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Abstract: In this paper, the effects of nickel foam with different thicknesses, as a fluid collector, on
the morphology and properties of electrode materials were explored. The Fe2O3 material, which is
a common active material for supercapacitor electrodes, was used in combination with MgFe2O4.
This combination resulted in better electrochemical performance and cycle stability for the Fe2O3

material. The synthesis ratio of Fe2O3/MgFe2O4 materials with the best stability, as reported in a
previous article, was selected for this study. The electrode with the best performance was then selected
and assembled with activated carbon to form an asymmetric supercapacitor. This supercapacitor
exhibited a high specific capacity of 240 C/g, an energy density of 58.75 Wh/kg, and a power density
of 200.4 W/kg at a current density of 1 A/g. These findings provide valuable references for the
selection of different fluid collectors with electrodes.

Keywords: asymmetric supercapacitor; Fe2O3/MgFe2O4; collector

1. Introduction

As the most common secondary energy, energy storage technologies for electrical
energy have been extensively researched. Among the large number of available energy
storage technologies, the most promising are lithium-ion batteries and ultracapacitors.
Supercapacitors fill the performance gap between batteries and capacitors by offering
energy and power densities between them. They can store more energy than conventional
capacitors and have a higher cycle life, a higher multiplier performance, and better stability
than batteries. These advantages give supercapacitors a wide range of application scenarios
and have attracted widespread interest. In the previous article [1], the Fe2O3/MgFe2O4
electrode was prepared using the hydrothermal method, which can achieve high specific
capacity and good cycle stability. The electrochemical testing and material characterization
revealed the synergistic effect of the two materials, and the reason for the improvement of
electrode cycle stability was analyzed [2–5].

The choice of fluid collector in hydrothermal processes significantly impacts electrode
performance as collector morphology affects material growth [6–9]. Prior research has
examined nickel foam thickness and found that a common thickness of 0.3 mm yields Fe2O3
nanosheets and MgFe2O4 nanoparticles, which is important due to the increased active
sites with a thicker foam. Therefore, the material choice and structure of fluid collectors
are crucial as they have varying conductivity and oxidation resistance, which in turn
influence overall electrode performance. Additionally, material structures and porosities
also affect growth quality [10–13]. Wang et al. [14] used Fe2O3 nanotube arrays coated with
polypyrrole on carbon cloth, which displayed good cyclic stability with 80% retention after
10,000 cycles. However, they achieved only a modest initial specific capacity of 230 F/cm2

at 1 A/cm2. In contrast, Kumar et al. [15] achieved a higher initial specific capacity of
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600 F/g with Mn3O4-Fe2O3/Fe3O4@rGO, although only 61% was retained after 1000 cycles.
Therefore, different carriers have a great influence on the performance of the electrode.

The previous article explored the optimal stability of the Fe2O3/MgFe2O4 material
synthesis ratio. In this paper, the influence of nickel foam with different thicknesses,
as a fluid collector, on the morphology and performance of electrode materials will be
investigated using the synthesis ratio explored in the previous article, and the synthetic
route of the material remains unchanged [1]. Nickel foam with different thicknesses will be
used in the market common nickel foam. The electrode with the best performance will then
be selected as the cathode. Taking into consideration factors such as potential window and
specific capacity, the anode of the assembled supercapacitor will be commercial activated
carbon [16,17].

2. Experimental Section
2.1. Preparation of Fe2O3/MgFe2O4 Powders

The steps for the synthesis of Fe2O3/MgFe2O4 electrode materials are the same as in
the previous paper, except that different thicknesses of the nickel foam are changed as the
carrier. Fe2O3/MgFe2O4 electrodes with 0.3, 0.5, and 1.0 mm thicknesses of nickel foam
were prepared, respectively named FM-2, FM-0.5NF, and FM-1.0NF, and their properties
were compared using electrochemical tests [18]. Then, the reasons for the performance
changes were analyzed through the characterization of various materials. The specific
parameters of the electrodes are shown in Table 1. The molar ratio of composites is
calculated by the ion concentration of ICP-OES.

Table 1. Comparison of nickel foam samples with different thicknesses.

Sample
Content (mmol)

Thickness
Fe2O3/MgFe2O4

ProportionFe(NO3)3·9H2O Mg(NO3)2·6H2O

FM-2 2 0.5 0.3 mm 1.9:1
FM-0.5NF 2 0.5 0.5 mm 1.4:1
FM-1.0NF 2 0.5 1.0 mm 1.1:1

2.2. Preparation of Anode Electrode

To prepare the anode materials for asymmetric supercapacitors, the fluid collecting
nickel foam is first cleaned by ultrasound. Then, the foam is cut to the required shape
and size. The cleaning process of the foam nickel involves sequentially using 1 M dilute
hydrochloric acid, anhydrous ethanol, and deionized water for 3–5 min. This effectively
removes the oxide layer, surface oil stains, and other impurities. After the cleaning, the
nickel foam is placed in a vacuum drying oven. Vacuuming is conducted, followed by
heating the foam up to 60 ◦C at a heating rate of 2 ◦C/min. The heating is maintained at
60 ◦C for 6 h. The mixture consists of GO, ACET, and PVDF in a ratio of 8:1:1. 1-methyl-
2-pyrrolidone is then slowly dripped until the powder is fully wet. The evenly coated
mixture is applied to both sides of the nickel foam using a brush and is dried for 6 h.
Subsequently, the nickel foam is pressed by a tablet press at a pressure of 10 MPa for 5 min.
This process ensures that the electrode material is firmly packed into the pores of the nickel
foam, resulting in the GO electrode. By comparing the weight of the nickel foam before
and after the electrode, the load of active material is determined to be 2–4 mg/cm2 [19–22].

2.3. Materials Characterisation and Electrochemical Measurements

For the preparation, all samples were analyzed in phase by X-ray diffraction (XRD,
Bruker D8 Advance, Wuhan, China). The product morphology was characterized us-
ing a scanning electron microscope (SEM, Zeiss Gemini 300, Wuhan, China). Chemical
composition and material binding mode samples were characterized using transmission
electron microscopy (TEM, Tecnai G2 F30, Wuhan, China). A full spectral characterization
of the sample and the analysis of the Fe2+/Fe3+ content of samples before and after cycle
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testing were characterized using X-ray photoelectron spectroscopy (XPS, Thermo Scientific
K-Alpha, Wuhan, China).

The electrochemical properties of all samples were tested using a three-electrode
system with the sample electrode as the working electrode, the platinum wire as the counter
electrode, the Hg/HgO as the reference electrode, and the electrolyte using 1 M KOH.
Cyclic voltammetry (CV), constant current charge/discharge and cyclic stability tests were
carried out on all samples. The GCD test is used to calculate the specific capacity and is
based on the following equation [23]:

C =
I∆t
m

(1)

where C (C/g) is the specific capacity, I (A) is the discharge current, ∆t(s) is the total
discharge time, and m (mg) is the electrode material loading mass. The material load-
ing masses were found using inductively coupled plasma optical emission spectrometer
(ICP-OES) testing and ranged from 1.0 mg to 1.2 mg.

3. Results and Discussion
3.1. Phase Composition, Microstructure and Surface Chemistry

Figure 1 shows the XRD characterization of FM-2-0.5NF- and FM-2-1.0NF-loaded
materials compared with FM-2 samples. As can be seen from the figure, the sample
loads all have obvious diffraction peaks, which proves that the crystal structure is intact.
Through comparison, it can be found that, for FM-0 sample load material [1], these peaks
at 2θ angles of 24.125◦, 33.117◦, 35.604◦, 40.823◦, 49.412◦, 54.002◦, 62.375◦, and 63.948◦ can
be observed in the X-ray diffraction pattern, it is completely consistent with the standard
card JCPDS NO.89-0597 of Fe2O3 material. For FM-2--0.5NF and FM-2-1.0NF samples,
there are diffraction peaks at 2θ = 30.212◦, 35.587◦, 37.227◦, 43.253◦, 57.210◦, and 43.253◦.
The MgFe2O4 material standard card JCPDS NO.73-1960 is consistent with that of the
FM-2 sample, and the intensity of these peaks relative to Fe2O3 diffraction peaks is greater
than that of the FM-2 sample. From a certain level, it can be shown that the MgFe2O4
content in these samples accounts for a larger proportion [24,25].

Figure 1. XRD pattern of FM-0.3 NF, FM-0.5 NF, and FM-1.0 NF.
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X-ray photoelectron spectroscopy analysis was performed on FM-2-0.5NF and FM-
2-1.0NF electrodes. The broad spectrum scanning patterns of samples in the range of
0–1400 eV are shown in Figure 2. As can be seen from the figure, in the binding energy
range of 0–1400 eV, similar to the FM-2 sample, the spectra of C 1s, O 1s, Fe 2p, Ni 2p,
and Mg 1s can also be clearly observed. The diffraction peak intensity of Mg 1s increases
with the increase of nickel foam thickness, which indicates that the relative content of
Mg increases to a certain extent, which is consistent with the change of molar ratio of
Fe2O3/MgFe2O4 and the peak intensity of XRD obtained by the ICP-OES test. XRD and
XPS wide-scan test patterns further show that Fe2O3/MgFe2O4 loaded in FM-2-0.5NF and
FM-2-1.0NF samples have been successfully synthesized.
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Figure 3 shows the SEM characterization of FM-0.5NF and FM-1.0NF. As can be
seen from the figure, the supporting material morphology prepared by nickel foam with
thicknesses of 0.5 and 1.0 mm under the same initial conditions is similar to that obtained
by nickel foam with a thickness of 0.3 mm, both of which are the composite of nanosheets
and nanoparticles. Figure 3a,c show the SEM images of FM-0.5NF and FM-1.0NF samples
at 10,000 ratios, where the load material of the FM-2-1.0NF sample grows more densely,
which is consistent with the conclusion that the load material of the FM-2-1.0NF sample
is heavier by ICP-OES. The growth of both materials is relatively uniform, and there is
no obvious agglomeration of nanosheets. Figure 3b,d shows the SEM characterization
of 100,000 times of the two samples, in which the spherical substances in both samples
are significantly increased and the gaps of the Fe2O3 nanosheets are filled in, indicating
that, under the same initial preparation conditions, the MgFe2O4 material on the growth
is significantly increased with a larger thickness of nickel foam as the base. Although the
thicker nickel foam brings more growth sites of materials and increases the load material,
the size of Fe2O3 nanosheets does not increase accordingly, and the thickness remains about
15 nm, similar to that of the MF-2 sample. The retention of the Fe2O3 nanosheet in a small
size makes it less affected by volume change, which is also conducive to the retention of
performance. More spherical MgFe2O4 increases the contact between Fe2O3 nanosheets,
which may be helpful for electron conduction to some extent, while enhancing the electron
exchange ability of the material. Fm-0.5 NF and FM-2-1.0NF have better stability than
FM-2. According to SEM characterization, compared with FM-2 samples, FM-0.5NF and
FM -1.0NF samples can support more MgFe2O4 material, and more material loading does
not increase the size of Fe2O3 nanosheets. This makes the contact between Fe2O3/MgFe2O4
materials better, thus enhancing the electron exchange and further improving the stability
of the material, which is also the reason for the retention of the electrochemical impedance
of the material [26].
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3.2. Electrochemical Characterizations

Electrochemical tests were conducted on FM-2-0.5NF and FM-2-1.0NF, and the results
are shown in Figures 4 and 5. Figure 4a,b show the CV patterns of FM-2-0.5NF and FM-
2-1.0NF at a scanning rate of 10–50 mV/s. Both electrodes have obvious REDOX peaks,
showing pseudocapacitance. The reduction peak has a large response current, but the
current magnitude is different from the peak current of the oxidation peak, showing a
quasi-reversible reaction. The CV patterns of FM-2-0.5NF and FM-2-1.0NF samples vary
with the scanning rate, and the shape and position of the REDOX peaks are still well
maintained. For FM-2-0.5NF samples, at a scanning rate of 10 mV/s, the oxidation peak
and reduction peak potentials are 0.47 V and 0.36 V, respectively, with a difference of
0.11 V. At a scanning rate of 50 mV/s, they were offset to 0.60 V and 0.33 V, respectively,
and the difference increased to 0.27 V. At 10mV/s, the reduction peaks of FM-2-1.0NF
samples were 0.5 V and 0.32 V, respectively, with a difference of 0.18 V; at 50 mV/s, they
were 0.55 V and 0.29 V, with a difference of 0.26 V. The results show that both 0.5 mm
and 1.0 mm thick nickel foam electrodes have good reversibility, and 1.0 mm nickel foam
electrodes have better reversibility. Figure 4c,d show the GCD patterns of FM-2-0.5NF
and FM-2-1.0NF. A 1–8 A/g current density was also selected for each constant-current
charge–discharge test. As can be seen from the figure, the specific capacity of FM-2-0.5NF
and FM-2-1.0NF samples decreases with the increase of current density. At a 1 A/g current
density, the specific capacity is 372.5 C/g and 379.5 C/g, respectively, which is slightly
reduced compared with the FM-2 sample. Among them, FM-2-1.0NF samples have a better
magnification performance than FM-2-0.5NF samples. At a 1–8 A/g current density, the
specific capacities are 379, 348.5, 327.5, and 291 C/g, respectively. When the current density
reaches a high magnification of 8 A/g, the specific capacitors can still reach 77% of the
specific capacitors when the current density is 1 A/g, 67% higher than FM-2-0.5NF and 73%
higher than FM-2. Since the electrolyte is used consistently, this increase in magnification
performance may be due to load material variations. Among them, the FM-0.5-NF sample
has the lowest specific capacity, which may be due to the fact that 0.5 mm nickel foam does
not have advantages for the growth of materials. Further analysis was conducted through
subsequent tests and characterization.
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Figure 5a depicts the cyclic stability pattern of FM-2, Fm-2-0.5 NF, and Fm-2-1.0 NF. It
can be observed that the overall specific capacity of FM-2-0.5NF and FM-2-1.0NF decreases
during the cycle. After the GCD cycle, the specific capacity of FM-2-0.5NF declines to
312.5 C/g, which is 83.9% of the initial specific capacity. In comparison, the specific
capacity of the FM-5 sample after the cycle is 344.5 C/g. This confirms that the Fm-2-1.0 NF
sample exhibits a slower decay rate, indicating an increase in the thickness of the nickel
foam and a decrease in the initial specific capacity of the hydrothermal electrode. However,
this trade-off leads to improved cycle stability. Furthermore, even though the specific
capacity of FM-2-1.0NF is initially slightly lower than that of FM-2, it consistently remains
at 375.5 C/g after approximately 400 cycles, which is consistently higher than the FM-2
sample. The improved stability can be attributed to the larger size and pore size of the
nickel foam. On the other hand, Figure 5b shows the electrochemical impedance curves
before and after the FM-2-0.5NF and FM-2-1.0NF cycles, and Table 2 lists the results of the
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electrical conductivity test. Prior to the cycle, Fm-2-0.5NF, Fm-2-1.0NF samples exhibited
Faraday impedance of 1.1 Ω and 0.6 Ω, and the exhibit electrical conductivity values of
1429 s/cm and 1250 s/cm, respectively, with Fm-2-1.0NF samples having the lowest initial
impedance. After 1000 cycles for both electrodes, the Faraday impedance increased to 1.7 Ω
for the FM-2-0.5NF sample and 0.9 Ω for the FM-2-1.0NF sample. These results suggest that
the 1.0 mm nickel foam electrode has the lowest impedance after circulation, representing
the minimal degree of material deactivation and, hence, the best stability.

Table 2. The conductivity results of the sample.

Sample Thickness (mm) Resistivity (m Ω·cm) Conductivity (s/cm)

FM-2 0.326 0.2 5000
FM-2-0.5NF 0.532 0.7 1429
FM-2-1.0NF 1.028 0.8 1250

Figure 6 shows the XPS characterization pattern before and after FM-2-0.5NF and FM-
2-1.0NF cycles. Figure 6a shows the O 1s spectra of FM-2-0.5NF and FM-2-1.0NF before and
after the cycle. All curves can also be fitted to three components corresponding to lattice
oxygen (OI), chemisorbed oxygen (OII), and physical adsorption oxygen (OIII), which are
similar to FM-0 and FM-2. The content of the three oxygen elements is shown in Figure 6b.
It can be seen from the figure that the chemisorbed oxygen ratio of FM-2-1.0NF after cycling
is higher than that of FM-2-0.5NF, indicating that the FM-2-1.0NF electrode has better
activity. The chemisorption oxygen ratio of FM-2-0.5NF and FM-2-1.0NF decreased after
1000 cycles, and the initial OII percentage of FM-2-1.0NF was about 61%, which remained
at 68% after 1000 cycles. However, the chemisorbed oxygen ratio of FM-2-0.5NF samples
decreased significantly before and after the cyclic charge-discharge test, accounting for 33%
after the cycle, which was the lowest among the four samples. Therefore, it can be inferred
that FM-2-1.0NF electrode materials have more oxygen vacancies at the initial stage and
have the best electrochemical activity [27,28].

Figure 6c,d shows the spectrum of Fe2p before and after the cycle of the FM-2-1.0NF
sample. It can be seen from the figure that Fe2p has two different characteristic peaks at
710.8 eV and 724.4 eV, which can correspond to the peaks of Fe 2p3/2 and Fe 2p1/2. The
location of the peak value can correspond to that of the FM-2 sample. After partial peak
fitting, FM-2-0.5NF samples had a relatively high Fe2+/Fe3+ ratio of 1.19 before the cycle.
After 1000 cycles, Fe2+/Fe3+ decreased to 0.68, indicating a loss of material activity, which
was also consistent with the assumption of oxygen vacancy. Figure 6c,d show the Fe 2p
spectra of FM-2-1.0NF samples before and after cycling. Before the cycle, Fe2+/Fe3+ was
1.1 and, after the cycle, it remained at 0.94, indicating that FM-2-1.0NF samples had better
activity preservation, which was due to the better reversible reaction during the charging
and discharging process [29].

A larger thickness of nickel foam will have more material forming sites. Therefore,
these sites will increase the overall load of the material, but they will not have a significant
impact on the nanometer size of the material. The electrode prepared by nickel foam with a
0.5 mm thickness has a similar growth material proportion and mass compared to 0.3 mm,
but its conductivity is greatly reduced. On the other hand, the conductivity of the electrode
prepared with 1.0 mm thick nickel foam is similar, but the quality and proportion of the
material is lower, indicating that 0.5 mm thick nickel foam does not offer any advantage.
Although the 1.0 mm thickness of nickel foam exhibits worse conductivity, it provides
better contact between the composites, leading to lower electrochemical impedance and
better stability. Thus, the initial specific capacity of the FM-2-1.0NF sample is smaller, but
the retention rate of the capacitor is better during cycling. Consequently, in this follow-up
study, the FM-2-1.0NF electrode prepared with foam nickel of a 1.0mm thickness was
chosen as the research choice [30].
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The GO electrode was tested. The cyclic voltammetry test pattern is shown in Figure 7a.
As can be seen from the figure, at a low scanning rate, the CV pattern is close to a rectangle,
showing double electric layer capacitance dominated by physical adsorption. The shape
of the rectangle is irregular, indicating the existence of a REDOX reaction, which may be
attributed to the functional groups on the GO surface. At the scanning rate of 10–30 mV/s,
the shape of the CV pattern remains basically unchanged, showing good magnification
performance. When the scanning rate reaches 50 mV/s, part of the shape changes due
to the great influence of the functional group pseudo-capacitance, but the shape is very
symmetrical, indicating good reversibility. Figure 7b shows the comparison of CV patterns
of the GO anode and the Fe2O3/MgFe2O4 electrode at a scanning rate of 10 mV/s. It can be
found that the reduction peak of the GO electrode as an anode is higher, which is slightly
lower than that of the cathode, but can be compensated by the increase of load mass.
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Figure 7c shows the GCD curve of the GO anode at −0.65–0 V. The curve is basically
straight, with only a slight stagnation platform, showing obvious double-layer characteris-
tics. The charge and discharge curve has a certain curvature, which comes from the pseudo
capacitance of functional groups. At a high scanning rate, the Faraday response is delayed
due to fast scanning, which leads to rapid potential change in the charge–discharge curve.
At a current density of 1, 2, 4, and 8 A/g, the specific capacity of the electrode is 169.6, 160.5,
140.4, and 107.25 C/g respectively, which has a good performance. Figure 7d shows the
cycle stability pattern of the GO electrode. The electrode increases slightly from 141.7 C/g
to 148.85 C/g at 0–500 cycles, due to the exposure of more active sites during the cycle.
After 3000 cycles, the electrode specific capacity drops to 127.4 C/g, which is 90% of the
initial specific capacity. GO electrodes show good cyclic stability.

The electrochemical test shows that graphene oxide, as an anode, has a good double layer
performance at −0.65–0 V potential and less pseudo capacitance performance. In the 1 A/g
GCD test, it can show a high specific capacity of 169.6 C/g, and the GO electrode has good
cyclic stability. After 3000 cycles, 90% of the initial specific capacity can be maintained. The
electrode and Fe2O3/MgFe2O4 cathode can be adapted for the assembly of capacitor batteries.

The potential size of the whole battery is determined by the potential window of the
anode and the cathode and the degree of adaptation of the poles. In this whole battery,
because the anode uses the graphene oxide electrode, it has a large potential window. The
cathode Fe2O3/MgFe2O4 electrode potential window is 0–0.65 V. In order to adapt the
cathode potential, the anode potential window is first selected as −0.65–0 V. Therefore, the
potential window of the whole battery is tested from 0–1.3 V, and the potential window is
successively increased, and the appropriate working potential is selected based on specific
capacity, charging, and discharging efficiency and other factors.

Figure 7 shows CV patterns and GCD patterns of different potentials of the whole
battery at a scanning rate of 10 mV/s. Figure 8a shows the CV patterns of the whole battery
with the maximum potential of 1.3–1.7 V. It can be seen from the figure that all CV patterns
have obvious REDOX peaks with similar peak current heights, showing good reversibility.
With the increase of the potential window, the response current also increased gradually,
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and the CV pattern shifted to the right and maintained a good shape. In the pattern of
the highest potential 1.3–1.7 V, the peak current density of the reduction peak is 5.55, 5.56,
6.15, 6.24, and 6.52 A/g, respectively. It can be seen that the circuit density of the reduction
peak increases the most when the potential window reaches 0–1.5 V, indicating that the
material activity increases greatly in this potential window. When the maximum potential
reaches 1.7 V, it can be seen that the CV pattern has a large tail, which is due to the severe
polarization caused by excessive potential. This polarization will cause electrolytic water
reaction and damage to the electrode, so the maximum potential is limited below 1.7 V.
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Figure 8b shows the GCD at a 1 A/g current density in different potential windows.
It can be seen from the CV pattern that the maximum potential is limited to 1.7 V, so
the maximum potential from 1.3 V to 1.6 V is selected. As can be seen from the figure,
the charge–discharge capacitance increases with the increase of the potential window. In
the 0–1.3 V potential window, the material exhibits low activity, with a specific capacity
of 63.7 C/g. When the potential window expanded to 0–1.4 V, an obvious plateau of
pattern stagnation was observed, indicating the occurrence of the Faraday reaction. The
charging specific capacity is increased to 233.8 C/g, while the discharge specific capacity
reaches 219.8 C/g, and the charging and discharging efficiency is 94%. When the potential
window is 0–1.5 V, the charge–discharge capacitance is further increased, the charge–
discharge specific capacity is 297 C/g, the discharge specific capacity is 241.5 C/g, and the
charge–discharge efficiency drops slightly to 91%. When the potential window reaches
0–1.6 V, it can be found that the charge–discharge pattern has a serious stagnant platform.
The charging specific capacity reaches 606.4 C/g, but the discharge specific capacity is
still only 296 C/g, and the charge–discharge efficiency is only 49%. Excessive potential
leads to difficulty in charging the electrode after reaching a certain potential, resulting
in severe polarization of the electrode, and an irreversible Faraday reaction, releasing
the same amount of electricity as the charged amount. Such high potential can cause
serious deactivation of electrode material, damage of material morphology, and a decrease
of electrode performance. Therefore, in order to take into account the specific capacity,
charge–discharge efficiency, and electrode stability of the electrode, a potential window of
0–1.5 V was selected in this study.

Figure 9c shows that the supercapacitor exhibits the highest energy density, measuring
58.75 Wh/kg, at a current density of 1 A/g. Additionally, the power density is recorded
at 200.4 W/kg. As the current density increases, it results in a reduction in charging and
discharging time, leading to a substantial increase in power density but a decrease in energy
density. The energy density–power density curve presented in the figure indicates a slight
downward trend, illustrating the overall magnification performance of supercapacitors.
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It can be observed from Figure 9c that the supercapacitor exhibits the highest energy den-
sity of 58.75 Wh/kg at a current density of 1 A/g, along with a power density of 200.4 W/kg.
As the current density increases, the charging and discharging time decreases, leading
to a significant increase in power density but a decrease in energy density. The energy
density–power density curve in the figure demonstrates a slight downward trend, reflecting
the overall performance characteristics of supercapacitors.

The cycle stability pattern of the whole battery for 3000 cycles is shown in Figure 10a.
It can be observed that the supercapacitor demonstrates good cycle stability. The specific
capacity is maintained at 222 C/g, which is 92% of the initial specific capacity, after 1000 cycles.
After 2000 cycles, the specific capacity decreases to 216 C/g, accounting for 90% of the initial
specific capacity. Moreover, during the period from 2000 to 3000 cycles, the supercapacitors
experience a faster decay in specific capacity. The specific capacity after 3000 cycles is 198 C/g,
which corresponds to 83% of the initial specific capacity. Comparatively, the cycle stability of
the whole battery of the supercapacitor is better than that of the cathode. This is attributed
to two factors. Firstly, the high stability of the anode contributes to an improvement in the
overall battery stability. Secondly, the presence of errors in the adaptation between the anode
and cathode limits the utilization of the cathode material’s activity, thereby enhancing the
electrode’s lifespan. Figure 10b shows the CV curve changes after different cycles. It can be
seen from the figure that the electrode has the maximum response current density before the
cycle starts, indicating that the supercapacitor has the best activity before the cycle. After
1000 cycles, the REDOX peak height of CV patterns decreased slightly, indicating partial
deactivation of the material. By comparing with the reduction peak of the pre-cycle pattern,
it can be found that the reduction peak of the supercapacitor decreases significantly at the
potential range of 1.1–1.4 V, indicating that the supercapacitor is first deactivated from this
range at the beginning of the cycle. After 2000 cycles, it can be found that the CV pattern
does not change much compared with 1000 cycles, indicating that the loss of electrochemical
activity is small. This conclusion can correspond to Figure 10a. According to the cycle
stability pattern, the specific capacity decreases by only 6 C/g after 1000 cycles. After
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3000 cycles, compared with CV patterns of 2000 cycles, it can be seen that the reduction
peak value decreased significantly in the range of 0.8–1.1 V potential, while there was little
change in the range of 1.1–1.4 V. This indicates that, in the late cycle, the supercapacitor
was seriously deactivated at 0.8–1.1 V potential, while the activity of 1.1–1.4 V potential
basically no longer declined. The sequence of deactivation may be related to the time of
deactivation of the two materials in Fe2O3/MgFe2O4, respectively [31,32].
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By selecting appropriate cathodes for Fe2O3/MgFe2O4 electrodes and performing
performance tests in a two-electrode system, it is found that the whole battery has a high
specific capacity of 240 C/g, an energy density of 58.75 Wh/kg, and a power density of
200.4 W/kg at a current density of 1 A/g. The asymmetric supercapacitor composed of
Fe2O3/MgFe2O4//GO has a good electrochemical performance and can be used as a cheap
and high-performance energy storage device.

4. Conclusions

The influence of the fluid collector on the active material and the performance of the
electrode sheet in an electrode sheet is investigated in this study. The Fe2O3/MgFe2O4
material mentioned earlier is loaded onto various fluid collectors. Through electrochemical
testing and material characterization, the impact of the fluid collector is examined, and
a suitable fluid collector is chosen for electrode preparation. Subsequently, the obtained
electrode serves as the cathode, and a suitable GO anode is selected. These components are
then assembled into a hybrid supercapacitor battery. To obtain the parameters of the entire
battery, appropriate potential window selection and thorough electrochemical testing are
conducted. The following specific results are obtained:

(1) After selecting the appropriate cathode electrode material, select the appropriate
collector for it. Fe2O3/MgFe2O4 electrodes were prepared from nickel foam with
different thicknesses, and the influence of different fluid concentrations was inves-
tigated by electrochemical testing and material characterization. It is found that,
for electrodes, the larger thickness of nickel foam has more material forming sites,
so the electrode load increases, but the larger load does not lead to the larger size
of Fe2O3 nanosheets. In addition, the content of MgFe2O4 nanoparticles increased
with the increase of thickness, indicating that more forming sites were convenient
for the growth of MgFe2O4 nanoparticles. The addition of MgFe2O4 nanoparticles
leads to better interatrial contact, thus improving electrochemical impedance and
increasing the reversibility of the material reaction. Although the larger thickness of
the nickel foam leads to poorer conductivity and thus lower initial specific capacity,
combined with stability analysis, the larger-thickness nickel foam electrode has a
better overall performance.
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(2) Fe2O3/MgFe2O4 electrodes were prepared by an appropriate collecting system as
the cathode of the supercapacitor, and an appropriate anode was selected for it. It is
found that the potential window of the electrode material is too narrow to be used
as an anode. GO was selected as the anode with high performance. The electrode
has a high specific capacity of 169.6 C/g and an excellent stability of 90% capacitance
retention rate after 3000 cycles. Taking the electrode as the anode, the quality of active
material was matched by the performance difference of the anode and cathode, and
the whole battery of the supercapacitor was assembled.

(3) An electrochemical test was carried out on the assembled full battery of the superca-
pacitor in the two-electrode system. Firstly, the specific capacity and charge–discharge
efficiency of the electrode under different potential windows were selected as 0–1.5 V,
and the test showed that the supercapacitor had a high specific capacity of 240 C/g at
the current density of 1 A/g, energy density of 58.75 Wh/kg, and power density of
200.4 W/kg. Supercapacitors also have good stability, with an 83% capacitance reten-
tion rate for 3000 cycles. The deactivation potential sequence of the supercapacitor
was analyzed by the CV curve after the cycle, and the difference of the deactivation
process of the cathode composite material was determined.

This paper provides an idea for the selection of the Fe2O3/MgFe2O4 fluid set, and the
assembled high performance Fe2O3/MgFe2O4//GO asymmetric supercapacitor has good
commercial value.
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