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Abstract: The electronic structure and translucent nature of lithium tetraborate (Li2B4O7) render it
promising as a scintillator medium for neutron detection applications. The inherently large neutron
capture cross-section due to 10B and 6Li isotopes and the ease with which Li2B4O7 can be enriched
with these isotopes, combined with the facile inclusion of rare earth dopants (occupying the Li+

sites), are expected to improve the luminescent properties, as well as the neutron detection efficiency,
of Li2B4O7. The electronic structure of both doped and undoped Li2B4O7 were explored, using
photoemission and inverse photoemission spectroscopies, optical measurements, and theoretical com-
putational studies such as density functional theory. The scintillation properties are further enhanced
because of the wide bandgap, making Li2B4O7 extremely translucent, so that capturing the neutron
scintillation output is neither hindered nor diminished. Therefore, in this review, demonstrations of
the possible amplification of neutron capture efficiencies, courtesy of rare-earth dopants, along with
insights into a significantly large charge production (associated with neutron capture), are presented.

Keywords: lithium tetraborate; neutron detectors; rare earth dopants; neutron scintillation detectors

1. Introduction

Neutron detection is an inherent component of neutron radiation dosimetry, cross-
border interdiction of fissile materials [1,2], nuclear reactor fuel and nuclear safety manage-
ment [3,4], nonproliferation, nuclear stockpile monitoring, and nuclear medicine [5]. These
particles are uncharged, which means that they do not provide a direct electronic signal,
and they do not readily interact with most matter. In short, when compared to detection of
other forms of radiation, neutron detection is nothing short of an ordeal. Therefore, when,
in a Senate hearing, Dr. Robert J. Oppenheimer was asked what instrument he would use to

Crystals 2024, 14, 61. https://doi.org/10.3390/cryst14010061 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst14010061
https://doi.org/10.3390/cryst14010061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0003-0827-7322
https://orcid.org/0000-0001-6149-4567
https://orcid.org/0000-0002-2198-4710
https://orcid.org/0000-0001-9352-4361
https://doi.org/10.3390/cryst14010061
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst14010061?type=check_update&version=2


Crystals 2024, 14, 61 2 of 17

detect an atomic bomb, his answer was “a screwdriver”, implying one would have to open
every container to detect fissile materials because radiation emanations were extremely
small [6].

Due to abovementioned reasons, practical neutron detection methods rely on in-
direct measurements based upon an initial neutron interaction producing a secondary
species (conversion) that is readily measurable due to its effect on electronic and/or opti-
cal properties [7]. Neutron detectors are, therefore, divided into electronic (gas-filled or
semiconductor devices, where ionization leads to an induced current or voltage pulse) or
scintillation (absorption of radiation followed by luminescence in the material) detectors.
However, the process of selecting just the right kind of materials to manufacture reliable
neutron detectors faces a colossal challenge of circumventing the background radiation.
To elaborate further, background γ-ray emissions, either from natural terrestrial sources
or from the γ-ray emitters associated with the neutron source, can mask the secondary
ionization or excitation signal from a neutron detector as well. Thus, many applications
seek materials made of the lighter elements to remove or reduce the signals that might
arise from associated X-ray and γ radiation, often referred to as being “γ-ray blind” [7],
meaning that a very high neutron-to-gamma-ray detection ratio is sought [8]. Currently,
there exist six kinds of materials used as scintillators: organic crystals, organic liquids,
plastics, inorganic crystals, gases, and glasses. Among these materials, crystal, glass, and
gas scintillators are often used for neutron detection; however, gases are less sensitive to
β (beta) and γ (gamma) radiation, while the background from γ rays is generally higher
for solids and liquids due to the higher atomic density. For thermal neutrons in particular,
detectors with a high concentration of 6Li are employed because they enhance the scintil-
lation sensitivity [9], which is why lithium tetraborate (Li2B4O7) has been touted to be a
highly efficient material for applications in scintillation neutron detectors [10–13].

In this review article, the crystal and optical properties of the lithium tetraborate
(Li2B4O7) are described. The optical properties and photoemission characteristics are dis-
cussed in detail to understand the advantage of using this material as a scintillator neutron
detector. The most important results on the rare earth (RE) doping of this material and how
this doping enhances the scintillation characteristics are also presented. Therefore, new re-
search directions on scintillation efficiency and transparency can be identified through this
review article. This information is critical to finally design and manufacture high-efficiency
and low-cost Li2B4O7-based neutron scintillation detectors.

2. Lithium Tetraborate-Based Scintillation Detectors

Lithium tetraborate, usually known for its pyroelectric and piezoelectric proper-
ties [14–16], is a complex tetragonal crystal with 104 atoms per unit cell (see Figure 1a),
with dimensions a = b = 9.470 Å and c = 10.290 Å and a space group of I41cd [17]. It has a
characteristic wide electronic bandgap of ~8.9 to 10.1 eV [18], a large capability for thermal
neutron capture, and high resistance to radiation damage. Li2B4O7 is also known to possess
the best scintillation parameters among all the lithium borates [11,12,19,20], and multiple
examples of experimental evidence advocating for the use of Li2B4O7 as a scintillator have
existed for quite some time now [12].

Work by Zadneprovski et al. [11] confirmed that undoped Li2B4O7 is in fact γ blind,
that is to say, largely insensitive to γ-ray radiation due to low γ-ray cross-sections, which is
consistent with the fact that the primary elemental constituents of Li2B4O7 all have very
low Z (i.e., atomic number) values. Since Li2B4O7 growth requires little post-material
fabrication processing, scintillation detectors based on Li2B4O7 hold promise for an in-
expensive and efficient detection system. Moreover, lightweight Li2B4O7 sheets can be
combined with multiple scintillation–photomultiplier tubes into a single PIN diode (or
photon sensor), so they can be scaled to large areas with little need for increased power or
loss of detection area due to the need for pixelation and concomitant device connections, as
would be the case in a solid-state device. Detectors based on Li2B4O7 can therefore be made
thick enough to provide the necessary neutron moderation within the detector medium,
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leading to higher absolute efficiency. Lastly, Li2B4O7 is fairly immune to terrestrial-level
temperature changes and unaffected by moisture and corrosion, making it well-suited for
harsh environmental applications.
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In terms of the physics of operation, the advantage of using Li2B4O7 as a neutron
detection medium arises from the high thermal neutron capture cross-section inherent in
the nuclear isotopes of 10

5 B (σB = 3935 barns) and 6
3Li (σLi = 940 barns). Natural B consists of

~20% of 10B, and natural Li consists of ~6% of 6Li. Luminescence is generated by electron–
hole pair creation and annihilation resulting from the energetic daughter products of 10B [9]
and 6Li [10] capture reactions, as shown below:
10B + n → 7Li (0.84 MeV) + 4He (1.47 MeV) + γ (0.48 MeV) (94%)
10B + n → 7Li (1.015 MeV) + 4He (1.78 MeV) (6%)
6Li + n → 3H + 4He + (4.8 MeV)

In order to improve the neutron interaction probability, Li2B4O7 can be formed using
Li and B enriched with 6Li and 10B, respectively [10], thus increasing the thermal neutron
capture cross-section. Both isotopes can be enriched using standard isotopic separation
techniques. And even though standard isotopic separation techniques can be applied to
enhance the enrichment of both the isotopes, usually Li is more widely used than B because
its neutron capture reaction products have higher energy and lead to greater light output.
Both the 6Li and 10B daughter fragments have significant kinetic energies, which, in turn,
can lead to the creation of electron–hole pairs. The subsequent electron–hole pairs can then
recombine to create light, but detection of the scintillation is more easily achieved if the
light is in the visible range and the scintillation output is coupled with the photomultiplier
or photodiode detector. Obviously, the light has to reach the detector, so a scintillator
material that is close to transparent is ideal. This means that the optical properties and
bandgap matter. But there are trade-offs, as discussed below. For example, a large bandgap
may ensure a more translucent material but lead to the creation of fewer electron–hole pairs
along the charge tracks left by the 6Li and 10B daughter fragments.

Single-crystal Li2B4O7, in its pure form, exhibits luminescence, but the scintillation
efficiency is insufficient for practical neutron detection applications [21]. Another major
drawback to using Li2B4O7 as a scintillation detector is that, like many glass-based materials,
it is sensitive to electron (β), proton, and α radiation. Although it is possible to use
a pulse height discrimination technique to separate 6Li or 10B neutron capture events
from other events, the response time is on the order of 10 ns, and the light output is low,
typically approximately 30% of that of anthracene [9]. In order to compensate for this
disadvantage, the light output must be maximized to produce an adequate neutron capture
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scintillation response, obtained by select doping of the material. Fortunately, Li2B4O7
readily accepts the incorporation of dopants such as Cu and Ag, as well as rare earth
elements, such as Yb [11,22], Ce [11], Nd [19,21], Sm [11], Eu [11,23], Gd [19], Tb [11],
Er [19], and Tm [11,24], that enhance the luminescence by increasing recombination sites
and adding luminescence lines [11,22–28], thus increasing the luminescent efficiency. Rare
earth elements are especially useful, as they exhibit sharp luminescence originating from
their intra-4f electronic transitions [22–26,29–50].

The partly filled 4f orbitals of the rare earth elements in conjunction with a filled 5s
and 5p subshell provide enough shielding from the crystal field (electric field exerted by
neighboring atoms) so that the energy levels of the rare earth ion closely resemble those of
the free ions when incorporated into the Li2B4O7. This is evident from detailed electronic
structure calculations of various rare earth dopants substitutionally placed in the Li2B4O7
lattice [25]. This property greatly increases luminescence efficiencies, i.e., signal above
background, with the addition of small amounts of rare earths. Thus, the light output,
generated as a consequence of neutron capture, is more readily detected in a photodetector
and more easily distinguished from background. The doped Li2B4O7 results in a better
linear dose response as compared to common thermoluminescent dosimeter materials (e.g.,
LiF), making it an attractive material for dosimetry applications [20,25,28,51]. Although
many elements have been used for doping Li2B4O7, only cerium-activated lithium or
borosilicate glass scintillators are well established and widely used as thermal (slow)
neutron detectors [9,11,52–55]. And if the goal is to improve the sensitivity of Li2B4O7, it
can be achieved by doping it with Ag [28]; in addition, combining the Ag-doped Li2B4O7
with solar-blind photomultiplier can also lead to a high signal-to-noise ratio [28].

3. The Optical Characteristics of Li2B4O7

Owing to the wide electronic bandgap (~8.9 to 10.1 eV), as seen in the combined
photoemission and inverse photoemission measurements [15,18], Li2B4O7 single crystals
are transparent across a wide range of 165–6000 nm, and the fundamental absorption
maximum is located at about 133 nm [15]. In nature, Li2B4O7 occurs as a clear, colorless
mineral, as inclusions of diomignite in pegmatite, and it can be easily manufactured into
crystals or glasses. As mentioned before, it can be fabricated into large sheets, using readily
available manufacturing techniques, so the assembly of large area detector arrays is possible,
and costs can be relatively low [51] because specialized materials processing is not required.
Pure Li2B4O7 glasses, on the other hand, typically present high transparency in the range
of 300–2600 nm, with three low-intensity emission bands centered at 402 nm, 520 nm, and
728 nm [11]. Regardless of whether it is a Li2B4O7 single crystal or a pure Li2B4O7 glass,
the addition of dopants can be expected to alter their respective luminescence spectrum.

Figure 2 presents the transmission spectra of both undoped and doped single crystals
of Li2B4O7. In this figure, signatures of an apparent trade-off between luminescence and
transparency, as an increase in luminescence comes at the cost of transparency and efficiency
of light collection, are observed. Doping Li2B4O7 single crystals with Ag gives birth to new
absorption bands at 174 nm and 205 nm (indicated by the arrows in the figure), whereas
both undoped and Cu-doped Li2B4O7 crystals present a broad low-intensity band [51].
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Figure 3 presents the electronic band configuration of Li2B4O7 obtained from pho-
toemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). The spec-
tra reveal several sub-band transitions. The valence band has a high-intensity (or high
electron density) primary peak in photoemission (below the Fermi level (EF)), and the
strong feature above EF, observed in inverse photoemission, denotes the conduction band
edge. A detailed analysis of the structures shown in Figure 3 unveils that the top of
the valence band in a Li2B4O7 single crystal is mainly occupied by just boron–oxygen
groups, while the bottom of its conduction band includes orbital contributions from
lithium as well [15,57]. The energy interval between the two strong spectral features
in Figure 3, one each in photoemission and inverse photoemission, represent the ground-
state bandgap. From these measurements [15,18] on a Li2B4O7(100) crystal, the ground-
state bandgap is found to be 9.8 ± 0.5 eV, falling right in the range between 8.9 ± 0.5 eV
and 10.1 ± 0.5 eV [15,18,56,58,59], which is somewhat in line with theoretical expecta-
tions [57]. These measured values for the ground-state bandgap are higher than the
previously measured values of the optical gap (Eg (opt) = 7.4 eV) extrapolated from the
absorption plot [15,56], but they are closer to the theoretical ground-state bandgap. This
means that incident photons possessing energy less than the ground-state bandgap, de-
termined from photoemission and inverse photoemission, can still create electron–hole
pairs by exciting electrons from the valence band to the conduction band. The creation
of carriers will manifest as an increase in the conductivity of the crystal, especially if the
carrier mobility and lifetimes are reasonable. Such an increase in the electron population in
the conduction band due to optical excitations will, in turn, amplify the photoconductivity
of Li2B4O7 crystal, while modifying its optical parameters. That is to say, once the Li2B4O7

crystal becomes conductive, the complex refractive index,
∼
n = n(1 + iχ), becomes more

relevant to the crystal structure model.



Crystals 2024, 14, 61 6 of 17
Crystals 2024, 14, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. The intensity of the combined experimental photoemission (left) and inverse photoemis-
sion (right) data for a Li2B4O7(100) crystal along (a) [011] and (b) [010] as a function of the binding 
energy E–EF, where EF is the Fermi level. Adapted from [18]. 

The overall dielectric function for all coordinate indices for Li2B4O7 can be determined 
via the crystallographic direction-dependent density functional theory (DFT). However, 
bandgaps estimated from DFT are subject to error and typically produce an incorrect 
bandgap that is smaller than the true ground-state bandgap [60–63]. Therefore, the scissor 
approximation method (SOA) was applied to the real ε1(E) and imaginary ε2(E) parts of 
the dielectric function (shown in Figure 4). In these calculations, the scissor correction er-
ror of 1.04 eV is towards the lower end of the range specified by Rasmussen [64] of 1-to-3 
eV. This error is small, producing a near-identical approximation to the ground-state 
bandgap of 7.3 eV that is found using the generalized gradient approximation (GGA), 
shown in Figure 5. Here, it must be noted that this gap of 7.3 eV is close to the ~7.4 eV gap 
inferred from optical transmission (Figure 2) and the band edges seen in combined pho-
toemission and inverse photoemission (Figure 3); therefore, the usage of these corrections 
to DFT appears somewhat reasonable. Figure 6 illustrates the calculated absorption coef-
ficient and refractive index with and without using the scissor approximation averaged 
over three directions to account for the fact that all crystal faces are not identical in their 
symmetry. 

Figure 3. The intensity of the combined experimental photoemission (left) and inverse photoemission
(right) data for a Li2B4O7(100) crystal along (a) [011] and (b) [010] as a function of the binding energy
E–EF, where EF is the Fermi level. Adapted from [18].

The overall dielectric function for all coordinate indices for Li2B4O7 can be determined
via the crystallographic direction-dependent density functional theory (DFT). However,
bandgaps estimated from DFT are subject to error and typically produce an incorrect
bandgap that is smaller than the true ground-state bandgap [60–63]. Therefore, the scissor
approximation method (SOA) was applied to the real ε1(E) and imaginary ε2(E) parts of
the dielectric function (shown in Figure 4). In these calculations, the scissor correction error
of 1.04 eV is towards the lower end of the range specified by Rasmussen [64] of 1-to-3 eV.
This error is small, producing a near-identical approximation to the ground-state bandgap
of 7.3 eV that is found using the generalized gradient approximation (GGA), shown in
Figure 5. Here, it must be noted that this gap of 7.3 eV is close to the ~7.4 eV gap inferred
from optical transmission (Figure 2) and the band edges seen in combined photoemission
and inverse photoemission (Figure 3); therefore, the usage of these corrections to DFT
appears somewhat reasonable. Figure 6 illustrates the calculated absorption coefficient and
refractive index with and without using the scissor approximation averaged over three
directions to account for the fact that all crystal faces are not identical in their symmetry.

In addition, with the use of Sellmeier equations, the refractive index of the single
lithium tetraborate crystals can be easily verified. The Sellmeier equations applied to the
Li2B4O7 crystals are as follows [65–67]:

n2
0 = 2.56431 +

0.012337
λ2 − 0.013013

− 0.019075λ2

n2
0 = 2.38651 +

0.010664
λ2 − 0.012878

− 0.012813λ2

The resulting refractive indices are plotted in Figure 7, where n2
0 and n2

e represent the
ordinary and extraordinary part of the optical response to the incident light traversing a
single lithium tetraborate crystal along the C4 axis. The curves center on a refractive index
of 1.5, which matches the secondary peak seen in Figure 6. In addition, the small differences
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in the curves demonstrate nontrivial birefringence, with a bandgap of approximately
7.41 eV to 10.1 eV (with the calculated value being 6.37 eV) indicating an implicit correction
of 1.04 eV to 3.73 eV. While 7.3 eV is close to the 7.4–7.5 eV gap determined from optical
transmission (Figure 2), the bandgap value of 10.1 eV is close to the ground-state gap of
9–10 eV extrapolated from the combined photoemission and inverse photoemission spectra
(Figure 3).
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Figure 5. Calculated spectra of real ε1(E) and imaginary ε2(E) parts of the dielectric constant of
Li2B4O7 crystal from DFT with the generalize gradient approximation (GGA). Eg represents the
calculated bandgap (6.37 eV). (a) Data for incident light E perpendicular to the z-axis. (b) E parallel to
the z-axis.
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Figure 7. The refractive index as a function of energy of the incident photon.

The fact that structural distortions, particularly at the interface of Li2B4O7 single
crystals, affect the electron levels in atoms was clearly demonstrated by Wooten et al. [18,58]
and the theory of [68]. The influences of imperfections and defects in the lattice of Li2B4O7
single crystals are highlighted in Figure 8, which illustrates that the absorption edge for the
Li2B4O7 glass differs substantially from that of the Li2B4O7 single crystal [67]. From this
figure, it is evident that the fundamental absorption maximum for borate glass occurs at
much longer wavelengths [67], i.e., lower energies, in comparison with that of the Li2B4O7
single crystal [58,67,69]. For the Li2B4O7 glass, the absorption spectrum shows an indistinct
absorption edge, which is common for glassy samples since the crystallographic direction-
dependent anisotropic optical properties are expected to be suppressed [70]. The electronic
structure of disordered media, which include Li2B4O7 glasses, can still be reconciled with
the electronic states of Li2B4O7 single crystals [19], chiefly because of the similarities in
the electron energy density distributions. With this in mind, the long wavelength shift
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of the absorption edge of the glass in comparison with single crystals can be explained
by blurring the boundary of the electronic density of states. Moreover, the energy band
model is still valid here, considering that the direct inter-band transitions are forbidden,
with indirect transitions of phonons and excitons occurring through mediation. A detailed
discussion regarding such indirect optical transitions is presented elsewhere [71].
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4. Factors Affecting Charge Production

As noted above, lithium tetraborate has a ground-state bandgap of roughly 9.8 eV and
a measured optical bandgap of 6.7 eV, and this significant bandgap, while improving light
transmission, limits the number of electron–hole pairs created by the reaction products
resulting from neutron capture. This optical bandgap corresponds to an approximate
number of possible charge hole pairs of ~410,000 for the most probable reaction channel
of 10B (94%), which has a much higher cross-section than 6Li. This calculation, of course,
assumes that all the reaction energy is absorbed. Having said that, for a more accurate
calculation, a correction factor to completely account for the production of an electron–hole
pair due to the absorption of incoming radiation with an energy above the bandgap must
be included. These correction factors have been estimated to be 3.17 [72] and 3.44 [73,74],
and employing the correction factor calculated by Klein [72] indicates that a 10B reaction
should produce roughly 200,000 charges. Using the same logic for 6Li, approximately
416,000 charges would be produced, but recall that this advantage is reduced since it
is known that 6Li has a smaller cross-section and lower elemental concentration. These
numbers are, of course, not completely realistic, as they are just the upper limits, as not all
of the subsequently created electron–hole pairs will give rise to detectable scintillations.
Instead, a neutron capture event near the surface (or an interface) can also result in either
an incomplete electron–hole production or Auger-electron production or photoemission.
Without defects or a dopant, excitonic decays are capable of producing photons well into
the UV, given that the optical gap is 6.7 eV, while the ground-state bandgap is 9.8 eV.

Convincing evidence of electron–hole pair production from neutron irradiation can
be collected by considering Li2B4O7 as a capacitive detector. The electrical response of a
Li2B4O7 detector to a neutron fluence is expected to result in a distinctly different pulse
count while being irradiated, as compared to the background measurement. A Li2B4O7
crystal was irradiated in the radial neutron beam of a TRIGA Mark II nuclear reactor, and
the operating bias was increased (or decreased) until a signal was detected. Once the
operating biases were fixed upon the detection of a signal, the pulse height spectroscopy
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data were recorded, as shown in Figure 9. The shutter to the beam was opened and
then closed cyclically between 10-min irradiation measurements and 10-min background
measurements, using a multichannel analyzer. These results demonstrate an increase in
conductance with neutron capture, consistent with the electron–hole pair creation from
the Li and He or 3H and 4He ion tracks. Although counts were observed above the
background during irradiation, there are no distinct spectral differences. This outcome
indicates that the background electrical noise is likely due to dielectric breakdown or an
increase in conductivity due to electron–hole pair creation, much like the expected increase
in conductivity due to photocarrier creation discussed above.
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Figure 9. The differential pulse height spectrum obtained for a 10-min count of background- and
neutron-irradiated biased Li2B4O7 crystal.

5. Factors Affecting Light Production

Based upon the bandgap of Li2B4O7, scintillation is expected to produce a photon in
the UV energy range. Figure 10 provides the scintillation response of undoped Li2B4O7 to
α particle radiation from 241Am (Figure 10a), and neutrons plus α particles from a 239Pu
source (Figure 10b). In these cases, assessing the interactions with incoming α radiation
is particularly important, as α particles are also among the main reaction products of the
10B or 6Li neutron capture reactions. The results shown in Figure 10 confirm that the
majority of the light response falls below ~450 nm, which is largely in the UV spectrum
(10–400 nm). However, it is desirable to produce visible light in order to exploit the high
efficiencies of PIN diodes and photomultiplier tubes. Therefore, if highly efficient scintilla-
tor neutron detection systems are to be realized using Li2B4O7, then the neutron capture
must be maximized, as the bandgap is engineered to produce more transitions to a longer
wavelength (i.e., in the visible range) while being unaffected by environmental factors such
as temperature. One bandgap-engineering option for increasing the wavelength in the
light emission spectrum is through the inclusion of defects into the Li2B4O7 structure. It
has been shown that surface states [68,75] produce photovoltaic charging effects on the
material, pinning the surface potential 3.5 eV away from the conduction band minimum
(see Figure 3) [76]. Therefore, surfaces states and defects can lead to scintillation in the
near-visible [77–79], as shown in Figure 10b.
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Figure 10. Luminescent response in Li2B4O7 to α radiation from 241Am without (a) and with (b) Ag
doping. Luminescent response in Li2B4O7 peaks at around 371 nm (a) but peaks at 533 nm with
(b) Ag doping.

Most of the rare earths exhibit emission in the visible region and into the near-infrared
region [37,44]. Depending on the host, these transitions can be modified; however, all the
electronic levels of the rare earth will remain inside of the bandgap of the host. When
the rare earth takes the place of one of the atoms in the host, such sites become a trap
center. The new transitions or trap energies can be observed via thermoluminescence,
radioluminescence, or light output measurements. In 1996, Wojtowicz [80] used a simple
band structure model to study the scintillation mechanism of a compound in the form of
AB3 doped with a rare earth ion and found that, depending on the f -s energy promotion [80]
a rare earth ion will act as an electron or hole trap. Energy calculations, based upon
the f -s transition energy, propose lanthanide ions as the prime candidates to be used as
activators for electron or hole traps. These ions can be used in Li2B4O7-based compounds
(as shown in Figure 11) to act as outstanding activators for modification of the luminescence
spectrum [80].
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Not only are the luminescence spectra of rare earth-doped Li2B4O7 affected by the
kind of rare earth dopant [11,22,24–26,30,32,34,40,41,47,81]; they are also affected by the
rare earth dopant’s concentration [30,81] and the growth atmosphere [34]. The preliminary
work of Zadneprovski et al. [11] suggests that co-doping Li2B4O7 with Cu along with
many rare earth dopant additions leads to a very efficient neutron scintillation (Figure 12),
and this may limit the available concentrations of activators when managing the overall
luminescence spectrum.
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radiation (2) from a 60Co source (o) and background (3,▼) from various doped and undoped lithium
tetraborates. Adapted from [11].

Rare earth elements tend to occupy the Li+ sites of Li2B4O7 [25,40,47], and the struc-
tural geometry of rare earth-doped Li2B4O7, as shown in Figure 13, does not change
significantly with dopants. The occupation of B sites by a rare earth element is quite
unlikely owing to the large difference in the ionic radii of B ions and that of the rare earth
elements (and the oxygen coordination number of the rare earth). Li+ substitution is not
the only consequence of rare earth doping; a few site distortions and site disorders are
present as well, due to the change in the lengths of the bonds between the rare earth and
surrounding atoms. X-ray absorption near-edge structure (EXAFS) data have shown that
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bond lengths decrease with the increase in atomic number [25]. It is also known that rare
earth impurities on Li2B4O7 are present in the form of trivalent (RE3+) ions [32,40,47]. Kelly
et al. [25], using density functional theory (DFT), show indications of strong hybridization
between rare earth states and the Li2B4O7 host. In their study [25], they used five rare earth
elements: Nd, Gd, Dy, Er, and Yb; however, only the first four demonstrate overlapping
of the unoccupied 4f levels of the rare earth with the conduction band of Li2B4O7 [25].
This finding is another indication that rare earth elements tend to occupy Li+ instead of B,
because Li+ is bonded to the B4O7 by ionic bonds, while boron and oxygen are strongly
tied via covalent bonds. The importance of understanding hybridization in scintillators
cannot be emphasized enough because significant hybridization between the rare earth
states and the Li2B4O7 host can increase luminescence and decrease excited-state lifetimes.
The rare earths will add states within the undoped Li2B4O7, reducing the bandgap at high
concentrations without affecting the transparency [24].
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lithium (purple), and RE (green). Both the theory and experiment evince that the RE occupies the Li+

site. Modified from [25].

A final challenge when adding activators to Li2B4O7 is in avoiding degradation to
transparency. This is still a ripe area for research and material advancement. In experiments
involving the doping of Li2B4O7 with 3% Er via concentration, photo-optical characteriza-
tion demonstrated no reduction in transparency; however, little effort has been made to
characterize its total scintillation efficiency [25]. Er, like Ce, Eu, Tm, and Yb, is a rare earth
element with similar chemical behavior, and, thus, other rare earth elements also appear
quite promising.

The preliminary results of Kelly et al. [25] are not too surprising given the prior
successes with the rare earth doping of Li2B4O7. What is still not known is the range of
possible elemental concentrations or combinatory mixtures of co-doping Li2B4O7 with Cu
along with other rare earth elements, such as Ce, Tb, and Er, and their effects on its optical
and mechanical properties. In some cases, the optical transparency was improved, while
it stayed unaltered in other cases [11]. Additionally, about 80–85% of the transmission in
doped Li2B4O7 is revealed to be in the range of 350 nm to 800 nm [11], demonstrating the
high optical quality of the pure and doped glasses, which is quite an encouraging result (to
say the least).
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6. Conclusions

In conclusion, Li2B4O7 has several inherent physical, atomic, and nuclear properties
that establish it as a promising candidate for a high-efficiency, low-power, robust, low
false-positive neutron detection medium. Although the elemental content and structure
of Li2B4O7, along with the possibilities for 6Li and 10B isotopic enrichment, render it a
great candidate for neutron scintillation detector material, there is still substantial room for
improvement in order to attain higher quantum efficiencies. Such a goal can be achieved
through a better understanding of the parameters affecting detection efficiencies, improved
signal-to-noise ratio, background rejections, and self-moderation of MeV neutrons so as
to determine the best moderator combination. The interplay of these factors complicates
finding the ideal dopants and their respective doping concentration for producing higher
scintillation following interactions with neutrons. As it stands, doping Li2B4O7 with
either europium, ytterbium, samarium, or copper is especially promising, as existing
investigations indicate that they can be readily introduced into its crystal structure, barring
a few minor detrimental effects to its luminescence and mechanical qualities. All things
considered, it is fair to say that further experimental studies on both the scintillation
efficiency and transparency of Li2B4O7 are needed.
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20. Özdemir, Z.; Özbayoğlu, G.; Yilmaz, A. Investigation of Thermoluminescence Properties of Metal Oxide Doped Lithium Triborate.
J. Mater. Sci. 2007, 42, 8501–8508. [CrossRef]

21. Ogorodnikov, I.N.; Pustovarov, V.A.; Kruzhalov, A.V.; Isaenko, L.I.; Kirm, M.; Zimmerer, G. Self-Trapped Excitons in LiB3O5 and
Li2B4O7 Lithium Borates: Time-Resolved Low-Temperature Luminescence VUV Spectroscopy. Phys. Solid State 2000, 42, 464–472.
[CrossRef]

22. Podgórska, D.; Kaczmarek, S.M.; Drozdowski, W.; Berkowski, M.; Worsztynowicz, A. Growth and Optical Properties of Li2B4O7
Single Crystals Pure and Doped with Yb, Co and Mn Ions for Nonlinear Applications. Acta Phys. Pol. A 2005, 107, 507–518.
[CrossRef]

23. Dubovik, M.F.; Tolmachev, A.V.; Grinyov, B.V.; Grin, L.A.; Dolzhenkova, E.F.; Dobrotvorskaya, M.V. Luminescence and Radiation-
Induced Defects in Li2B4O7:Eu Single Crystals. Quantum Electron. Optoelectron. 2000, 3, 420–422. [CrossRef]

24. Kindrat, I.I.; Padlyak, B.V.; Lisiecki, R.; Adamiv, V.T. Spectroscopic and Luminescent Properties of the Lithium Tetraborate Glass
Co-Doped with Tm and Ag. J. Lumin. 2020, 225, 117357. [CrossRef]

25. Kelly, T.D.; Petrosky, J.C.; McClory, J.W.; Adamiv, V.T.; Burak, Y.V.; Padlyak, B.V.; Teslyuk, I.M.; Lu, N.; Wang, L.; Mei, W.-N.; et al.
Rare Earth Dopant (Nd, Gd, Dy, and Er) Hybridization in Lithium Tetraborate. Front. Phys. 2014, 2, 31. [CrossRef]

26. Kindrat, I.I.; Padlyak, B.V.; Lisiecki, R.; Adamiv, V.T. Spectroscopic and Luminescent Properties of the Lithium Tetraborate Glass
Co-Doped with Nd and Ag. J. Alloys Compd. 2021, 853, 157321. [CrossRef]

27. Nagirnyi, V.; Kotlov, A.; Corradi, G.; Watterich, A.; Kirm, M. Electronic Transitions in Li2B4O7:Cu Single Crystals. Phys. Status
Solidi C 2007, 4, 885–888. [CrossRef]

28. Patra, G.; Singh, A.; Tiwari, B.; Singh, S.; BARe, D.D. Undefined Development of Thermal Neutron Detector Based on Lithium
Tetraborate (LTB) Single Crystal. 2015. Available online: barc.gov.in (accessed on 24 November 2023).

29. Chen, Y.; Huang, Y.; Luo, Z. Spectroscopic Properties of Yb3+ in Bismuth Borate Glasses. Chem. Phys. Lett. 2003, 382, 481–488.
[CrossRef]

30. Danilyuk, P.S.; Popovich, K.P.; Puga, P.P.; Gomonai, A.I.; Primak, N.V.; Krasilinets, V.N.; Turok, I.I.; Puga, G.D.; Rizak, V.M.
Optical Absorption Spectra and Energy Levels of Er3+ Ions in Glassy Lithium Tetraborate Matrix. Opt. Spectrosc. 2014, 117,
759–763. [CrossRef]

31. Ignatovych, M.; Holovey, V.; Watterich, A.; Vidóczy, T.; Baranyai, P.; Kelemen, A.; Chuiko, O. Luminescence Characteristics of Cu-
and Eu-Doped Li2B4O7. Radiat. Meas. 2004, 38, 567–570. [CrossRef]

32. Ishii, M.; Kuwano, Y.; Asaba, S.; Asai, T.; Kawamura, M.; Senguttuvan, N.; Hayashi, T.; Koboyashi, M.; Nikl, M.; Hosoya, S.; et al.
Luminescence of Doped Lithium Tetraborate Single Crystals and Glass. Radiat. Meas. 2004, 38, 571–574. [CrossRef]

33. Jayasankar, C.K.; Babu, P. Optical Properties of Sm3+ Ions in Lithium Borate and Lithium Fluoroborate Glasses. J. Alloys Compd.
2000, 307, 82–95. [CrossRef]

34. Kaczmarek, S.M. Li2B4O7 Glasses Doped with Cr, Co, Eu and Dy. Opt. Mater. 2002, 19, 189–194. [CrossRef]

https://doi.org/10.1088/0953-8984/22/44/443201
https://doi.org/10.1016/j.nima.2019.162370
https://doi.org/10.7567/JJAPS.24S2.727
https://doi.org/10.3390/ma3094550
https://doi.org/10.1016/j.physleta.2009.12.012
https://doi.org/10.1016/j.matlet.2021.129978
https://doi.org/10.1051/epjap/2010160
https://doi.org/10.1007/s10853-007-1746-z
https://doi.org/10.1134/1.1131232
https://doi.org/10.12693/APhysPolA.107.507
https://doi.org/10.15407/spqeo3.03.420
https://doi.org/10.1016/j.jlumin.2020.117357
https://doi.org/10.3389/fphy.2014.00031
https://doi.org/10.1016/j.jallcom.2020.157321
https://doi.org/10.1002/pssc.200673778
barc.gov.in
https://doi.org/10.1016/j.cplett.2003.10.121
https://doi.org/10.1134/S0030400X14110058
https://doi.org/10.1016/j.radmeas.2004.01.011
https://doi.org/10.1016/j.radmeas.2004.03.017
https://doi.org/10.1016/S0925-8388(00)00888-4
https://doi.org/10.1016/S0925-3467(01)00218-X


Crystals 2024, 14, 61 16 of 17

35. Kassab, L.; Tatumi, S.; Morais, A.; Courrol, L.; Wetter, N.; Salvador, V. Spectroscopic Properties of Lead Fluoroborate Glasses
Doped with Ytterbium. Opt. Express 2001, 8, 585. [CrossRef] [PubMed]

36. Kelly, T.D.; Kong, L.; Buchanan, D.A.; Brant, A.T.; Petrosky, J.C.; McClory, J.W.; Adamiv, V.T.; Burak, Y.V.; Dowben, P.A. EXAFS
and EPR Analysis of the Local Structure of Mn-Doped Li2B4O7. Phys. Status Solidi B 2013, 250, 1376–1383. [CrossRef]

37. Kenyon, A. Recent Developments in Rare-Earth Doped Materials for Optoelectronics. Prog. Quantum Electron. 2002, 26, 225–284.
[CrossRef]

38. Kobayashi, M.; Ishii, M.; Senguttuvan, N. Scintillation Characteristics of Undoped and Cu+-Doped Li2B4O7 Single Crystals. arXiv
2015, arXiv:1503.03759.

39. Lin, H.; Yang, D.; Liu, G.; Ma, T.; Zhai, B.; An, Q.; Yu, J.; Wang, X.; Liu, X.; Yue-Bun Pun, E. Optical Absorption and Photolumines-
cence in Sm3+- and Eu3+-Doped Rare-Earth Borate Glasses. J. Lumin. 2005, 113, 121–128. [CrossRef]

40. Padlyak, B.; Ryba-Romanowski, W.; Lisiecki, R.; Adamiv, V.; Burak, Y.; Teslyuk, I.; Banaszak-Piechowska, A. Optical Spectra and
Luminescence Kinetics of the Sm3+ and Yb3+ Centres in the Lithium Tetraborate Glasses. Opt. Appl. 2010, 40, 427–438.

41. Padlyak, B.; Ryba-romanowski, W.; Lisiecki, R.; Pieprzyk, B.; Drzewiecki, A.; Adamiv, V.; Burak, Y.; Teslyuk, I. Synthesis and
Optical Spectroscopy of the Lithium Tetraborate Glasses, Doped with Terbium and Dysprosium. Opt. Appl. 2012, XLII. [CrossRef]

42. Vivien, D.; Georges, P. Crystal Growth, Optical Spectroscopy and Laser Experiments on New Yb3+-Doped Borates and Silicates.
Opt. Mater. 2003, 22, 81–83. [CrossRef]

43. Polisadova, E.F.; Valiev, D.T.; Belikov, K.N.; Egorova, N.L. Scintillation Lithium-Phosphate-Borate Glasses Doped by REI. Glass
Phys. Chem. 2015, 41, 98–103. [CrossRef]

44. Rivera, V.A.G.; Ferri, F.A.; Marega, E. Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with
Rare-Earth Ions. In Plasmonics—Principles and Applications; InTech: Houston, TX, USA, 2012.

45. Shimizugawa, Y.; Umesaki, N.; Qiu, J.; Hirao, K. Local Structure around Europium Ions Doped in Borate Glasses. J. Synchrotron
Radiat. 1999, 6, 624–626. [CrossRef]

46. Pisarski, W.A.; Pisarska, J.; Dominiak-Dzik, G.; Ryba-Romanowski, W. Visible and Infrared Spectroscopy of Pr3+ and Tm3+ Ions
in Lead Borate Glasses. J. Phys. Condens. Matter 2004, 16, 6171–6184. [CrossRef]

47. Senguttuvan, N.; Ishii, M.; Shimoyama, M.; Kobayashi, M.; Tsutsui, N.; Nikl, M.; Dusek, M.; Shimizu, H.M.; Oku, T.; Adachi,
T.; et al. Crystal Growth and Luminescence Properties of Li2B4O7 Single Crystals Doped with Ce, In, Ni, Cu and Ti Ions. Nucl.
Instrum. Methods Phys. Res. A 2002, 486, 264–267. [CrossRef]

48. Santos, C.; Lima, A.F.; Lalic, M.V. First-Principles Study of Structural, Electronic, Energetic and Optical Properties of Substitutional
Cu Defect in Li2B4O7 Scintillator. J. Alloys Compd. 2018, 735, 756–764. [CrossRef]

49. Rzyski, B.M.; Morato, S.P. Luminescence Studies of Rare Earth Doped Lithium Tetraborate. Nucl. Instrum. Methods 1980, 175,
62–64. [CrossRef]

50. Saisudha, M.B.; Ramakrishna, J. Effect of Host Glass on the Optical Absorption Properties of Nd3+, Sm3+, and Dy3+ in Lead
Borate Glasses. Phys. Rev. B 1996, 53, 6186–6196. [CrossRef]

51. Pekpak, E.; Yilmaz, A.; Ozbayoglu, G. An Overview on Preparation and TL Characterization of Lithium Borates for Dosimetric
Use. Open Miner. Process. J. 2010, 3, 14–24. [CrossRef]

52. Knoll, G.F. Radiation Detection and Measurement, 3rd ed.; John Wiley & Sons Inc: New York, NY, USA, 1999.
53. Chaminade, J.P.; Viraphong, O.; Guillen, F.; Fouassier, C.; Czirr, B. Crystal Growth and Optical Properties of New Neutron

Detectors Ce3+:Li6R(BO3)3 (R = Gd,Y). IEEE Trans. Nucl. Sci. 2001, 48, 1158–1161. [CrossRef]
54. Chernikov, V.V.; Dubovik, M.F.; Gavrylyuk, V.P.; Grinyov, B.V.; Griǹ, L.A.; Korshikova, T.I.; Shekhovtsov, A.N.; Sysoeva, E.P.;
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