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Abstract: A detailed comprehension of protein function requires information on the spatial structure
of the protein, which is often gathered from X-ray crystallography. However, conformational dy-
namics often also plays an important functional role in proteins and can be directly investigated by
complementary quasielastic neutron scattering. A classic example for dynamics–function correlations
is Photosystem II, which is a multimeric pigment–protein complex responsible for catalyzing the light-
induced photosynthetic water splitting into protons and oxygen. Several functional subprocesses
of photosynthetic electron transfer and water splitting are strongly dependent on temperature and
hydration, two factors also known to affect protein dynamics. Photosystem II is often investigated in
the form of membrane fragments, where the protein complex remains embedded into its native lipid
environment. However, experiments on protein function are often carried out in solution state, while
direct investigations of molecular dynamics by quasielastic neutron scattering are mainly performed
using specifically hydrated membrane fragments only. The present study provides the first quasielas-
tic neutron scattering investigation of the molecular dynamics of Photosystem II membrane fragments
(PSIImf) in solution over a wide temperature range from 50 to 300 K. At physiological temperatures
above the melting point of water, we observed that the dynamics of PSIImf are significantly activated,
leading to larger atomic mean square displacement values compared to those of specifically hydrated
membrane stacks. The QENS data can be described by two dynamical components: a fast one,
most probably corresponding to methyl group rotation; and a slower one, representing localized
conformational dynamics. The latter component could be fitted by a jump-diffusion model at 300 K.
The dynamics observed characterize the level of flexibility necessary for the proper PS II functionality
under physiological conditions. In contrast, we observe a severe restriction of molecular dynamics
upon freezing of the solvent below ~276 K. We associate this unexpected suppression of dynamics
with a substantial aggregation of PSIImf caused by ice formation.

Keywords: photosystem II; protein dynamics; electron transfer; quasielastic neutron scattering

1. Introduction

Photosynthesis is the fundamental physiological process by which green plants and
cyanobacteria convert light energy into storable chemical energy by synthesizing glucose.
As the primary energy source for nearly all ecosystems and the foundation of the food chain
for numerous species, photosynthesis is a critical process for life on Earth. Photosynthesis
is a multifaceted process encompassing several stages. The light-induced water splitting
occurs in Photosystem II (PS II), a multi-subunit protein complex found in the thylakoid
membranes of photosynthetic organisms [1]. The crystal [2] and solution structures of
PSII [3] are shown in Figure 1. The redox reactions triggered by light in PS II are greatly
influenced by temperature and hydration. Therefore, it is evident that the conformational
dynamics of PS II play a critical role in these redox reactions, as the latter changes in dy-
namics with temperature, and hydration levels strongly correlate with functional processes
in PS II [4].
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Dynamics–function correlations have often been inferred indirectly when observ-
ing pronounced temperature dependences of functional processes. This implies that the
“freezing” of conformational dynamics upon temperature decrease impairs functionally
important structural changes in proteins [5]. In the case of PSII, the light-induced charge
separation, leading to the formation of the radical ion pair P680+•Q−A , remains active even
at low temperatures [6]. However, the reoxidation of this pair by the primary electron ac-
ceptor Q−•A by QB, is blocked completely below 200 K [7–9], and the individual redox steps
of the water-oxidizing complex display a distinct temperature dependence (see e.g., [10]).
In addition, the hydration level has a significant effect on the reoxidation of Q−A [11] and
the redox steps of the water-oxidizing complex [12]. These effects appeared to be consistent
with a reorientation of the QB headgroup upon electron uptake reported based on X-ray
crystallography, implying a two-state gating mechanism (see Figure 1) [13]. The two orien-
tations of the QB headgroup are shown in violet and cyan colors in Figure 1, respectively,
and are plotted along with the neighboring protein residues shown in grey and labeled
by residue number. The rearrangements also encompass the breaking and formation of
hydrogen bonds. Later, however, the conformational changes required for QB reduction
by QA were described as much more complex, comprising additional rearrangements
of hydrogen bonds, e.g., the reorientation of the Ser223 residue in the vicinity of the QB
binding site [14,15]. It was inferred indirectly that the presence of a general conformational
flexibility of PSII is required to allow the above rearrangements of QB and of its protein
environment upon electron transfer. In turn, a freezing of protein flexibility was assumed
to inhibit electron transfer. It was also shown that a fine-tuning of protein dynamics
leads to thermal adaptation of electron transfer in thermophile bacteria [16]. Therefore,
understanding the correlation between protein dynamics and function is essential for a
deeper comprehension of these processes. However, a direct proof of a dynamics–function
correlation was still lacking.
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spheres) with the PSII crystal structure. This figure is adapted from Golub et al. [3] Copyright (2023) 
American Chemical Society. Right: Conformational changes in the vicinity of the QB binding site 
upon QAQB electron transfer according to Stowell et al. [13], see text. This figure is reprinted from 
Stowell et al. [13] with permission. 

Therefore, quasielastic neutron scattering (QENS) was used to directly investigate the 
dynamics of hydrated PS II membrane fragments (PSIImf) from spinach [17,18]. The dy-
namics of PS II was studied over a temperature range of 5 to 300 K, and a dynamical tran-
sition with a strong increase of molecular mobility with increasing temperature was 

Figure 1. (Left): Comparison of the crystal structure of PSII of Thermosynechococcus elongatus
(pdb 5 kaf [2]) shown in cyan and violet with the solution structure determined from SANS data
(gray spheres) with the PSII crystal structure. This figure is adapted from Golub et al. [3] Copyright
(2023) American Chemical Society. (Right): Conformational changes in the vicinity of the QB binding
site upon QA→QB electron transfer according to Stowell et al. [13], see text. This figure is reprinted
from Stowell et al. [13] with permission.

Therefore, quasielastic neutron scattering (QENS) was used to directly investigate
the dynamics of hydrated PS II membrane fragments (PSIImf) from spinach [17,18]. The
dynamics of PS II was studied over a temperature range of 5 to 300 K, and a dynamical
transition with a strong increase of molecular mobility with increasing temperature was
reported at approximately ~240 K at 90% relative humidity [18]. It was shown that the
latter increase of molecular mobility is strongly correlated with the temperature-dependent
increase of the electron transport efficiency from Q−•A to QB. The latter dynamics–function
correlation is visible in Figure 2, where the mean square displacement <u2> (MSD) is shown
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by black diamonds along with the electron transport efficiency provided by red diamonds.
Between 280 and 340 K, the dynamics of PSIImf revealed a hydration-sensitive transition
occurring between 310 and 320 K, which was attributed to the detachment of the oxygen-
evolving complex [19]. At room temperature, the protein dynamics were suppressed below
44% r.h., which aligns with the inhibition of electron reduction in dehydrated PS II [17].
Point mutations in the vicinity of the cofactors QA and QB were shown to affect the overall
protein dynamics in bacterial reaction centers [20,21].
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Figure 2. Temperature dependence of the average atomic mean square displacement <u2> for
hydrated (full symbols) and dry PS II membrane fragments (open symbols). The red points represent
the temperature dependence of the QA→QB electron transfer efficiency in PS II (left scale) This figure
is adapted from data of [18]. Copyright (2007) American Chemical Society.

Therefore, exploring the correlations between protein dynamics and function is crucial
for a deeper comprehension of these processes. However, previous QENS studies were
largely restricted to experiments using specifically hydrated membranes to avoid a sizeable
scattering contribution from the solvent. This means that a thorough examination of the
conformational dynamics of PSIImf in solution, which is close to its native state, is so
far lacking. QENS is a highly effective experimental technique for directly investigating
protein dynamics (for more details, see [22–24]). This method takes advantage of the fact
that hydrogen atoms are uniformly distributed in biomolecules and have a high scattering
cross-section [22,25,26] so that they can serve as efficient probes of the overall molecular
dynamics. As a result, QENS has become widely used for studying the molecular motions
of proteins on the picosecond to nanosecond timescale [5].

Our study seeks to go beyond the use of hydrated membranes and to explore the
dynamics of PSIImf in solution for the first time. We are presenting QENS measurements
over a wide temperature range from 50 K to 295 K. As solution measurements of molecular
dynamics contain contributions from both the protein/membrane and from the buffer, a
reliable method for buffer subtraction is a key prerequisite for obtaining reasonable data.
Below, we present such an approach based on the coherent scattering of the D2O present
in the solvent and apply it to PSIImf for the first time. As a result, we are able to directly
probe the dynamics of PSIImf in solution, i.e., in the same form as routinely used for
studies of functional processes in PSII by employing complementary methods of optical
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spectroscopy [6–9,11,12]. In perspective, these insights will help us to achieve a direct
dynamics–function correlation and a better understanding of the vital role that dynamics
play in protein function.

2. Materials and Methods

Sample preparation: The preparation of PSIImf was described in detail earlier [18].
Briefly, PSIImf were isolated from spinach (Spinacea oleracea) following the procedure
described by Berthold et al. [27]. PSIImf with modifications according to Völker et al. [28].
Finally, the PS II membrane fragment sample was prepared in a buffer solution containing
D2O, 50 mM MES (pD 6.5), 0.4 M sucrose, 15 mM NaCl, and 10 mM CaCl2 at a concentration
of 80 mg/mL. We used a flat cylindrical aluminum slab cell with a diameter of 50 mm and
a thickness of 0.4 mm filled with 1 mL sample or buffer solution for the measurement.

QENS experiment: To measure the QENS spectra of PSIImf in a D2O solution, we
employed the IN6 time-of-flight spectrometer at ILL (Grenoble, France). The experiments
were conducted using a sample cell with a cylindrical shape in a temperature range
spanning from 50 K to 295 K. For accurate buffer subtraction at each temperature point,
we also measured the buffer solution separately, but under the same conditions as the
PSIImf. The incident neutron wavelength was 5.12 Å, which corresponded to a q-range
of 0.2 to 2 Å. We estimated the elastic energy resolution to be 88 µeV based on standard
vanadium measurement.

We utilized the Large Array Manipulation Program (LAMP) for the data reduction
process. The raw data were normalized based on the elastic intensity of vanadium runs and
corrected for detector efficiency. Finally, the scattering function Sexp(Q,ω) was transferred
in energy and momentum transfer scale.

QENS data analysis: In the case of a protonated scatterer like a protein, the number of
neutrons detected in a solid angle element δΩ and an energy element δω in an incoherent
neutrons scattering experiment is provided by the double-differential cross-section δ2σ

δΩδω
(for an overview, see, e.g., Ref. [29])

δ2σ

δΩδω
=
|k1|
|k0|

b2
incSinc(Q, ω) (1)

where k0 and k1 are the wave vectors of the incident and scattered neutrons, respectively,
Q is the momentum transfer vector, binc is the incoherent scattering length, and Sinc(Q,ω) is
the incoherent scattering function. Sinc(Q,ω) is not directly accessible in experiments; it has
to be replaced by the experimental scattering function Sexp(Q,ω), which can be provided as:

Sexp(Q, ω) = FNexp
(
− }ω

2kT

)
R(Q, ω)⊗ Stheo(Q, ω) (2)

which consists of a normalization factor FN, the detailed balance factor according to
exp
(
− }ω

2kT

)
, the instrument resolution function R(Q,ω) and a model scattering function

Stheo(Q,ω), which are a function of energy h̄ω and the momentum transfer vector Q. The fol-
lowing model function often represents the theoretical function characterizing the dynamics
of the protein:

Stheo(Q, ω) = e−<u2>Q2

{
A0(Q)δ(ω) + ∑

n
An(Q)Ln(Hn, ω) + Sin(Q, ω)

}
(3)

which consists of the Debye–Waller factor e−(u
2)Q2

with the “global” vibrational mean
square displacement <u2> (MSD), the elastic component A0(Q)δ(ω), the quasielastic com-
ponent ∑n An(Q)Ln(Hn, ω), and, finally, the (vibrational) inelastic contribution Sin(Q,ω).
Assuming an exponential protein relaxation, the line shape Ln(Hn, ω) becomes a Lorentzian
with a width Hn (HWHM) related to a characteristic relaxation time τR. The pre-factors
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A0(Q) and An(Q) are denoted as elastic and quasielastic incoherent structure factors (EISF
and QISF), respectively, which add up to unity according to

∑
n

An(Q) = 1− A0(Q) (4)

Elastic incoherent neutron scattering data can be analyzed in terms of the Gaussian
approximation according to

Sexp(Q, ω = 0±4E) ≈ I0e−<u2>Q2
(5)

The value of the average atomic MSD at a given temperature can be obtained from the
slope of the semi-logarithmic plot of the elastic intensity

MSD = −
d ln

[
Sexp(Q, ω = 0±4E)

]
d Q2 (6)

This approximation is valid only at Q→ 0, but can be extended to MSD* Q2 ≤ 1 [22].
According to Equation (3), the QENS spectrum measured at 295 K was fitted using a sum
of one elastic contribution and two Voigt functions as the convolution of a Lorentzian with
the experimental resolution. The experimental resolution is defined according to the fit of
the vanadium spectrum and has been fixed in all further fits. In the case of a jump-diffusion
model of the protons’ motion within the protein suggested by Singwi and Sjölander [30],
the Lorentzian HWHM is expected to follow

HWHM(Q) =
DQ2

1 + DτQ2 (7)

where τ provides the residence time, during which protons oscillate around an equilibrium
position, and D is the jump-diffusion constant, which describes the diffusive motion of
protons from one equilibrium position to another. Previously, the jump-diffusion model
was successfully applied to describe the internal motions of proteins [24,31–33]. Fitting of
the QENS spectra has been performed in OriginPro 2018 program [34].

3. Results and Discussion

Buffer subtraction: The QENS signal of a protein in solution comprises both protein
and solvent contributions, thus necessitating buffer subtraction. One approach involves
analyzing the coherent scattering of D2O, which primarily originates from the buffer.
Figure 3 displays the angle spectrum or diffractogram of the PS II membrane fragment
sample in buffer solution (black line) and of the separate buffer measurement (red line).
The sample spectrum exhibits a correlation peak at a 2θ-value of roughly 100◦, similar
to the peak visible in the buffer data. Note that the latter position may be affected by
angle-dependent detector efficiency, but a precise determination was not within the scope
of this study. The correlation peak corresponds mainly to D2O coherent scattering and is not
present for incoherent scatterers like a protein, membrane or the vanadium standard [35].
To estimate the PSIImf contribution, we followed [36], and performed buffer subtraction
with a scaling factor of k. The correlation peak disappears after the subtraction, and the
resulting diffractogram becomes flat, akin to the vanadium standard. In this case, the
scaling factor k equals 0.9, meeting the buffer subtraction criteria. This procedure enabled
us to isolate the QENS signal of PSIImf for further analysis and obtain accurate data on
their dynamical behavior in solution.

Dynamics at physiological temperatures: The central aim of this investigation is to
explore the conformational dynamics of PSIImf in solution under physiological temperature
conditions. We first measured QENS spectra of PSIImf at 295 K (see Figure 4A). In the latter
spectrum, the broadening that is visible around the elastic peak is generally associated
with diffusive conformational motions between different protein conformations on the
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picosecond timescale. These motions are deemed to be an essential component of the
functional structural changes necessary for the functional processes [17,37,38].
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Figure 3. Buffer subtraction for the case of the PS II membrane fragment sample at 295 K: Angle
spectra (diffractograms) of PS II in buffer solution (black line), a separate buffer sample (red line).
Each data point is scattering intensity at a specific angle averaged over all neutron energies. The PS II
contribution (green line) is obtained by subtracting the buffer signal from the sample data under the
condition that the coherent peak at about 100◦ vanishes. As a result, the PS II contribution is virtually
featureless, as expected for an incoherent scatterer (see flat gray guiding line). The scaling factor to
subtract the buffer is found to be 0.9.

We further analyzed the PSIImf QENS spectra collected at 295 K by utilizing model
scattering functions (as outlined in Equations (2) and (3)) in the energy range of −2 meV
to 2 meV. The fit obtained (as illustrated in Figure 4A by the red line) is the summation
of a Gaussian peak representing the elastic contribution and of two quasielastic Voigt
peaks corresponding to the fast (for broader linewidth) and the slow (for narrow linewidth)
components of the protein dynamics, respectively. It has to be kept in mind that this is
a minimal description of the measured QENS data, so that each of the two components
represents a larger number of unresolved motional components expected in the accessible
observation time range.

The Lorentzian linewidths of the QENS spectra are sensitive to the wavevector Q,
which enables the differentiation and characterization of various motions within the protein
system being studied. The broader quasielastic peak that represents the fast motions
(depicted by the dotted line in Figure 4A) exhibits a constant Lorentzian HWHM, indicating
a fast rotational motion. Through several fitting iterations, we identified an optimal
Lorentzian HWHM of approximately 1.1 ± 0.2 meV, which corresponds to a rotation
frequency of 1.67 ps−1. Similarly, fast dynamical contributions were associated, e.g., with
the rotation of the CH3 groups [39,40]. Another possible interpretation of the broad QENS
component may lie in even faster motions corresponding to hydrogen atoms engaging
in swift, non-oscillatory librational movements around the carbon atom they are bonded
to [41]. The narrower quasielastic contribution corresponds to slower motions that we
associate with internal protein dynamics (as indicated by the blue dashed line in Figure 4A).
For this dynamical component, we observed a Q-dependence of the HWHM that follows
the typical behavior of a localized jump-diffusion (as shown in Figure 4B). The jump-
diffusion model has been previously used to describe the internal motions of proteins in
various studies [24,31,33,42]. Through our analysis, we determined a diffusion coefficient
of 4.4 ± 0.5 10−9 m2/s and a residence time of 3.2 ± 0.5 ps.
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295 K. The solid blue line represents the elastic component; the blue dashed line corresponds to the
slow internal dynamics; the blue dotted line to fast rotational motions. The solid red line represents
the final fit. (B): HWHMs obtained from the fit of the QENS spectra for the slow internal dynamics
(see the blue dash line in panel A. HWHMs of PSIImf are represented as gray circles. The red line
represents the fit by the jump-diffusion model (see Equation (7)).

Temperature dependence of molecular dynamics: Our subsequent aim was to ex-
amine the temperature dependence of MSDs for PSIImf in solution based on the elastic
intensity using Equation (6). To define the EINS intensity from the measured Sexp(Q,ω) data,
we utilized the ElasticWindow algorithm (Elwin), which is implemented in the Mantid
program. In this approach, we considered a region of elastic intensity that corresponded to
the energy range of −0.12 to 0.12 meV for the IN6 instrument (as shown in Figure 5A). The
“elastic” slice was estimated as the integrated intensity within the aforementioned elastic
energy window (represented by the green points in Figure 5B). One has to consider the
quasielastic contribution that is not neglectable in the elastic window at higher q values
(see Figure 4A), which is specifically the case for data taken at temperatures above ice
melting point. We took the quasielastic background to EINS intensity (indicated by black
points in Figure 5B) into account by integrating the scattering intensity in the energy range
from −0.36 to −0.12 meV (as illustrated in Figure 5A). Finally, we estimated the EINS
intensity by subtracting the intensity of the “quasielastic” slice from that of the “elastic”
slice (as indicated by the red point in Figure 5B). This analysis was repeated for EINS data
at each measured temperature. Figure 6 shows EINS for the temperature point of 295 K
obtained according to the Elwin approach (see red points) and EINS estimated from the
Q-dependent analysis, i.e., without considering the quasielastic contribution (see open
diamonds). A comparison of the MSDs determined by both approaches reveals that the
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Elwin method leads to larger MSDs because of a more realistic estimate of the elastic
intensity (see Figure 7).
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Figure 5. (A) Sexp(Q,ω) data of PSIImf at T = 295 K. White vertical lines define “elastic” and “quasielas-
tic” slices that correspond to energy ranges from −0.12 to 0.12 meV and from −0.36 to −0.12 meV,
respectively. (B) Example of EINS data at T = 295 K. Green data points denote the integrated intensity
inside the elastic region in panel (A). The black points show the integrated intensity inside the energy
region defined as the “quasielastic” slice in panel (A). Finally, EINS data (red points) are obtained as
a difference between integrated intensities of the “elastic” and “quasielastic” slices, respectively.

The MSDs are determined from the EINS data according to Equation (6). The fit range
was restricted to the Q values between 0.12 and 1.21 Å−1, where the dependence of ln
[S(Q,ω = 0 ± ∆E)] on Q2 was found to be linear within the experimental uncertainty (see
Figure 6). The temperature dependence of the MSD values is shown in Figure 7 (red points).
For comparison, we also show MSDs of PSIImf measured previously in dry state and at
90% relative humidity (r.h.) [18], see green and blue points in Figure 7, respectively.

As visible in Figure 7, the MSD values for PSIImf in solution above the melting point
of D2O are significantly higher than those obtained earlier for hydrated membrane stacks.
In contrast, however, the MSDs in solution state appear to be significantly suppressed at
lower temperatures, with the latter surprising observation especially requiring a discussion.
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Figure 6. Full points represent semi-logarithmic plots of EINS data plotted against Q2 to estimate
<u2> at different temperature points taking into account the quasielastic contribution. Black lines
denote the linear fits in the Q2 range from 0.12–1.21 Å−2. The open diamonds correspond to EINS
obtained solely from the data at the elastic slice at 295 K, as shown in Figure 5B.

Starting from previously published data, the MSDs for PSIImf hydrated at 90% r.h.
reveal a notable increase in molecular dynamics in the temperature above 230 K (see dotted
blue guiding line in Figure 7). The latter effect was referred to as the dynamical transition in
proteins [43], membranes [37,44], and model membrane systems [45] and associated with
the onset of diffusive conformational dynamics. Similar effects were observed for PSII [46],
and other photosynthetic proteins [47]. It has to be noted, however, that the presence of a
dynamical transition as such has been questioned (see, e.g., Ref. [48]). The latter study of
the dynamics of lysozyme combining QENS and dielectric spectroscopy suggests that there
is no specific transition at 230 K, but rather a thermal activation of molecular dynamics,
whose relaxation time enters the observation time window of the spectrometer at a specific
temperature. Regardless of the latter question, however, the temperature dependence of
electron transfer efficiency appears to be correlated with the thermally activated increase in
protein dynamics as shown in Figure 2, thus pointing to a dynamics–function correlation
in PSIImf.

As to the hydration dependence, the MSD values for dry PSIImf do not exhibit a similar
increase in dynamics as observed for hydrated PSIImf. It was shown, especially, that the
MSDs of PSIImf above 230 K increase with increasing hydration level [17]. Therefore, it
should be expected that the MSDs of PSIImf in solution are generally higher than in the
case of hydrated membrane stacks. This anticipated increase of protein flexibility of PSIImf
in solution is indeed observed above the melting point of D2O, thus permitting studies of
molecular dynamics in solution state at physiological temperatures.

The increase in slope of the MSDs of PSIImf at 90% r.h. above roughly 130 K is
often interpreted as the onset of internal protein motions, especially those of methyl
groups [40,49]. In the case of the Light-Harvesting Complex II, this transition was associated
with the onset of anharmonic vibrational motions [47]. The MSDs of dry PSIImf exhibit the
latter transition at a slightly elevated temperature of about 200 K. Because of the above-
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mentioned suppression of MSDs below the freezing point of D2O, the latter intermediate
transition cannot be detected for PSIImf in solution. That is, only two strikingly distinct
temperature ranges are observed characterizing the dynamics of PSIImf in solution.
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Figure 7. Temperature dependence of MSDs. Red points correspond to the MSD values obtained
from the analysis shown in Figure 6 for PSIImf in solution when the quasielastic contribution is
considered and subtracted. For comparison, open diamonds represent the case where EINS is taken
only as the integrated intensity of the elastic slice (see Figur 5A). Received MSDs compared with
MSDs of dry PSIImf (green points) and PSIImf hydrated at 90% r.h. (blue points). Solid green, blue,
and red lines are for illustrative purpose. The data of dry PSIImf (green points) and PSIImf hydrated
at 90% r.h. (blue points) are taken from [18] with permission.

A remarkable finding is that the MSD values for PSIImf in solution were significantly
lower than for hydrated membranes in the temperature range below ~276 K. This tempera-
ture dependence of MSD was unexpected, as PSIImf in solution are generally anticipated
to exhibit higher flexibility due to a higher hydration level, see above. Interestingly, SANS
studies of lysozyme protein solutions reported significant protein aggregation due to ice
formation below the freezing point of water [50,51]. The frozen state of the protein solution
has been characterized as primarily consisting of ice crystals with regions of amorphous wa-
ter containing freeze-concentrated protein. Based on the observations of Curtis et al. [50,51],
we assume that a similar structural rearrangement may occur in PSIImf upon freezing, thus
leading to ice-induced crowding or even unspecific aggregation. Due to the large size of the
membrane fragments studied here, this effect should be even more significant than for the
globular protein lysozyme. Such experiments on PSIImf in solution are planned. Crowding
effects have been shown to restrict protein dynamics [52]. Therefore, we propose that the
low MSD values corresponding to unexpectedly rigid PSIImf in solution at temperatures
below ~276 K can be attributed to the restriction of protein dynamics due to ice-induced ag-
gregation. This result suggests that the influence of dynamic restriction due to aggregation
in ice overpowers the occurrence of a classical dynamic transition. Further investigation
into the dynamic transition of PSIImf in solution may involve utilizing cryoprotectants,
such as glycerol, to prevent ice formation. However, conducting such experiments is
beyond the scope of the present work.
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4. Conclusions

This study provides a comprehensive analysis of the dynamical behavior of PSIImf in
solution and elucidates two distinct temperature regions of molecular dynamics. Specif-
ically, our investigation characterizes the flexibility of PSIImf in a native liquid state at
physiological temperatures.

In summary, we observed that the dynamics of PSIImf are significantly activated
at temperatures above the melting point of water, leading to larger MSD values com-
pared to those of specifically hydrated membrane stacks. In this temperature regime, the
MSD values for PSIImf in solution are up to twice as high as for the hydrated membrane
stacks as expected for a higher hydration level. A jump-diffusion model has been used
to characterize the time scale of this conformational dynamics at the temperature of 295
K. The obtained results characterize the level of flexibility necessary for the proper PS II
functionality under physiological conditions, which plays a vital role in photosynthetic
water splitting to generate oxygen. To perform these essential functions, PS II requires
structural flexibility, allowing the protein to undergo conformational changes necessary
for electron transfer and specific steps of water splitting. In contrast, we observe a severe
restriction of molecular dynamics upon freezing of the solvent below ~276 K. We associate
this unexpected suppression of dynamics with a substantial aggregation of PSIImf caused
by ice formation. Upon aggregation, the motional freedom of the protein becomes seriously
restricted by congestion with neighboring molecules, which results in a suppression of the
observed MSD.

Overall, this study provides valuable insights into the mechanisms of photosynthesis
by highlighting the vital role that dynamics play in protein function. Understanding the
dynamic processes of PSIImf in solution is essential for developing effective strategies to
maintain the stability and functionality of photosynthetic organisms.
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