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Abstract: The citrate industry has a wide range of applications in food, pharmaceutical, and other
fields. As a common class of food additives and functional supplements with tremendous devel-
opment potential and strong core competitiveness, particles with good powder characteristics and
functionalization are becoming one of the primary directions in the evolution of citrate into the
high-end market. This article reviews the primary citrate crystallization techniques and examines the
fundamental citrate crystallization mechanisms by describing citrate nucleation and growth during
the industrial crystallization process. A variety of citrate hydrates are also summarized. The primary
control conditions of the three essential product indices of purity, particle size, and grain shape are
established. The need to take into account the density, fluidity, caking resistance, dissolution rate,
suspension, bioavailability, and other indices of products is highlighted, along with applications for
products that meet the purity and particle size requirements. While summarizing industrial citrate
crystallization equipment, this paper also discusses the beneficial effect of continuous crystallization
in achieving industrialization. Finally, the future development of citrate crystals is anticipated, and it
is suggested that the combination of basic research and application research should be strengthened
to explore the new application field of citrate crystals, and the automation and intelligence of the
crystal preparation process should be realized as far as possible.

Keywords: citrates; crystallization method; product indicators; crystallizer

1. Introduction

As a common class of food additives and functional supplements [1] in pharmaceu-
ticals [2–4], medicine [5–11], healthcare [12,13], and daily chemicals [14], the market for
citrate products has expanded to include North America, South America, Asia Pacific,
Europe, Africa, and other regions. Compared with other inorganic salts, citrate shows
superior biological compatibility for ionic supplements for human consumption, including
sodium [15–17], potassium [18–20], calcium [21–23], magnesium [24–26], and zinc [27,28].
In addition, the lead citrate precursor route, which is very famous and important for synthe-
sizing nanostructural lead oxide from spent lead-acid battery paste, is of great significance
in the recovery of waste lead-acid batteries [29,30]. Therefore, citrate has tremendously
desirable development potential and strong core competitiveness over time [31–34]. Citrate
research and commercial trends have steadily shifted toward enhancing the numerous
functional requirements of substances, including those for food, materials, reagents, etc.
In terms of product quality, particles with good powder properties and functionalization
are becoming one of the primary directions in the evolution of citrate into a high-end
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supplement [35]. For the purpose of assuring the security and efficacy of direct action on
the human body, the market is growing more demanding in terms of quality indicators
such purity, particle size, grain shape, and other factors of citrate products. On the other
hand, higher requirements are also presented by adsorption, crystallization, granulation,
process efficiency, and other post-treatment operations [36].

Citrate is commonly used in the form of multiple citrate hydrates. The majority
of citrate prepared currently by reactive crystallization or crystallization methods that
combine reaction with cooling or evaporation is needle-like powder of low stack density,
poor flowability, and poor suspension stability. Therefore, there is a pressing need to
develop an effective regulatory mechanism for the preparation of form-controlled and
shape-controlled citrate crystals [37–39]. However, precise product quality control through
quantifying variables is challenging. Essentially, the difficulty is a result of the complexity
of the crystallization, which often entails a number of steps including mixing of the raw
materials, reactions, crystal nucleation, growth, agglomeration, and fragmentation. In
particular, the pressure of effective control of the entire process has been substantially
expanded owing to the setting needs of the cooling procedure and the requirement for
modification of the evaporation temperature [35]. In general, the sensible and correct control
process of crystallization and purification is an urgent issue that needs to be addressed and
is key to the significant improvement of the properties of products.

This paper is the first review so far in the field of industrial crystallization of citrate.
To explore the research progress of the industrial crystallization of citrate and provide
references for the development of the citrate industry, we investigated the research on
citrate in the past 20 years, from 2003 to 2023. Scholars at home and abroad are currently
studying the industrial crystallization of citrate through theoretical simulation, experimen-
tal research, industrial application, and other methods, and some research results have been
obtained. However, particle properties such as shape, size, flowability, anti-caking property,
dissolving rate, etc., are some of the important factors affecting the industrial production
of citrate. Therefore, how to control the particle properties is a hot topic and a difficult
problem in the research into industrial crystallization of citrate. Future research directions
should focus on controlling the crystallization process more precisely and optimizing the
crystallization conditions so as to obtain better application in industrial practice.

2. Mechanism of Crystallization of Citrate
2.1. Main Methods for Citrate Crystallization

Crystallization is one of the critical processes for purifying solid compounds. The pri-
mary method of crystallization for creating premium citrate products has gained increasing
attention with the global trend toward high-end fine chemicals. To ensure the stability of
the crystallization process, the choice of crystallization methods is crucial. According to the
properties of crystal phase transition, solution crystallization and reactive crystallization,
including evaporation crystallization, cooling crystallization, and reactive crystallization,
are the main crystallization techniques employed in the manufacturing of citrate. The
chemical reaction is the driving force in the reactive crystallization process. To achieve
separation and purification, the differences in solubility between the constituents are key
factors. Cooling crystallization produces the driving force of crystallization by lowering
the temperature, whereas evaporative crystallization produces it by removing solvent. A
vacuum level was created by decompression techniques to strengthen the driving power of
the processes and encourage the initiation and growth of crystals during the crystallization
process [40–43]. In general, the solubility of the substance can be used to select rapidly and
conveniently the appropriate crystallization form.

The recombination reaction-coupled crystallization process is regarded as one of the
crystallization methods with great potential because of the substantial solubility differences
between zinc citrate, magnesium citrate, and calcium citrate products and reactants. While
potassium and sodium citrate have substantial solubilities and their solubilities fluctuate
greatly with temperature; the simple reaction crystallization procedure cannot provide
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enough driving power to encourage the formation of crystals. Therefore, the combination
of reactive crystallization with cooling crystallization or evaporative crystallization is a
common choice. Researchers have paid considerable attention to the reaction materials
in the citrate crystallization system due to their high potential for biocompatibility and
environmental friendliness. Especially recently, researchers have become more and more
interested in biological calcium sources, because their utilization is expected to lessen
environmental stress and address the issue of low use of biological waste shells and
bones [44–49].

In addition, the temperature has an important effect on the crystal shape because the
citrate product contains a large amount of hydrates, which directly affects the amount
of water present in it. Seham A.A.Mansour [50,51] and A.Srivastava [52] researched the
thermal analysis of citrate products to assess the decomposition of the product at various
temperatures. The optimal temperature range for the reaction crystallization process of
citrate was defined, and is listed in Table 1, according to the requirements for yield, quality,
and the actual production scale [53].

Table 1. Crystallization conditions for citrate products.

Name Crystallization
Method Raw Materials Temperature pH

Sodium citrate
Evaporation

crystallization, cooling
crystallization

Citric acid, sodium source (sodium
hydroxide and sodium carbonate) Approx 85 ◦C 7–9

Potassium citrate
Evaporation

crystallization, cooling
crystallization

Citric acid, potassium source (potassium
bicarbonate and potassium hydroxide) 70–80 ◦C 5.5–9.5

Calcium citrate Reaction crystallization

Citric acid, calcium sources (chemical
calcium sources such as calcium carbonate,

calcium hydroxide, calcium chloride,
calcium nitrate, and natural biological

calcium sources such as shells, egg shells,
shrimp head shells, cow bone, etc.)

No more than
110 ◦C 3–5

Magnesium citrate Reaction crystallization
Citric acid, magnesium source (magnesium
oxide, magnesium hydroxide, magnesium
carbonate, and magnesium bicarbonate)

60–90 ◦C 5–8

Zinc citrate Reaction crystallization Citric acid, zinc source (zinc oxide, zinc
carbonate, zinc nitrate) 40–80 ◦C 4–7

Lead citrate Cooling crystallization Citric acid, sodium citrate, lead source
(spent lead paste, lead sulfate) 35–95 ◦C <6

Reaction crystallization is a process that couples reaction and crystallization, and the
study of kinetics encompasses both reaction kinetics and crystallization kinetics. The com-
plexity of the study of the coupling process is therefore considerably enhanced. Meanwhile,
the multiple processes included in a reaction also make it more challenging to precisely
regulate the ensuing crystallization process [35]. The use of computer simulation and ma-
chine learning methods could significantly improve the predictability and controllability of
crystal growth through online, real-time observation and evaluation of the reactive crystal-
lization process. Furthermore, the effective and precise control of the reactive crystallization
process is increasingly anticipated [54,55]. To provide the driving force for crystallization,
cooling crystallization necessitates heat exchange with the cooling medium, which lowers
the temperature of the solution, and evaporative crystallization needs heat to speed up
the evaporation of water molecules. However, these operations use a lot of energy, which
remarkably raises the cost of the process. To meet market demand, the development of
eco-friendly and effective crystallization purification technology and the renewal of crystal-
lization machinery will raise increasing concerns, with the intention of decreasing energy
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consumption, shortening the crystallization cycle, and boosting crystallization efficiency
during the production of citric acid and citrate [56–59].

2.2. Formation of Citrate Hydrate

Citrate contains a large number of hydrates, and this is one of the most notable prop-
erties of citrate crystallization. Hydrates with different water contents exhibit considerable
changes in solubility, dissolution rate, appearance, and bioavailability, affecting crystal
stability, bioavailability, and efficacy. In particular, anhydrous citrate is a scarce and highly
profitable product around the world. In general, the ability of the procedure to produce a
single stable form of crystal is an inevitable requirement for product purity. On the other
hand, it also has an indirect impact on the international competitiveness of products.

The two most common hydrates of sodium citrate are dihydrate and pentahydrate.
Potassium citrate is mainly monohydrate [60]. In the fields of food processing, daily
chemical, and pharmaceuticals, raw materials such as sodium citrate and potassium cit-
rate products are required to be water-free. The transition from hydrate to anhydrous
geocrystalline form can be achieved simply by adjusting the drying temperature [61–63].

Dihydrate and trihydrate are two forms of zinc citrate hydrates. Since 2015, the
production process of dihydrate has been continuously developed in order to increase the
content of zinc citrate in the product [64]. Moreover, for the purpose of enhancing particle
uniformity and the purity of zinc citrate dihydrate crystal products, good control of the
reaction system conditions, especially pH, is critical. Some studies report that when the pH
of the reaction end point is kept within the range of 4.5–5.5, the content of zinc citrate in the
manufactured products can reach 97.0–99.8% by weight [64,65].

The forms of calcium citrate hydrate consist of monohydrate, dihydrate, trihydrate,
tetrahydrate, and hexahydrate. The characteristics between different calcium citrate forms
are varied, and are usually impacted significantly by temperature. For example, hexahy-
drate crystallizes at low temperatures, and tetrahydrate crystallizes at higher temperatures.
The conversion point between these is 51.6 ◦C [66,67]. Furthermore, anhydrous matter and
dihydrate crystallize to tetrahydrate via solvo-mediated transformation, and the tetrahy-
drate dehydrates into protocrystalline form via one-step dehydration at 80 ◦C and two-step
dehydration at 130 ◦C [68,69].

Magnesium citrate is mainly nonahydrate. According to extensive research on the
pyrolysis mechanism and microstructure evolution throughout the pyrolysis process, an-
hydrous products can be obtained with a drying temperature of 150 ◦C and a breakdown
point of about 300 ◦C. However, the drying temperature of magnesium nonahydrate is
only around 70–80 ◦C [70,71]. Terahertz (THz) time-domain spectroscopy can be used as
an effective means to detect and analyze various citrates and distinguish their crystalline
hydrates. Researchers discovered that the distinctive terahertz absorption peaks were
significantly affected by water content and crystalline state of the metal cation species of
a citrate sample [72]. Additionally, variations in temperature, pressure, and solvent may
cause the adsorption and removal of solvent water in hydrates, resulting in the crystalline
transition of hydrates and subsequent loss of product purity. Further study is needed in the
field of stabilizing the production process to create products with a particular water content.

Trihydrate is the common hydrate form of lead citrate. Research has shown that the
thermal decomposition process can be divided into three stages: dewatering at 100–200 ◦C,
organic constituent decomposition, and, subsequently, burning. Furthermore, the decom-
position of lead citrate in air is significantly affected by roasting temperature. The main
components of the product with low-temperature roasting are α-PbO, β-PbO and metal-
lic lead, while the main components of the product with high-temperature roasting are
β-PbO [73].

2.3. Nucleation and Growth of Citrate

The fundamental process of crystallization involves crystal nucleation and growth,
which determine the structure, form, and characteristics of the crystal, and the improvement
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of mechanisms for crystal nucleation and growth has been the driving force behind the
development of the crystallization industry for decades [74,75]. Numerous elements
influence the formation and growth of the citrate crystal. Therefore, comprehension of
citrate nucleation and growth mechanisms is essential to targeting a method for controlling
crystal quality and improving the poor crystal shape (e.g., needle-like shape, sheet-like
shape, etc.) of citrate products in the current industry. However, systematic research
on the mechanism of nucleation and growth of citrate is rare at present. The primary
research direction has been toward understanding the effects of solvent ratio, temperature,
supersaturation, and other external strengthening methods on crystal nucleation and
growth, generally focusing on research at a phenomenal level and essentially boosting
nucleation and growth rates.

The usual crystallization methods of citrate involve the interaction of evaporation,
cooling, chemical reactions, and crystallization. This synergistic impact gives the nucleation
and growth of crystals corresponding properties [76,77]. The supersaturation of evaporative
crystallization is the result of solvent removal and forms a gradient of concentration within
the droplet, which is a quantitative representation of the driving force during the crystal-
lization process and a crucial reference for determining the timing of crystal seed addition.
The effect of supersaturation on the rate of nucleation growth during potassium citrate
production was investigated by Luo Hu et al., who discovered that nucleation and crystal
growth rates were optimal when crystalline seeds were added and crystallized by evapora-
tion at a degree of supersaturation in the range 1.05–1.15 (the ratio of the weight of solute
actually dissolved in the solvent at a given temperature to the weight of solute theoretically
dissolved in the solvent when the solution is saturated at that temperature) [78]. Compared
with other crystallization methods, reactive crystallization is unique in that the reaction
rate affects the time required for the crystallization process, which is a qualitative expres-
sion of the costs and benefits in engineering practice. Strengthening the reaction process
naturally increases the crystallization rate [79]. Figure 1 illustrates the common nucleation
growth pathway of a crystal, standard designs of ultrasound reactors, and representations
of different designs for microwave reactors. Over the years, the use of external force fields
such as ultrasonic and microwave has become an extremely effective strengthening method
that can significantly affect the nucleation growth process. Shi Zhiyong et al. found that
the ultrasonic microwave technique is advantageous as it can be used to speed up the
crystallization of magnesium citrate. Essentially, an ultrasonic wave can speed up the pace
at which the magnesium source dissolves and, in the meantime, encourage the reaction
between magnesium source and citric acid through the cavitation effect, and microwaves
can hasten the nucleation of crystals while simultaneously speeding up the collision of
citric acid and magnesium source molecules in aqueous solution by causing molecular
motion through vibration [79,80]. On the other hand, microwave irradiation can also heat
the solution uniformly while at the same time supplying the necessary energy to facilitate
the quick nucleation and development of crystals. Compared with no ultrasonic microwave
process, ultrasonic microwave technology showed significant enhancements in shortening
the reaction time and accelerating crystallization. Finally, the nucleation induction time was
reduced from 3–4 h to 6–10 min [81]. Furthermore, Li Junfeng et al. discovered that calcium
citrate crystal nuclei could form quickly and uniformly under homogeneous water and
alcohol mixing conditions because calcium citrate has poor solubility; it is barely soluble
in water and insoluble in alcohol, and further growth of crystal nuclei could be inhibited.
Direct preparation of nano-sized calcium citrate crystals with a width of about 60 to 700 nm
and a thickness of about 20 to 50 nm without the need of crushing or further procedures is
possible under these conditions [82].
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In addition to the aforementioned customary investigations on nucleation and growth
that concentrated on increasing production efficiency, Yan hypothesized a unique mecha-
nism of noncrystallographic branching during reactive crystallization of calcium citrate,
as shown in Figure 2a. The morphological evolution of calcium citrate spherulite can be
synoptically divided into three phases according to images of optical microscopy displayed
in Figure 2b. In the first phase, the early precursor materials gather to form rod-like crystals
that grow from the center to the ends. The beginning of the second phase consists of the
front of both sides of the crystal gradually developing small angular branching without
clear direction due to the various growth angles. The third phase involves the formation of
spherical crystals through the complete filling of the crystal from the center outward in all
directions. Additionally, the image shown in Figure 2c indicates that supersaturation and
spherulite development are tightly connected [35].
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The work of Yan examines the calcium citrate spherulite mechanism, which is gener-
ated by tiny corner branches on both sides of linear precursor fibers and offers a potential
method for the nucleation and growth of organic acids like zinc citrate and magnesium
citrate. Overall, there has been a significant absence of research on the classical and non-
classical nucleation development of citrate, as well as research on kinetics and unusual
growth phenomena. Furthermore, the citrate development process is plagued by the prob-
lem of tiny particle size and excessive fine crystals induced by crystal nucleation. Hence,
continued studies about the effects of additives on crystal nucleation growth will attract
wide interest [60,83,84]. Meanwhile, to further comprehend and optimize the crystallization
process, knowledge of nucleation growth mechanisms must also be developed.

3. Key Product Indicators and Crystallization Control Measures for Citrate Crystals
3.1. Crystal Purity

As shown in Figure 3, product purity, along with crystal size and grain form, makes
up the fundamental quality metrics for citrate products, which have a direct impact on
their functionality and potential applications. An effective control approach to address
the issue of product purity is to adopt crystal growth condition control, impurity control,
post-treatment technology, crystal growth control, crystal structure optimization, etc., based
on the specific causes of such difficulties [85–89]. Specifically, the crystal transformation that
results in the product becoming a mixture of various crystal forms is primarily responsible
for the purity of citrate products. For the purpose of preventing crystal change and
increasing product purity, there is an urgent need to ensure a precise operation point
and stable operation procedure. On the other hand, in the citrate industry chain, the
upstream raw material citric acid is mainly prepared by microbial fermentation; therefore,
impurities like mycelium, mineral salts, proteins, and other organic acids will undoubtedly
be introduced as a result of the fermentation process, and impurity retention may occur
during the growth of citrate crystals, which poses significant challenges relating to the
demand for high-purity citrate products [90].
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The quality of the raw materials differs significantly between the fermentation process
and the chemical method. Recently, the close attention paid to maintaining the purity of
raw materials has prompted researchers to respond by improving and developing citric
acid purification technology. Some reports have demonstrated that bipolar membrane
bioelectrodialysis and two-phase electrodialysis technologies have a wide range of poten-
tial applications because of their advantages preventing reverse diffusion brought on by
concentration differences and can recover citric acid at higher rates [91–94]. In addition,
another simple and efficient option is to directly buy high-purity raw materials. For ex-
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ample, Wu Jian et al. used high-purity sodium citrate and zinc sulfate heptahydrate as
raw materials to prepare zinc citrate, which successfully achieved the goal of effectively
controlling the heavy metal content of the product from the reaction source. Furthermore,
another primary cause of the decrease in product purity is the inclusion of excessive reac-
tants in the final product [78]. Calcium citrate can be prepared through two-step reactive
crystallization, in which calcium sources usually use calcium carbonate and calcium citrate.
In a one-step reaction, calcium carbonate reacts with citric acid to form calcium hydrogen
citrate, with a reaction endpoint pH of 2.7–3.5. In the second step, calcium hydroxide
reacts with calcium citrate to form calcium citrate, and the pH range is 3.8 to 4.5. The
excessively high pH means that more alkali sources exist in a reactive system, which may
result in the occurrence of raw material encapsulation and thus decrease the purity of the
product. Conversely, dissolving loss of the product may increase as a result of too low pH
and ultimately lead to a lower yield. Therefore, the aforementioned issues can be greatly
reduced by monitoring the pH value of the combination to help establish the ideal ratio
of materials and keeping the two-step reaction within the most favorable pH intervals for
making calcium citrate [95–98]. Additionally, the uniformity and stability of the reaction
process are crucial for increasing product purity [99,100]. Ultrasonic, microwave, and other
applied force fields were used as some of the earliest efficient methods. Yao used alkenyl
imidazole salt as the catalytic agent, which generated a microwave reaction environment
and ensured that the reaction components made full contact with one another. Finally, this
method successfully ensured the uniformity of the reaction, so as to realize the specificity
of the product [64,101–103].

3.2. Particle Size

Particle size is a crucial aspect of powder characteristics that directly affects the solu-
bility, suspension stability, bioavailability, flowability, and compressibility of the product.
Therefore, it has become a necessary indicator to characterize product quality. Product
granularity needs vary depending on the functions of products. To achieve precise prepara-
tion of products with a specific size distribution, adjusting the crystallization process has
become a research target and hotspot [35].

An appropriate degree of supersaturation could regulate the nucleation rate and
growth rate of crystals and thus influence the particle size and distribution of products.
Hence, it is crucial to adjudicate suitable supersaturation by designing the optimum cooling,
cooling rate, and evaporation and concentration temperatures [104]. Based on reported
studies, it was discovered that the crystal nucleation and growth rate of sodium citrate
were best suited when the cooling rate was adjusted from 5 ◦C to 12 ◦C/h, which could
then effectively control the particle size of sodium citrate in the range of 0.38~0.83 mm.
Furthermore, a common control strategy is to make sure the ion concentration or pH of
the reaction material is within the proper range. For example, the particle size distribution
of calcium citrate products was best when the concentration of calcium ions was adjusted
between 0.001 and 1 mol/L, and the range of pH between 4.1 and 4.5 is superior to
others because the zinc citrate crystal particles are more homogeneous within this control
zone [100]. Additionally, adding crystal seed is the most effective way to control primary
nucleation and induce crystallization. As such, timing and amount of seed addition are
crucial factors in determining the final product size [105]. Tang proved that the optimal
moment to add the crystal seed during the production process of sodium citrate is when
the material and liquid ratio reaches 1.34 g/mL. Meanwhile, maintaining a cooling rate
within 5–12 ◦C/h could finally result in the creation of crystal particles with uniform
particle size [104]. In conclusion, based on the research of many scholars, it is apparent that
crystal seed plays an absolutely crucial role in optimizing the quality of the final product
and controlling the crystallization process. In light of this, it is anticipated that crystal
seed addition technology research and development will lead to more effective control of
product particle size distribution and improved product quality [106].
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3.3. Crystal Shape

Crystal characteristics and product applications are commonly influenced by crystal
shape [107]. The citrate products currently prepared are mostly irregular particle shapes
such as needle-like, rod-like, and flake-like and easily formed paste suspensions, which
result in poor powder properties and limited high-end development. However, the current
citrate industry is mainly oriented toward commercial production to maximize economic
benefit, and the attention paid to the control of product shape is insufficient. Therefore,
much is yet to be explored in terms of shape-controlled citrate for product quality enhance-
ment and expansion of application range.

Studies have reported that ultrasonic treatment can effectively regulate the crystal mor-
phology of lead citrate crystals. Xiaojuan Sun et al. found that after ultrasonic treatment,
flakes of lead citrate crystal were successfully transformed into a column with a length-to-
diameter ratio of about 8:1, and the length of the crystal ranged from 20 mum to 50 mum,
resulting in an improvement in the filter performance of the lead citrate precursor [29].
Furthermore, Dongsheng He et al. found that under synthetic conditions of 35 ◦C, the
crystal was sheet-like, while at 95 ◦C, the crystal was rod-like, which suggested that the
morphology was affected by the temperature variation [108]. In 2014, a study conducted by
Li Junfeng et al. made a breakthrough in improving the shape of calcium citrate products.
The most important achievement was the successful preparation of a fiber-like crystal
with a length–diameter ratio greater than 100 [109], a strip-like crystal with dimensions
of 5–100 m, 0.5–3 m, and 5–30 nm [110], and a sphere produced by the self-assembly of
flake-like calcium citrate [111] by adjusting the solvent ratio, ion concentration, crystalliza-
tion temperature, and other parameters, which greatly broadened the characteristics of
calcium citrate products. In comparison, spherical particles are superior to other shapes for
the creation of high-end products and have a wider range of applications because of their
better flow properties, stronger compressive qualities, higher drug solubility, and biological
compatibility [112–114]. According to Yan, factors affecting the shape of calcium citrate
during reactive crystallization include supersaturation and shear stress. They therefore
pioneered the exploration of reactant concentration for the formation of calcium citrate
spherules based on the strong dependence of the crystal shape on solution supersaturation
and initial concentration, and the key control parameters for the morphology were deter-
mined to be the stirring rate and residence time, based on the investigation of shear stress.
Finally, they successfully scaled up the study in semi-batch mode and further verified the
guiding significance of the research to improve the possibility of industrializing spherical
calcium citrate [35]. Therefore, spherical morphology will essentially be the predominant
shape of citrate products in comparison to needle-like, rod-like, flake-like, etc., due to the
excellent particle characteristics it possesses, which will assist in its standing in the ranks of
high-end food additives and nutritional agents.

In conclusion, the major progress made in the study of calcium citrate and lead citrate
breaks the status quo of the paucity of in-depth research on the morphological control
mechanism of citrate and provides direction for the exploration of the particle shapes of
other citrates, which will inspire the development and completion of the particle shape
control mechanism of the product.

3.4. Special Functional Indicators

As a univariate, multi-objective control process, other special functional indicators in
addition to the above-mentioned, such as product stacking density, flowability, anti-caking
property, dissolving rate, suspension property, and bioavailability, should be investigated
in the crystallization process. As such, these special functional indicators are influenced by
the fundamental characteristics of the particles, and they simultaneously advance higher
standards for fundamental characteristics, further promoting the advancement of particle
micro- and nanotechnology [115,116].

Nutritional products and pharmaceuticals are common applications of citrate products;
hence, bulk handling characteristics such as particle flowability and bulk density, which are
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greatly influenced by the particle size distribution and shape of the crystals, are considered
critical [117]. In general, smaller particle sizes, together with needle-like and flake-like
shapes, are extremely likely to result in decreased powder fluidity and decreased bulk
density, which in turn affect compaction and consolidation during product handling [118].

For the purpose of maintaining flowability, the resistance to caking of crystal products
is expected to be improved [119,120]. Crystal caking is commonly the result of multiple
factors that correlate [121,122]. Optimized crystals with higher fluidity in terms of shape
and form are the most direct strategy to improve product properties. Additionally, the
improvement of particle dispersion through grinding and other techniques is also worthy
of close attention [111,123]. In recent years, a great variety of evaluation and prediction
models of the critical caking period have been studied to assist in the search for the best
crystallization operating curve. The application of these models could improve design
efficiency by an order of magnitude on the premise of ensuring product performance and
quality [124–126].

The dissolution rate is a key indicator of product quality for powdered products with
dissolution requirements, such as pharmaceutical powders and milk powders, and can be
greatly increased under micropulverization circumstances. In addition, to achieve rapid
dissolution of products, preparing amorphous products is desirable due to the elimination
of the energy barrier at dissolution [127,128].

Improving the suspension properties of slurries is effective in reducing particle ag-
glomeration [129–131]. Commonly, micropulverization of particles could be considered an
effective method to produce a product with good suspension stability and avoid the inci-
dental tendency of rod-like and flake-like crystals to cause suspension formation. Particles
with a homogeneous particle size distribution exhibit stronger affinity and are more suc-
cessful in enhancing the suspension stability of the product when added as a formulation
agent to diverse complicated systems [132].

Previous studies have indicated that organic salt supplements of various trace elements
are more bioavailable than oxides or inorganic salts. Essentially, citric acid is naturally
present in blood, muscle, and bone and is one of the main intermediate metabolites of the
tricarboxylic acid cycle in the human body; therefore, citrate has a natural advantage as
a supplement for improving the bioavailability of nutrients such as calcium, magnesium,
zinc, sodium, and potassium. There have been increasing concerns over the concentration
of ions in fortified nutritional products, which is challenging in the industrial production
of citrate.

4. Industrial Crystallization Equipment for Citrate
4.1. Crystallizer Device Forms

Citrate manufacturing has steadily become an industry trend owing to the rising
demand for the substance. The form, size, production rate (g/h), surface properties, and
fluid dynamics conditions of the crystallizing devices have an important effect on the
shape, size, distribution, and purity of the crystals during the crystallization process.
Therefore, reasonable selection and design of crystallizing apparatus is one of the important
measures to improve the crystallization efficiency and quality of citrate, attendant to
higher requirements for crystallization devices used in citrate production machinery. Batch
crystallizers made up the majority of the first generation of crystallization equipment
employed in the chemical sector, and subsequently faced elimination due to significant
encrustation deposits, small crystallization capacity, and high labor requirements. Modern
crystallization equipment is increasingly evolving toward larger, automatic, and continuous
development [133]. Figure 4 depicts typical citrate crystallizers used in industry, including
a forced-circulation crystallizer, draft-tube baffled crystallizer, and Oslo crystallizer. The
citrate crystallization process involves cooling, evaporation, adiabatic flash evaporation,
and other operations. Hence, the crystallizer is required to be equipped with the necessary
components. However, one of the major difficulties facing citrate crystallizers today is
encrustation, which adversely affects the mixing and heat transfer in the crystallizer and
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ultimately renders the operation inefficient and unprofitable [134,135]. In addition, in
order to ensure constant product uniformity throughout the production of citrate products,
premixing of the raw materials is required. However, direct stirring has a lengthy mixing
cycle, which may cause a significant decrease in production efficiency, but shortening the
mixing cycle also leads to poor mixing of the raw materials and consequently poor crystal
size [136]. Therefore, how to prevent encrustation and strengthen the mixing of materials
including liquids become key issues to take into account when designing crystallization
equipment.
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A vacuum crystallizer generally has no heater or cooler, and the preheating or precool-
ing of the solution is carried out in the unsaturated state, which avoids the precipitation
of crystals on the complex surfaces of heat exchangers. Therefore, subsequent issues,
like lower heat-transfer capacity due to encrustation, can be avoided fairly easily. Based
on this, Gong conducted research and developed a multi-stage vacuum adiabatic flash
continuous crystallization apparatus, consisting of numerous crystallizers connected in
series. The overall structure of the crystallizer is divided into three parts, namely the
upper straight cylinder section, the reducer cylinder section, and the lower straight cylinder
section. Meanwhile, the lower straight section of the devices has a guide tube, the bottom
of the crystallizer is W-shaped, and the top of the devices is provided with a double-layer
stirring paddle. The solid content of the crystallizer needs to be kept under control at all
levels during use. Commonly, in the first crystallizer stage, the solid content is typically
controlled between 3% and 10%, in the second crystallizer stage between 10% and 20%,
in the third crystallizer stage between 20% and 30%, and in the fourth crystallizer stage
it does not exceed 50%. Currently, the production experience has demonstrated that this
crystallizer is very production-efficient, and the product has the qualities of good shape,
large particle size, and uniform particle size distribution. Hence, the vacuum crystallizer
has nearly completely replaced the cooling crystallizer in recent years [137].

On the basis of solving the fouling problem, experts started considering ways to boost
production effectiveness and product quality even more. Generally, in an evaporative
crystallizer, the crystallizer itself is attached to the evaporator. To enhance the heat transfer
capacity of the evaporation heater, many contemporary evaporators also come with circula-
tion pumps or built-in circulation propellers. This section focuses on introducing the DTB
(draft-tube baffled) evaporative crystallizer, referred to as the “masked” crystallizer, which
has been widely used in industry [133]. It is a kind of device with low supersaturation
and is distinguished by an internal crystallization circulation pump, low resistance, and
high circulation capacity. The DTB crystallizers commonly used in industry have diameters
ranging from 0.5 to 10 m. They can produce crystals as thin as 0.5 to 1.5 mm, with residence
times of 3 to 4 h and slurry densities as high as 25. This form of evaporative crystallizer
equipment has achieved efficient internal circulation and greatly reduced the probability of
secondary nucleation owing to the utilization of specialized stirring paddles. It has a high
heat-exchange surface, which eliminates the need for a separate heater or chiller. Further-
more, it can realize continuous production operations [138]. In addition, other effective,
cutting-edge devices have been reported. For example, to address the problem that the
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current equipment is not perfect for filtering small particles of contaminants, Feng Kuanyu
et al. developed a potassium citrate processing apparatus that includes a pH sampling tube,
a stirring mechanism to speed up the neutralization reaction, and an adsorption mechanism
that uses active adsorption to remove impurities in the mixture, which has obtained satis-
factory results in the field of efficient impurity removal [139]. Another potassium citrate
production system with a supermembrane filter, evaporator, and centrifuge was created
by Zhao Shizhe et al. This invention preheats the potassium citrate solution entering the
evaporator and allows the potassium citrate solution to flow inside the evaporator. Overall,
it achieves heat recovery and utilization, improves evaporation efficiency, and significantly
increases the quality of the manufactured potassium citrate [140].

4.2. Continuous Crystallization

Continuous crystallization refers to the crystallization process in which the reactants
are continuously added into the crystallizer and the products are continuously produced
to reach a stable state. Compared with batch crystallization, which is more prone to
quality differences between different batches of products and has the shortcomings of low
productivity, continuous crystallization has attracted more and more attention because of
its advantages of high safety, easy control, stable operating parameters, and more uniform,
high-quality products [141,142].

The use of each level of the reaction tank must be specified in the continuous crystalliza-
tion process in order to facilitate a flexible design in accordance with reaction requirements.
In the process of continuous crystallization, how to achieve effective control of the process
and enhance crystal nucleation and growth should be considered. Meanwhile, efforts
should be made to reduce the generation of encrustation [143].

Continuous crystallization of citrates is often carried out using a multi-stage process
with multiple tanks in series. Normally, the first-stage reaction often takes place in the
first-stage reaction tank, which is also used for continuous feeding, while the last-stage
reaction tank controls removal of the finished product and return of the impurities. Finally,
the task of advancing the reaction or separating the reaction product is carried out in the
intermediate reaction tank. During the design process, the reaction conditions for each
stage of the tank need to be clarified, including crystallization temperature, crystallization
time, pH, stirring rate, etc. The flow rates at the inlet and outlet of each tank also need to
be determined so that the process remains continuous and stable. In addition, the reactor
volume design relies heavily on the residence time of the reaction material, which likewise
calls for specific consideration [143].

The citrate salts that have been continuously crystallized include potassium citrate,
sodium citrate, and calcium citrate. The application of continuous crystallization technol-
ogy has achieved remarkable results in improving these products’ purity, saving production
costs, and reducing energy consumption during the process. Over time, continuous crystal-
lization processes have been reported in increasing numbers. For example, Cai ZaiHua et al.
achieved a mother liquor turn-back rate as low as 6% in the continuous potassium citrate
production process [144]. Li Changtao et al. designed a continuous sodium citrate crys-
tallization technique with three stages of neutralization crystallization, which was proved
to obtain sodium citrate crystals of higher purity than those prepared by the conventional
one-step process [145]. In addition, Jian Li et al. developed a four-stage continuous calcium
citrate online production process, which effectively addressed the issue of rational design
of the solid–liquid separation process in the calcium citrate production process, reduced
production costs, and improved the efficiency of large-scale industrial production [146].

Despite the fact that numerous high-efficiency crystallizers are being developed and
significant progress has been made in addressing the drawbacks of continuous crystal-
lization like clogging and encrustation, it is undeniable that continuous crystallization is
more challenging to operate and requires high-level operators with extensive experience.
Furthermore, unlike well-controlled batch crystallization processes, it could be tricky to
completely avoid fluctuations in the particle size distribution of the crystals in the de-
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vice even when the operating conditions remain stable. Nevertheless, it is reasonable
to anticipate a trend toward large-scale, continuous industrial crystallization operations
in the future. With the continuous improvement of the theoretical model of continuous
crystallization and the application of new auxiliary technologies and applications, a more
repeatable and controllable continuous crystallization method will be developed on the
premise of ensuring the consistency of crystal quality and performance. Meanwhile, re-
searchers should try to develop online process analysis technology, which will realize a
more efficient crystallization process and eventually achieve the universal application of
continuous crystallization operations [147].

5. Conclusions

In conclusion, the industrialization process and the crystallization of citrate have
received a great deal of attention. With the increasing application of citrate in food additives
and functional nutritional ion supplements, it can be predicted that high-purity anhydrous
citrate with high dissolution performance, high bioavailability, and good caking resistance
will become a mainstream product. The citrate market is currently expanding and is
anticipated to reach USD 1101 million by 2025. One of the most contentious topics in the
manufacture of citrate will be environmental preservation, and the future tendency will be
toward adaptability. In addition to its conventional applications in food, pharmaceuticals,
and cosmetics, citrate will be extensively employed in new fields such as clean energy and
materials. As the emphasis on health and food safety continues to increase, the quality and
purity of food additives are becoming more and more demanding. This will also prompt
manufacturers to improve the purity and quality of their products through crystallization
production processes and technologies. In the future, the citrate industry will focus on
technological innovation and product development to develop high-value-added products
and improve market competitiveness.
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