bruker spectrometer (Switzerland).
Mass spectra were collected using the API 3200 LC/MS/MS system (Framingham, MA,
USA), equipped with an ESI source.

2.2. Synthesis Procedure for the Preparation of FOMMP

The FOMMP compound was synthesized following the reported procedure [26–29].
To a mixture of pyridazinone (1) (3 mmol) in 20 mL of THF, potassium carbonate (9 mmol)
and 10% of tetrabutylammonium bromide (TBAB) were added as catalyst. The reaction
mixture was refluxed for 1 h. After cooling, 2-bromo-1-(4-fluorophenyl)ethan-1-one (2)
(3.2 mmol) was added dropwise and the mixture was refluxed for 6 h. The reaction mixture
was filtered, the solvent was removed, and the residue was purified by chromatography on
a silica column (Eluent: ethyl acetate/hexane: 5/5) to give the product (FOMMP). Yellow
crystals produced the following yield = 67%, mp = 154–156 ◦C; 1H NMR (300 MHz, CDCl3,
δ (ppm)): 1.48 (s, 3H, CH3); 2.19 (s, 3H, CH3); 3.72 (s, 2H, -CH2-), 5.54 (s, 2H, –CH2CO);
6.55 (s, 1H, H-pyridazinone); 7.10-8.25 (m, 8H, H–Ar). 13C NMR (75 MHz, CDCl3) δ, ppm:
19.29; 21.20; 38.34; 57.62; 77.71; 128.61; 128.92; 129.02; 129.61; 129.86; 129.92; 130.50; 133.37;
134.67; 135.74; 137.75; 146.29; 147.52; 161.68, 193.22. MS-ESI+: m/z = 351.2 [M+H]+, 373.0
[M+Na]+.
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2.3. X-ray Analysis

X-ray data collection and structure refinement were conducted according to the lit-
erature [30–33]. A summary of the cell parameters, data collection, solution structures,
and the refinement of the crystal structure are provided in Table 1. The corresponding
crystallographic data were deposited with the Cambridge Crystallographic Data Centre as
supplementary publications. CCDC 1960994.

2.4. Computational Details

DFT calculations were performed using the Gaussian 09W software, and physicochem-
ical calculations were performed using the B3LYP method with the 6-311++ G (d,p) basis
set [34,35]. Initial geometric optimization was carried out to find the minimum energy
configuration of the compound. The wave function and energy were calculated at the
starting geometry and then we proceeded until the lowest energy was found. The absence
of imaginary frequencies points towards the attainment of an energy minimum. The elec-
tron localization function was used to study the chemical bonding between the atoms of
FOMMP. The orbital contribution in terms of the density of states was analyzed using
the GaussSum software [36]. TD-DFT in DMSO solution was considered to analyze the
electronic absorption spectrum of the title molecule. Transfer of charges within the molecule
was explored with the Multiwfn 3.4.1 program: a wave function analyzer software. The
NBO and NHO analysis helped comprehend the intra- and intermolecular hydrogen bond-
ing, intermolecular charge transfer, and delocalization of the electron density of FOMMP.
An insight into the reactivity of FOMMP was studied in terms of the calculated hardness
(η) values while an important CDFT parameter electrophilicity index (ω) was analyzed to
obtain information about the probable biological activity. MEP analysis was employed to
address the local reactivity properties of the compound. The Maestro program [37], also
implemented in Schrödinger Materials Science Suite 2018-1, was used for the preparation of
input files, the visualization of the results, and the calculation of drug-likeness parameters.
The optimized structure was docked using AutoDock Tools (ADT) Version 1.5.6 [38].

3. Results
3.1. Description of Crystal Structure

Figure 1a shows the asymmetric unit of FOMMP and Table 1 summarizes the crystal
data and structure refinement. There is one independent molecule in the asymmetric
unit. In this crystal, FOMMP is not planar, the C1–C6 fluorophenyl ring is inclined to the
pyridazin ring by 87.0(2)◦, while the methylbenzyl and pyridazin rings are twisted for each
other, making a dihedral angle of 89.8(2)◦. The molecular structure is stabilized by the
intermolecular C10–H10···O2 and C13–H13B···F1 hydrogen bonds (Figure 1b and Table 2).
In the crystal, molecules are linked by a pair of C13–H13B···F1 hydrogen bonds forming
inversion dimers. The dimers are linked by C10–H10···O2 hydrogen bonds forming chains
along the b-axis direction. In the molecule, the C7–O1 and C9–O2 bond distances are
essentially equivalent, i.e., 1.210(7) Å and 1.238(7) Å, respectively. These bond lengths are
typical of double bonds.
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Figure 1. (a) Molecular structure of FOMMP. (b) A partial view of the crystal packing of FOMMP
along the b-axis direction. Blue dashed lines denote the intermolecular C–H···F hydrogen bonds and
green ones denote C–H···O hydrogen bonds.

Table 1. Crystallographic and refinement data for FOMMP.

CCDC Deposition Number CCDC 1960994

Chemical formula C21H19FN2O2
Mr 350.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.7166 (15), 5.0232 (4), 27.016 (3)
β (◦) 103.413 (8)
V (Å3) 1810.6 (3)
Z 4
Radiation type Mo Kα
µ (mm−1) 0.09
Crystal size (mm) 0.78 × 0.34 × 0.05

Data collection
Diffractometer STOE IPDS 2
Absorption correction Intergration (X-RED32 [39])
Tmin, Tmax 0.980, 0.993
No. of measured, independent, and
observed [I > 2σ(I)] reflections 10,673, 3174, 1320

Rint 0.084
(sin θ/λ)max (Å−1) 0.596

Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.334, 1.02
No. of reflections 3174
No. of parameters 236
H-atom treatment H-atom parameters constrained
∆ρmax, ∆ρmin (e Å−3) 0.21, −0.29
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Table 2. Hydrogen bond geometry (Å, ◦) for FOMMP.

D–H···A D–H H···A D···A

C10–H10···O2 i 0.93 2.59 3.496(8)
C8–H8A···O1 ii 0.97 2.62 3.543(9)
C13–H13B···F1 iii 0.96 2.46 3.357(6)

Symmetry codes: (i) −x + 1, y−1/2, −z + 3/2; (ii) x, y + 1, z; (iii) −x + 1, −y + 1, −z + 1.

3.2. Optimized Molecular Geometry

Figure 2 shows the optimized structure and the atom numbering of the title compound.
The structure used in all subsequent analyses takes the optimized structure of this molecule
into account. Let the ring systems C9–C10–C11–C12–C13–C14 and C20–C21–C22–C23–C24–
C25 be designated as ring I and II, respectively. C–C bond lengths in benzene rings were
observed to be 1.42 Å for ring I and in ring II. The presence of fluorine in the carbon skeleton
of ring I caused a slight deviation in the C–C bond distance from the regular expected
value, which is 1.393 ± 0.02 Å [40–42]. H–C–H angles varied between 108.8–110.8◦. Angle
C1–N6–C17 = 119.2◦, which falls in an expected range of 119◦ [42] such that the asymmetry
observed was due to interactions between C and N–H groups. Slight aberrations from the
literature values can be attributed to the variations due to the least-square refinements and
inverse overlap [43,44].
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3.3. FT-IR Spectra Analysis

The vibrational spectral analysis of FOMMP was performed on the basis of the exper-
imentally obtained FT-IR spectrum (Figure 3). In general, multiple bands are displayed
in the spectral range 3100–3000 cm−1 by aromatic C-H stretching vibrations [45–50]. For
FOMMP, the vibration bands observed between 2856 and 3083 cm−1 were attributed to
the stretching modes of five CH groups in 4-methylbenzyl, 4-fluorobenzyl, and pyridazi-
none rings, in addition to two CH2 bonds and one CH3 bond. C–H in-plane deformation
vibrations are generally observed as medium to weak bands in the 1300–1000 cm−1 re-
gion [45–48]. The C–H in-plane deformation vibration of the title compound was observed
between 1017 and 1291 cm−1. C–H out-of-plane deformations were reported in the region
600–900 cm−1 [45–48]. The C–H out-of-plane deformation vibration for FOMMP was
observed at 840, 810, 731, 634, and 593 cm−1 with weak intensity [45–48]. The carbonyl
(C=O) stretching vibrations appeared generally in the region 1600–1800 cm−1, which is
one of the most representative and intense bands in an infrared spectrum [45–48]. Daoui
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et al. [46] and El Kalai et al. [47] reported the C=O stretching vibration in the pyridazinone
ring at 1652 cm−1 and 1653 cm−1, respectively. The ν(C=O) vibration of the title compound
was observed at 1650 cm−1. On the other hand, the band at 1599 cm−1 was attributed
to C=N stretching vibration in the pyridazinone ring. This mode was reported at 1604
and 1606 cm−1 [48,49]. C=C stretching vibrations were attributed to bands in the interval
in the region 1430–1625 cm−1 [45]. The C=C vibrations of the aromatic rings of the title
compound were observed at 1552, 1509, 1460, and 1427 cm−1.
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3.4. NMR Spectra Analysis

The experimental 1H and 13C NMR spectra of FOMMP were obtained using DMSO-d6
as a solvent (Figures S1 and S2 in Supplementary Materials). The proton NMR spectrum of
FOMMP showed two singlets at δ = 2.28 and 2.37 ppm, which are characteristic of two CH3
groups, and the two CH2 groups resonate at δ = 3.79 and 5.57 ppm as two singlets. The
H-4 proton of pyridazinone resonates at δ = 6.58 ppm as a singlet. The aromatic protons
resonate as multiplets in the range δ = 7.03–8.07 ppm.

For carbon NMR spectrum, the signals at 193.22 and 161.68 ppm were attributed to
two carbonyls (C=O). The C3, C4, and C5 carbons of the pyridazinone ring resonate at
146.29, 137.75, and 135.74 ppm. The signal at 147.52 ppm was assigned to the C–F group,
and the aromatics carbon of FOMMP appeared in the range of 134.67–127.81 ppm. The
signals at 38.34 and 57.62 ppm were attributed to two CH2 groups and the signals at 19.29
and 21.20 ppm were attributed to two CH3 groups.
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3.5. ESI-MS Study

The ESI-MS spectrum of FOMMP displayed molecular ion peaks with m/z values
of 351.2 and 373.0, corresponding to the molecular weights of [M+H]+ and [M+Na]+,
respectively (Figure S3 in Supplementary Materials). These values are in good agreement
with the proposed composition for FOMMP (C21H19FN2O2).

3.6. Hirshfeld Surface Analysis

In this study, the contributions of different intermolecular interactions to the crystal
structure were investigated using Hirshfeld surface (HS) analysis. Figure 4 illustrates the
Hirshfeld surface of FOMMP with mapped dnorm. The red spots on the HS indicate the
intercontacts included in the intermolecular interactions [51–53]. Areas where neighboring
atoms are too far apart to interact with each other are indicated by blue fields.
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The surfaces of 3D dnorm were plotted over a fixed color scale of −0.1843 (red) to
1.4882 (blue) with a standard (high) surface resolution. In Figure 4, the red circular col-
lapsing on the dnorm surface of the FOMMP structure represents the C–H···O and C–H···F
intermolecular interactions. The 2D fingerprint of the total contacts in HS is illustrated
in Figure 5. The major contributions to the total HS are H···H interactions with 44.3%,
which illustrates the 2D fingerprint of the (di, de) points related with H atoms in Figure 5.
In Figure 5, two symmetrical wings on the left and right sides (21.9%) are shown on the
graph of C···H/H···C interactions. In addition, there are O···H/H···O (15%), F···H/H···F
(10.5%), and N···H/H···N (3.6%) contacts.
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3.7. Frontier Molecular Orbitals (FMOs) Analysis

FMO analysis is suitable to attain details on the reactivity and stability associated
with the title compound [54,55]. HOMO, LUMO energies, and the energy gap were −6.19,
−1.863, and 4.327 eV, respectively, and are represented in Figure 6. The calculated energy
values of FOMMP are seen in Table 3. A considerably low energy gap suggests chemical
reactivity associated with FOMMP [56]. A hardness η of 2.164 eV defines the degree of
resistance to the distortion in electronic configuration [57,58] in the molecule while an
electronegativity χ calculated to be 4.027 eV explicates the affinity of the selected molecule
towards electrons [59]. Compared with the available literature [60,61], it can, thus, be
concluded that the η value in this molecule demonstrates that it is not a very hard molecule.
This, in turn, is associated with greater reactivity due to an amplified sensitivity towards
the transfer of charges [62]. In addition, the electrophilicity index ω (3.747 eV) falls in
a region that suggests the title molecule is biologically active [63]. These reactivity and
bioactivity descriptors behave as a precursor in scrutinizing the title compound further for
its biological activity in terms of molecular docking.
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Figure 6. Frontier molecular orbital depiction of FOMMP.

Table 3. Calculated energy values of FOMMP.

Molecular Properties EHOMO ELOMO EHOMO−1 ELUMO+1 EHUMO−2 ELUMO+2

Energy (eV) −6.19 −1.863 6.460 1.777 6.701 1.163
Energy Gap (eV) 4.327 4.683 5.538
Ionization Potential (I) 6.190 6.460 6.701
Electron Affinity (A) 1.863 1.777 1.162
Global Hardness (η) 2.164 2.341 2.770
Electro negativity (χ) 4.027 4.118 3.932
Global Softness (σ) 0.231 0.214 0.181
Chemical Potential (µ) −4.027 −4.118 −3.932
Global Electrophilicity (ω) 3.747 3.621 2.792
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The DOS spectrum as seen in Figure 7 depicts the available states to be occupied by
electrons for an energy range of −20 to 20 eV. The maximum number of states available to
be occupied by electrons in the positive and negative domains corresponds to ≈11.5 eV
and 3.5 eV along the negative and positive axes, respectively.
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3.7.1. Charge Transfer and Excitation Analysis

Details about D, S, and the excitation energy of the first three excited states: S1, S2,
and S3, are presented in Table 4, while the electron–hole (represented by green–blue,
respectively) distribution is represented in Figure 8. The value of ∆r, which is the numerical
gauge of the electron excitation mode [64] in the title molecule, was greater than 2 Å.
This suggests that the molecule exhibits long-range excitations corresponding to all three
excitation states. From Table 4, it can be seen that the largest value of D and the smallest
value of S is for S1, thereby indicating a greater CT length. In all three excited states, the
electron and hole distribution observed in terms of the RSMD of the electron and hole
values was maximum along the X direction (refer Table 4). The extent of separation between
holes and electrons represented by the t-index suggests that, if the ‘t’ value along any one
direction is greater than zero, then sufficient spatial separation is present between holes
and electrons [64]. In this molecule, the ‘t’ index was detected to be greater than zero along
the X direction, thus indicating a hole–electron spatial separation. This observation was in
concurrence with data attained in terms of D and S values. On visualizing the hole–electron
spatial separations, all three states can be seen to show significant spatial separation (refer
to Figure 7).

Absorption based on the first three excited states: S1, S2, and S3, in the solvent phase is
summarized in Table 5, which helped in identifying the regions that are most responsible for
excitations within the title molecule. The theoretically obtained UV spectrum in the solvent
phase (DMSO) is shown in Figure 9. The excitation mode with the maximum absorption
wavelength (λmax = 359.45 nm) was found to have oscillator strength (f = 0.0294).
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Table 4. Overlap integral, charge transfer length, ∆r, and excitation energy for different excited states
of FOMMP.

Parameter
Excited States

S1 S2 S3

Overlap integral of electron–hole, S 0.02 0.08 0.08
Charge transfer length, D (Å) 11.09 6.00 8.16

Excitation energy, ∆E (eV) 3.45 3.72 3.93

RMSD of electron

X 1.4 2.613 2.20
Y 1.33 1.30 1.34
Z 0.86 1.02 0.91

RMSD of hole

X 2.52 2.03 3.08
Y 0.98 0.99 1.25
Z 0.78 0.83 1.00

t index

X 9.131 3.61 5.52
Y −1.09 −0.65 −1.22
Z −0.67 −0.15 −0.94
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The transition from HOMO to LUMO present in S1 has a bandgap of 3.452 eV in the
solvent (DMSO) phase with a contribution of 77%. In the lower oscillator strength state,
i.e., S2, details of transitions from HOMO to LUMO+1 and HOMO−2 to LUMO+1 are
depicted with contributions of 31% and 54%, respectively. In S3, transitions from HOMO−2
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to LUMO were seen to have a contribution of 53%, while HOMO−1 to LUMO showed a
30% contribution.

Table 5. Electronic properties of FOMMP at solvent phase.

Excited States Band Gap (eV) Wavelength (nm) Energy (cm−1) Osc. Strength

1 3.452 359.445 27,820.67 0.029
2 3.719 333.629 29,973.38 0.021
3 3.937 315.142 31,731.68 0.010
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3.7.2. Natural Bond Orbital Analysis

The stabilization energies (E2) of the donor–acceptor interactions of the title compound
FOMMP were studied (Table S1 in Supplementary Materials). The following transitions
showed significantly high stabilization energies and are, thus, responsible for the stabiliza-
tion of the structure:

• π (C9–C10) transition to π* (C11–C12) and π* (C13–C14) has stabilization energies of
18.36 and 19.08 kJ/mol, respectively;

• π (C11–C12) transition to π* (C9–C10) and π* (C13–C14) has stabilization energies of
20.39 and 18.68 kJ/mol, respectively;

• π (C13–C14) transition to π* (C9–C10) and π* (C13–C14) has stabilization energies of
20.41 and 21.05 kJ/mol, respectively;

• π (C20–C21) transition to π* (C22–C23) and π* (C24–C25) has stabilization energies of
18.35 and 20.27 kJ/mol, respectively;

• π (C22–C23) transition to π* (C20–C21) and π* (C24–C25) has stabilization energies of
20.48 and 16.09 kJ/mol, respectively;

• π (C24–C25) transition to π* (C20–C21) and π* (C22–C23) has stabilization energies of
17.83 and 23.12 kJ/mol, respectively.

The aforementioned transitions with high stabilization energies correspond to only six
pairs of orbitals, namely, (C9–C10), (C11–C12), and (C13–C14), and (C20–C21), (C22–C23),
and (C24–C25), which form the ring structures I and II, respectively. These values predict
that FOMMP has intensive donor–acceptor interactions within the ring structure. A few
prominently observed lone pair (LP) transitions are associated with the following:

• LP(1) N5 transition to σ* (C3–C4) with stabilization energy of 10.64 kJ/mol;
• LP(1) N6 transition to π* (C1–O7) and π* (C4–N5)with stabilization energy of 29.65

and 22.18 kJ/mol, respectively;
• LP(2) O7 transition to σ* (C1–C2) and σ* (C1–N6)with stabilization energy of 20.05

and 27.22 kJ/mol, respectively;
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• LP(2) O19 transition to σ* (C17–C18) and σ* (C18–C20) with stabilization energy of 23
and 20.82 kJ/mol, respectively;

• LP(2) F26 transition to σ* (C22–C23) and σ* (C23–C24) with stabilization energy of
7.22 and 7.15 kJ/mol, respectively;

• LP(3) F26 transition to π* (C22–C23)with stabilization energy of 21.7 kJ/mol.

Besides analyzing the natural hybrid orbitals of the title molecule, it can be seen that, in
bond orbitals corresponding to π (C9–C10), π (C11–C12), and π (C13–C14), and π (C20–C21),
π (C22–C23), and π (C24–C25), which form the ring structures I and II, respectively, the
bond hybrids have a near 100% p-character. In addition, orbitals π* (C9–C10), π* (C11–C12),
π* (C13–C14), and π* (C20–C21), π* (C22–C23), and π* (C24–C25) have a near 100% p-
character. Thus, transitions between the π to π* orbitals of these bonds present in the ring
system are mainly defined by the p orbital-character (Table S2 in Supplementary Materials).

3.7.3. Electron Localization Function (ELF)

The ELF values can be characterized using the 2D representation shown in Figure 10.
The regions represented in red are the regions of space where the probability of finding
a single electron or opposite spin pair behavior is strong, with an ELF value close to 1,
while the regions represented in blue are the regions where Pauli repulsion is minimal,
with an ELF value close to 0. It was observed that high-value ELF (represented by the red
region) occurs for the lighter hydrogen atoms in the ring system and the side chain [65]. By
examining the ELF values of nitrogen, the blue areas represent the regions with the lowest
values. The carbon atoms also had very low ELF values. The red region represents the
location of the electrons in the carbon–carbon bonds in comparison to the electrons in the
carbon–hydrogen bonds represented by the green region (Figure 10). The carbon–nitrogen
bonds in the structure depicted localization characterized by substantial red regions.
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3.7.4. Molecular Electrostatic Potential Analysis

Site selectivity and reactivity analyses in terms of electrophilic and nucleophilic re-
gions were conducted based on the 3D surfaces of MEP. This graphical representation
reveals a repulsion region or a region of positive potential in blue, and the region of the
negative potential of the title compound in red [66]. The red areas indicate electron-rich
regions with negative values of the electrostatic potential. In the case of FOMMP, the
most electronegative area is composed of nitrogen and oxygen atoms. The blue tones
represent electron deficiency, which was observed in benzene ring I and II of the compound.
The hydrogen and carbon atoms (focusing on areas of carbon) showed an area of higher
electropositive behavior (Figure 11).
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3.7.5. Molecular Docking and Drug-Likeness Studies

Calculating the drug-likeness parameters for a molecule helps identify its oral bioavail-
ability and absorption rates. For drug candidates, the initial classification must take into
account the famous Lipinski rule [67,68]. The AlogP in the case of the FOMMP represented
in Table 6 is equal to 4.01, which is lower than the threshold of 5. This parameter helps
indicate the lipophilicity/hydrophobicity of the title molecule, which suggests that FOMMP
could be considered as a leading drug candidate. Other conditions were also satisfied, such
as HBA and HBD, which must be 10 and 5, respectively. According to Ghose et al. [69], the
PSA was lower than 140 Å2, molar refractivity was within the range of 40 and 130, and
the number of rotatable bonds was also within the required range, further underlining the
pharmaceutical potential of FOMMP.

Table 6. Drug-likeness parameters of FOMMP.

Descriptor Values

Hydrogen bond donor (HBD) 4
Hydrogen bond acceptor (HBA) 0
AlogP 4.01
Polar surface area (PSA) [Å2] 51.96
Molar refractivity 98.82
Number of rotatable bonds 5

Docking aids in identifying the highest energy of the binding site of a ligand to its
receptor in relation to the binding energy. The aim of this docking study was to determine
the interaction modes of the title ligand (FOMMP) with the protein 5R82, i.e., SARS-CoV-
2’s main protease with a cocrystallized structure, and thus investigate its potential as an
antiviral drug [70].

The AutoDock software implements the Lamarckian genetic algorithm (LGA). The
AGL is powerful because it adds local minimization to the genetic algorithm and, thus,
allows the gene population to be modified. The binding free energy of the best conformation
was estimated at −4.90 kcal/mol, and Table 7 shows the binding residues. The interaction
modes diagram of the title ligand with the target receptor is shown in Figure 12 [71]. The
ligand was embedded in the active site of the selected protein, and from the binding
energy, we found that the ligand can bind easily with the desired protein to produce a
postbinding effect.
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Table 7. Hydrogen bonding and molecular docking of FOMMP with 5R82 protein target.

Ligand Protein PDB ID Binding Amino
Acid Residues Bond Distance (Å)

Binding Energy
(kcal/mol)

Inhibition
Constants (uM)

FOMMP 5R82 Arg217(A) 2.99 −4.90 257.64
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4. Conclusions

In summary, a new pyridazin-3(2H)-one derivative, 2-(2-(4-fluorophenyl)-2-oxoethyl)-
6-methyl-5-(4-methylbenzyl)pyridazin-3(2H)-one (FOMMP), was synthesized and char-
acterized using experimental techniques involving FT-IR, UV-Vis, 1H-NMR, 13C-NMR,
ESI-MS, and single-crystal X-ray diffraction analysis and theoretical techniques involving
DFT and molecular docking analysis. From the FMO analysis, the η value showed that it
is not a very hard molecule and, thus, is associated with greater reactivity. The ω value
in this molecule falls in a region that suggests it is biologically active. The theoretically
attained UV-spectrum in the solvent phase shows the excitation mode with a maximum ab-
sorption wavelength corresponding to 359.45 nm. According to MEP, nitrogen and oxygen
were identified as the most significant reactive centers. Transitions with high stabilization
energies correspond to orbitals (C9–C10), (C11–C12), and (C13–C14), and (C20–C21), (C22–
C23), and (C24–C25), which form the ring structures I and II, respectively. In addition, the
molecular docking results ascertained the binding relationship between the FOMMP and
protein 5R82. Thus, it was indicated that FOMMP could be exploited as an excellent target
to develop drugs against COVID-19 by targeting SARS-CoV-2’s main protease.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cryst13071098/s1, Figure S1: 1H-NMR spectrum of FOMMP; Figure S2:
13C-NMR spectrum of FOMMP; Figure S3: ESI-MS spectrum of FOMMP; Table S1: Second-order
perturbation theory analysis of Fock matrix in NBO basis of FOMMP; Table S2: Hybrid, polarization
coefficient, and atomic orbital contribution in selected natural bond orbitals of FOMMP.

Author Contributions: Conceptualization, F.E.K.; methodology, F.E.K. and C.S.A.; software, C.S.A.;
formal analysis, S.K. and N.D.; resources, A.O.; writing—original draft preparation, K.K., C.S.A. and
S.K.; visualization, S.M. and J.C.P.; writing—review and editing, K.K., H.A.A. and R.A.-S.; funding
acquisition, H.A.A. and R.A.-S.; supervision, N.B. All authors have read and agreed to the published
version of the manuscript.

https://www.mdpi.com/article/10.3390/cryst13071098/s1
https://www.mdpi.com/article/10.3390/cryst13071098/s1


Crystals 2023, 13, 1098 16 of 18

Funding: This research received funding from Researchers Supporting Project at King Saud Univer-
sity (Grant code RSPD2023R566).

Data Availability Statement: CCDC 1960994 contain the supplementary crystallographic data for
this compound, and can be obtained free of charge from the Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments: The authors extend their appreciation to the Researchers Supporting Project, King
Saud University, Riyadh, Saudi Arabia for funding this work through grant number RSPD2023R566.
This work has been supported by Ondokuz Mayıs University and Mohammed I University of Oujda.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Flefel, E.M.; Tantawy, W.A.; El-Sofany, W.I.; El-Shahat, M.; El-Sayed, A.A.; Abd-Elshafy, D.N. Synthesis of some new pyridazine

derivatives for anti-HAV evaluation. Molecules 2017, 22, 148. [CrossRef] [PubMed]
2. Li, D.; Zhan, P.; Liu, H.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Liu, X. Synthesis and biological evaluation of pyridazine

derivatives as novel HIV-1 NNRTIs. Bioorg. Med. Chem. 2013, 21, 2128–2134. [CrossRef] [PubMed]
3. Singh, B.; Bhatia, R.; Pani, B.; Gupta, D. Synthesis, crystal structures and biological evaluation of new pyridazine derivatives.

J. Mol. Struct. 2020, 1200, 127084. [CrossRef]
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