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Abstract: The superconductivity of CaC6 as a function of pressure and Ca isotopic composition
was revisited using DFT calculations on a 2c–double hexagonal superlattice. The introduction of
superlattices was motivated by previous synchrotron absorption and Raman spectroscopy results
on other superconductors that showed evidence of superlattice vibrations at low (THz) frequencies.
For CaC6, superlattices have previously been invoked to explain the ARPES data. A superlattice
along the hexagonal c-axis direction is also illustrative of atomic orbital symmetry and periodicity,
including bonding and antibonding s-orbital character implied by cosine-modulated electronic
bands. Inspection of the cosine band revealed that the cosine function has a small (meV) energy
difference between the bonding and antibonding regions, relative to a midpoint non-bonding energy.
Fermi surface nesting was apparent in an appropriately folded Fermi surface using a superlattice
construct. Nesting relationships identified phonon vectors for the conservation of energy and for
phase coherency between coupled electrons at opposite sides of the Fermi surface. A detailed analysis
of this Fermi surface nesting provided accurate estimates of the superconducting gaps for CaC6 with
the change in applied pressure. The recognition of superlattices within a rhombohedral or hexagonal
representation provides consistent mechanistic insight on superconductivity and electron−phonon
coupling in CaC6.

Keywords: superconductivity; CaC6; Fermi surface; Fermi level; superlattice; tight binding; cosine;
band structure

1. Introduction

Superlattices, quantum wells, and other related nanoscale heterostructures have
played, and continue to play, important roles in technological applications, such as resonant
tunnelling devices and lasers [1–3]. Many familiar superlattices are layered, nanoscale
periodic structures of two materials, resulting in compositional and/or lattice spacing
modulations that are perpendicular to the layers. Modulations and new periodicities
introduced to artificial superlattices can also be engineered to advantageously modify elec-
tronic properties and material behavior [1–3]. More recent styles of superlattices, such as
Moiré-like [4–8] and ordered arrays of nanocrystals [9–11], have also been experimentally
fabricated and/or used conceptually to explain the observed electronic phenomena [12].

Superlattice concepts are used to explain the phenomena closely related to super-
conducting materials, particularly the tuning of properties in the proximity of electronic
topological transitions (ETTs) and Feshbach resonances as a function of pressure and strain,
as well as the appearance of Van Hove singularities [13,14]. In addition, superlattices have
been used to model striped structures, experimentally observed in superconductors at both
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nano [15] and atomic [16] scales. The effects of modulated strain on superconducting mate-
rials, both from the intrinsic crystal structure of the complex metal oxide [3] or artificially
created to mimic those strain modulations [17], are also linked to superlattice observations
and models.

Experimental observations of superlattice vibration modes in synchrotron THz absorp-
tion spectroscopy [18] and Raman spectroscopy [19] on MgB2 compounds, characterized by
vibration modes of low frequency, have provided complementary numerical and mechanis-
tic insights on the superconductivity of MgB2. These low-frequency modes are substantially
below the lowest absorption frequency predicted for the conventional P6/mmm symmetry
ascribed to MgB2 based on atomic positions [18,20]. The recognition of a superlattice in
MgB2 enabled the identification of bonding and antibonding regions, and the role of Fermi
surface (FS) nesting and phase relationships that were not otherwise apparent [18,21].

For CaC6, Yang et al. [12] introduced Ca-folded Brillouin zones to explain the ARPES
measurements of the Fermi surface maps and the observations of π* pockets near Γ (see
Figure 1 of reference [12]). These triangular π* pockets are attributed to a Ca superlattice [12]
and denote the existence of a superconducting gap that is distinct from the carbon interlayer
superconducting gap in CaC6. This detailed ARPES study clarified that both the interlayer
and the π* bands contribute to superconductivity in CaC6 [12] and that a superlattice
construct offers an effective means to understand superconductivity mechanisms. Other
ARPES studies on CaC6 [22,23] are addressed below.

For layer-structured superconductors, cosine-shaped electronic bands (EBs) are im-
portant indicators of conduction mechanisms. These cosine bands resemble tight-binding
descriptors for the EBs of the semiconductors [21,24–26]. However, for many supercon-
ductors, the bonding (lower energy) and antibonding (higher energy) regions of the cosine
amplitudes are marginally asymmetric. For CaC6, cosine-shaped bands were identified
as free-electron-like interlayer states, with a substantial Ca-4s orbital character with a
contribution to superconductivity and gap appearance [12,27–32].

Theoretical double-cell superlattice constructs for DFT calculations split the energy
(and/or phase), and explicitly, the bonding and antibonding regions of these cosine
bands [18,21,33]. As discussed below, a double superlattice construct, combined with
the use of reduced symmetry, provides a useful approximation for the orbital character of
crystal symmetry and includes informative site symmetry detail [34].

We evaluated the asymmetry of cosine EBs for CaC6 using DFT calculations with a
high grid resolution and demonstrated a direct correlation with the superconducting gap
at different pressures. The CaC6 superconductor [35,36] is a hexagonal layered compound
with a lower axial symmetry than MgB2. This compound can be described in either
hexagonal or rhombohedral lattices [35]. We utilized both types of lattice in this paper
to demonstrate the equivalence of the results and to highlight the specific features. In
addition, we considered the importance of phonon dispersions and the critical role played
by acoustic phonons in superconductivity.

2. Materials and Methods

We conducted comprehensive DFT analyses on EB Structures (EBSs) and FSs for CaC6
within a pressure range from 0 GPa to 16 GPa using Quantum ESPRESSO (QE) Version
QE-7.3 [37] and Materials Studio CASTEP 2023 [38] for the comparison. Details of these
analyses are given in an article published separately [39]. The crystal structures were
visualized using Crystal Maker V11.0.2 using geometry-optimized cell parameters of the
experimentally determined values [35].

Key parameters, such as plane wave cut-off energies, pseudopotentials, and k-point
grids, are critical enablers of meV resolution for EBS and phonon dispersion (PD) cal-
culations, as noted in earlier publications [20,40]. Using QE, we employed a cut-off en-
ergy of 120 Ry (=1632.68 eV), a k-point grid of 24 × 24 × 24 sampling density, ultrasoft
pseudopotentials [41], and a generalized gradient approximation (GGA) [42,43] for the
exchange–correlation functional. We also explored norm-conserving pseudopotentials
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within the LDA and GGA approximations using CASTEP with a cut-off energy of 990 eV
and ∆k-grid 0.005 Å−1 for the additional comparisons.

The DFT calculations considered both the primitive rhombohedral unit cell and the
hexagonal counterpart. The specific lattice constants were taken from the X-ray diffraction
results of bulk CaC6 [35]. We have also explored several superlattice variants, acknowledg-
ing their significance in accurately portraying the symmetry and phases of the orbitals [21].
Further evaluation of the essential parameters that enable the systematic detailed interpre-
tation of the DFT calculations are provided in our earlier work [40,44]. For consistency, we
show calculation outputs using the LDA functional, although equivalent calculations using
the GGA functional show similar trends.

Constructing a supercell is a routine procedure for the DFT calculations of the elec-
tronic properties, although the context can differ substantially. For example, a supercell
can be a “multiple of the smallest unit cell” or “a unit cell of a superlattice” structure.
We initially built a supercell as a multiple of the smallest unit cell, and then we imposed
reduced symmetry that contained symmetry elements of the parent space group, as shown
in earlier work [19,45].

In a dynamic environment, we may also consider the other forms of a superlattice.
For example, an elastic acoustic wave imposed on an initially symmetric, homogeneous
structure [9,46,47]. In this case, at a particular instant of time, there will be a modulated
expansion and contraction of the sub-units (e.g., the original smallest units) of a superlattice.
According to the elastic theory, the structure will show a modulation of the lattice constants
with a wavelength given by the acoustic wavelength. A positional modulation of the atoms
will create a superlattice.

The smallest superlattice that can be created using elastic waves is a double-unit
supercell, where one cell is contracted, and the other adjacent cell is expanded. In general,
a cosine-shaped band in an EBS, particularly in superconductors, can be associated with
nearly free electrons [27]. Such a band corresponds to a cosine wavefunction; that is, the
real part of a plane wave or complex exponential. Thus, the electron density in that cosine
band is modulated as the square of the cosine function and is periodically modulated as a
superlattice structure.

3. Results and Discussion

In our earlier work on MgB2, we showed that atomic orbital symmetry provides added
detailed mechanistic understanding of superconductivity [21] compared with the atomic
position symmetry of the space group P6/mmm. We utilized a similar strategy for the DFT
calculations on CaC6 by first identifying key bands–particularly along an equivalent real
space layer direction–that demonstrate a cosine format across or near the Fermi level. We
developed an argument for the construction of a double supercell, starting with a band
that approximates a cosine function. Using a double cell for the DFT calculations, several
features related to the superconductivity of CaC6 were derived in a fashion consistent with
that previously described for MgB2 [18,21].

3.1. Cosine Functions and Linear Chains of Atoms

There is strong agreement that cosine-shaped bands in the EBS of CaC6, as shown in
Supplemental Figure S1, show nearly-free Ca 4s orbital character [27]. The cosine function
for the EB has argument ckz, implying that planes separated by the lattice parameter c are
out of phase [48]. This phase relationship in the c-direction is identical to that encountered
in discussions on chain(s) of atoms with s-orbitals [49,50], as exemplified by a chain of
H-atoms or H ‘n-merization’ [33]. A schematic of this important phase relationship and
change from predominantly bonding to predominantly antibonding states is shown in
Figure 1.
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Figure 1. Schematic of a chain of atoms with s-orbitals (e.g., a chain of H-atoms) in the bonding 
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tions are considered. This representation is analogous to that shown for MgB2 [18,21], not-

ing that for the c and ab-directions at Γ, the bands showed opposite bonding/antibonding 

character (see e.g., Figure 1 of reference [21]). In contrast, for CaC6, in both the c and ab-

directions at Γ, the bands showed the same bonding character. This band characteristic is 

reasonable for s-orbitals with local spherical symmetry; thus, the same orbital character 

was maintained in the entire set of spherical directions. 

3.2. Electronic Band Structures for Superlattices 

We calculated the EBS for three types of CaC6 unit cells of Space Group 166 (R-3m) at 

a pressure of 0 GPa: (i) a rhombohedral lattice, (ii) an equivalent hexagonal lattice of the 
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Figure 1. Schematic of a chain of atoms with s-orbitals (e.g., a chain of H-atoms) in the bonding
(bottom of a cosine band) and anti-bonding (top of a cosine band) orbital configurations. Grey circles
represent the combined orbital designations.

For a group symmetry to appropriately represent the periodicity implied by an anti-
bonding orbital arrangement, a reduced symmetry with a double supercell in the c-direction
must be used [18,21]. In this case, reduced symmetry is a better representation of a com-
pound for which the orbital character of electrons and likely effects on atomic positions are
considered. This representation is analogous to that shown for MgB2 [18,21], noting that
for the c and ab-directions at Γ, the bands showed opposite bonding/antibonding character
(see e.g., Figure 1 of reference [21]). In contrast, for CaC6, in both the c and ab-directions at
Γ, the bands showed the same bonding character. This band characteristic is reasonable for
s-orbitals with local spherical symmetry; thus, the same orbital character was maintained
in the entire set of spherical directions.

3.2. Electronic Band Structures for Superlattices

We calculated the EBS for three types of CaC6 unit cells of Space Group 166 (R-3m) at
a pressure of 0 GPa: (i) a rhombohedral lattice, (ii) an equivalent hexagonal lattice of the
same Space Group 166, and (iii) an equivalent hexagonal lattice with a double c-axis, 2c. In
the reciprocal space, a key visualization format for the EBS and Brillouin zones, doubling
a real-space dimension (e.g., a unit cell dimension, c, increased to 2c) can be effected by
folding along the appropriate reciprocal direction [36]. For the hexagonal lattice of Space
Group R-3m, the Γ–Z direction is along c*. Hence, the focus of this work was along the
Γ–Z directions in reciprocal space. The calculated EBSs for the conventional reciprocal
directions for each CaC6 format are provided in Figures S1–S3 in the Supplementary File.
The key c* directions that contain cosine-shaped band(s) are identified in Figures S1–S3.

3.3. Antibonding-Bonding Asymmetry

Careful inspection of the shape for the interlayer cosine band of CaC6 using a rhom-
bohedral structure (Space Group 166 or R-3m) indicated that the cosine function was not
perfectly symmetrical (see Figures 2a and S1). We delineated this asymmetry as previously
discussed in our evaluation of cosine sigma bands for MgB2 [21]. The asymmetry of a
cosine band suggests that adjustments to the tight-binding equations are appropriate in
order to describe the EB along the c* direction [21], as shown below.

An asymmetry, or difference in energy, ∆E, is schematically shown for CaC6 at 0 GPa
calculated with a rhombohedral lattice in Figure 2a. The bonding and anti-bonding nodes,
denoted “B” and “A”, respectively, of the cosine band along Γ–Z are shown in Figure 2a.
The energy, Ec*/2, at the intersection of the cosine band with the reciprocal mid-point, ΓZ/2,
is −193.5 meV. The average energy, Eav, between the bonding (B) and antibonding (A)
nodes at Γ and at Z, respectively, was 43.5 meV higher than Ec*/2 (i.e., at −150.0 meV) and
is denoted by a red horizontal line. This difference in energy, ∆E, represents the asymmetry
of the cosine band for this rhombohedral lattice. A perfectly symmetric cosine band will
show zero difference in energy between Ec*/2 and Eav (i.e., for the equivalent bonding and
antibonding regions). In the following sections, we describe how a superconducting gap
can be determined from this antibonding–bonding energy asymmetry.
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Figure 2. Electronic band structures of CaC6 at 0 GPa (Space Group R-3m) calculated for: (a) rhom-
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along the c* direction crosses the Fermi level (dotted horizontal line) in both cases. In (a), the energy, 

Ec*/2, is –193.5 meV and the average energy, Eav, between the antibonding (A) and bonding (B) nodes 
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cosine band. In (b), the same cosine band is folded in the hexagonal configuration and results in the 
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show different energy values to Ec*/2 with a net ΔE of 43.5 meV (at higher magnification in the inset). 
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structure, the bonding and antibonding bands will adopt a symmetric appearance relative 

to the mid-point energy (i.e., with the symmetry axis at a constant energy, Ec*/2), as shown 

by the blue horizontal line in Figure 3a (inset). 

In Figure 3a, Ec*/2 is now at the intersection on Z, where the two branches of the cosine 
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Figure 2. Electronic band structures of CaC6 at 0 GPa (Space Group R-3m) calculated for: (a) rhombo-
hedral symmetry and (b) equivalent hexagonal symmetry. The cosine-shaped interlayer band along
the c* direction crosses the Fermi level (dotted horizontal line) in both cases. In (a), the energy, Ec*/2,
is –193.5 meV and the average energy, Eav, between the antibonding (A) and bonding (B) nodes of the
cosine band is –150.0 meV. This energy difference, ∆E, reflects the marginal asymmetry of the cosine
band. In (b), the same cosine band is folded in the hexagonal configuration and results in the two
bonding (B, B′) and two antibonding (A, A′) nodes of the cosine band. Similarly, Eav and E′

av show
different energy values to Ec*/2 with a net ∆E of 43.5 meV (at higher magnification in the inset). EBS
plots showing conventional reciprocal directions and the location of the cosine band are provided in
Supplemental Figures S1–S3.

Figure 2b shows the band structure along the c* direction for a hexagonal lattice
equivalent to the rhombohedral configuration shown in Figure 2a. In this case, there was a
folding of the c* direction because the a and b directions are multiples of the C-C bonds in
CaC6. This folding resulted in two distinct bonding and antibonding nodes in the band
structure, as identified in Figure 2b. The energy at the intersection of the A′–B′ band at ΓA/2
was Ec*/2 and is denoted by a blue horizontal line in Figure 2b. For the hexagonal case, we
determined Eav for both A–B and A′–B′, as shown by the red horizontal lines in Figure 2b.
The asymmetries, or ∆E’ and ∆E, were 10.3 meV and 43.5 meV (∆E = 10.3 + 33.2 meV),
respectively, relative to the energy at Ec*/2.

Figure 3 shows the band structure along the c* direction for CaC6 at 0 GPa and at
7.5 GPa with a hexagonal 2c superlattice. For 2c superlattice symmetry, the Brillouin zone
boundary line of the unfolded reciprocal space folded onto the Γ-direction. In an ideal
structure, the bonding and antibonding bands will adopt a symmetric appearance relative
to the mid-point energy (i.e., with the symmetry axis at a constant energy, Ec*/2), as shown
by the blue horizontal line in Figure 3a (inset).

In Figure 3a, Ec*/2 is now at the intersection on Z, where the two branches of the cosine
curve from A′ and B′ meet (i.e., blue line clearly shown in the inset). The energy for Ec*/2
was at a nominally lower energy (~5 meV) compared with Ec*/2 for the hexagonal cell,
shown in Figure 2b. Again, measuring the values for Eav and E′

av, as shown in Figure 3a,
the difference in energy for ∆E’ and ∆E was 10.3 meV and 43.5 meV (=10.3 + 33.2 meV),
respectively (inset, Figure 3a; red lines relative to the blue line).

A similar configuration for the folded cosine band of a 2c superlattice at 7.5 GPa is
shown in Figure 3b. In this case, the folded band along c* is at a higher energy compared
with the calculations at 0 GPa, consistent with the experimental data showing a higher
Tc at 7.5 GPa [38]. Similar trends were observed for the DFT calculations of hexagonal 2c
superlattices at other pressures (Supplemental Figure S4).
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Figure 3. Electronic band structures of CaC6 (Space Group R-3m) calculated for a 2c hexagonal lat-
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net energy difference, ΔE, is 43.5 meV. This energy difference, ΔE, reflects the marginal asymmetry 

of the cosine band for a 2c superlattice at 0 GPa. The calculation for CaC6 at 7.5 GPa, shows a shift of 
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2
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Figure 3. Electronic band structures of CaC6 (Space Group R-3m) calculated for a 2c hexagonal lattice:
(a) at 0 GPa and (b) at 7.5 GPa. In both cases, the folded cosine-shaped interlayer band along the c*
direction crosses the Fermi level (dotted horizontal line). In (a) the energy, Ec*/2, is –198.5 meV and is
at the intersection on Z where the two branches of the cosine curve from A′ and B′ meet. The net
energy difference, ∆E, is 43.5 meV. This energy difference, ∆E, reflects the marginal asymmetry of
the cosine band for a 2c superlattice at 0 GPa. The calculation for CaC6 at 7.5 GPa, shows a shift of
the folded bands along c* towards higher energy, with Ec*/2 above the Fermi level at 22.8 meV. In
addition, the net ∆E value is 50.7 meV, an increase of 7.2 meV compared with 0 GPa.

3.4. Revised Tight-Binding Equations

To accommodate the condition for CaC6, we proposed the following adjustments to
the tight-binding equations of the form shown in Equations (1) and (2):

E = E c*
2
−

(
E c∗

2
− B

)
∗ cos(ckz), 0 < ckz < π/2 (1)

E = E c∗
2
+

(
E c∗

2
− A

)
∗ cos(ckz), π/2 < ckz < π (2)

The highest asymmetry offset at Γ is given by the equation:

ETB Gap@Γ = Eav − E c∗
2

(3)

where ETB Gap@Γ is a tight-binding gap. Asymmetry values or tight-binding gaps vary with
respect to the choice of unit cell symmetry or the type of supercell. However, the values
are interrelated by the symmetry relationships between the hexagonal and rhombohedral
lattice systems.

The dependence of Eav as function of kz, Eav(kz) is shown in Figure 4. Eav(kz) has a
cosine dependence itself, with half the reciprocal space period of that of the cosine-shaped
band (=½ × 2π/c = 2π/2c), and for a bonding–antibonding format of the Eav(kz) cosine, we
halve this reciprocal distance (=2π/4c). That is, in real space, the periodicity is double that
of the bonding–antibonding folded periodicity (=2 × 2c = 4c). A 4c superlattice periodicity
has previously been identified for MgB2 [18,21,51]. This result suggests that the origin of
this super-periodicity also relates to electronic behavior, as represented by the EBS.

Figure S4 (Supplemental) shows the band structure calculations for two other pres-
sures, at 4 GPa and 12 GPa, to delineate the trends in this modelling approach. We show
in Figure 3 that at a pressure of 7.5 GPa, the non-bonding-point Ec*/2, is near the Fermi
level (at 22.8 meV). The position of the bonding to antibonding crossing at this pressure
corresponds to the highest experimentally determined Tc for CaC6 as shown in Figure 5
(extracted and adapted from ref. [52]). The drop in Tc at about 8 GPa can be correlated
to an electronic topological transition of the superlattice FS and is discussed in a separate
publication. As shown in Figure S4, the cosine band crosses the Fermi level with different
proportions of bonding and antibonding character, depending on the external pressure.
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This relative shift in the bonding–antibonding character is also consistent with the changes
in Tc observed with pressure.
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Figure 4. Enlarged view of the electronic band structure for CaC6 at 0 GPa calculated for rhombohe-
dral symmetry and folded at the midpoint ΓZ/2. The average energy Eav = ½(A + B) at Γ is plotted as
the red line. Eav = ½(A + B) as a function of kz is plotted as the dark continuous line between Eav and
Ec*/2 (blue line) with a cosine shape and a full period of π/c.
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Figure 5. Graph of the experimentally determined superconducting transition temperature (blue cir-
cles) for CaC6 as function of pressure (re-plotted and adapted from reference [52]). The rhombohedral
cell dimension, a, as function of pressure is also plotted as red squares (right-hand axis).

As discussed in detail below, to determine the superconducting gap, the tight-binding
gap ETB Gap@Γ (the highest asymmetry offset) must be corrected by a factor determined by
the fraction of the Fermi surface that participates in unencumbered, or non-interfering,
nesting between the open loops. If other Fermi surface bands cross the nested region, or
the Fermi surface curvature deviates substantially, a different nesting vector is required.
In such a case, additional phonons of different energy/frequency must become involved
for the conservation of energy and momentum. In this case, coupling between electrons
at opposite sides of the Fermi surface, requiring additional phonons, translates into the
equivalent of scattering events.
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3.5. Superlattice Nesting Vectors and Key Phonon Wavevectors

Figure 6 shows the schematics of the rhombohedral and hexagonal representations of
CaC6. The rhombohedral and hexagonal reciprocal unit cells of CaC6 are related by the
following equations:

ΓZR = 3ΓAH (4)

ΓZR = π/c (5)

c = 13.572 Å (6)

(a1* + a2* + a3*)/3 = π/c (7)
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Figure 6. Schematics of the CaC6 crystal structure, represented using: (a,b) rhombohedral and
(c,d) hexagonal symmetry. (a) Shows a view of the rhombohedral cell along the [111]-direction
and (b) a view along c*; (c) shows a view of the hexagonal cell along [100] and (d) shows a view
along [001].

Thus, twice the ΓAH distance of the reciprocal hexagonal unit cell (2π/3c), and half of
the reciprocal distance (π/3c = 2π/6c), correspond to the distances between the Brillouin
zone (BZ) boundaries or between Γ and the BZ boundary for the 2c-real space hexagonal
superlattice. For Fermi surface features, this real space superlattice corresponds to a repeat
distance of a folded hexagonal supercell in reciprocal space.

This reciprocal space vector and the related dimensional relationships to the primitive
rhombohedral cell are particularly useful for understanding the crystallographic relation-
ships in the CaC6 structure. For example, the reciprocal space vector is itself a ‘nesting’
vector in the perpendicular c or c*-direction for the Fermi surfaces of the CaC6 2c superlat-
tice, as shown in Figure 7a. This nesting vector joins significant proportions of the folded
Fermi surfaces and can be considered a vertical component of diagonal nesting vectors [21].

The extent of the diagonal nesting vectors is clear in MgB2 [21], which has a cosine-
shaped Fermi surface profile. For MgB2, nesting using parallel reciprocal vectors of identical
magnitude spanned the entire warped tubular Fermi surfaces of MgB2 [21]. The same
condition cannot be said for CaC6.
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Figure 7. Cross-sectional views of the Ca-4s Fermi surfaces for CaC6, calculated for 2c hexagonal
supercells at pressures: (a) 0 GPa, with detailed view of the Fermi surface crossing point (inset),
(b) 4 GPa, and (c) 7.5 GPa. Two of the first Brillouin zone sections along the c* reciprocal direction are
displayed. The contours for the Fermi surfaces are green- and orange-colored lines. Nesting vectors
of identical length that join opposite sides of the Fermi surface, parallel to the vector that crosses the
center point or origin (A), are shown by red, orange, and purple arrows. Blue lines represent vectors
that do not connect Fermi surface regions. See text for further details.

In CaC6, the approximately circular profiles of the Fermi surface cross-sections sig-
nificantly reduced the extent of nesting, although the nesting conditions did not require
existence over the entire Fermi surface [48]. Consequently, for CaC6, the nesting extent was
difficult to determine accurately with comparable error or uncertainty to that followed for
MgB2 [21]. Another source of error was the thermal energy width (~kBT) that occurred
around the Fermi surface at temperatures above absolute zero. The width of this thermal
energy nominally extended the region by ~1.4 meV at 16 K, where nesting by the same
original phonon vector was maintained.

Figure 7 shows cross-sections of the Ca-4s-dominated Fermi surfaces for CaC6 at
selected pressures. In Figure 7, the green- and orange-colored circles delineate the contours
of the Fermi surfaces, as well as indicating a change in phase introduced by folding on the
alternating (approximate) spherical Fermi surfaces. Note that the changes in phase between
the bonding and antibonding regions for the same Fermi surfaces exist as indicated by
the phase of the cosine functions themselves, where the plane perpendicular to ΓZ at the
mid-point Z/2 defines the transition boundary between the bonding and antibonding
behaviors (see Supplementary Figure S5). Therefore, the folded Fermi surfaces require
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careful identification of phase variation, which may be complex and/or convoluted and so,
is difficult to track and represent graphically.

In Figure 7, the blue lines that are parallel to the nesting vectors and of the same
magnitude do not connect the Fermi surface regions. Thus, the extent of nesting is limited
to a window around the ‘crossing’ of the Fermi surfaces (joined by the red and purple lines
that cross the center of the double-stacked Brillouin zones). The brown arrows (circled) in
the inset of Figure 7a correspond to the maximum electron momentum transfer between
the y and z directions (~ΓK/15), which are coherently accommodated through nesting by a
phonon of appropriate frequency for energy conservation.

At 0 GPa, both the red and orange vectors produced a nesting relationship that crossed
the Γ point center at the midpoint. The diagonal nesting relationships had vectors qD and
qd (in Figure 7a, D and d stand for long and short diagonals, respectively, where qD = 3qd)
with projections approximately given by:

qD = 2ΓK/3 ± ΓAH = 2ΓK/3 ± (π/3c) kz (8)

qd = qD/3 = 2ΓK/9 ± ΓAH/3 = 2ΓK/9 ± (π/9c) kz (9)

The nesting vectors connected open loops with kF and −kF at opposite sides through
the origin. Thus, these nesting vectors connected the bonding and antibonding branches
of the relevant band, and are associated with Cooper pairing [21]. In this case, the nest-
ing vector corresponded to the primary phonon in electron–phonon coupling through
the relationships:

−kF
1 + qD,d = kF

1′ (10)

−kF
2 − qD,d = kF

2′ (11)

At 7.5 GPa, the diagonal nesting relationships had vectors qD and qd (in Figure 7c,
where qD = 2qd) with projections approximately given by:

qD = 4ΓK/11 ± ΓAH = 4ΓK/11 ± (π/3c) kz (12)

qd = qD/2 = 2ΓK/11 ± ΓAH/2 = 2ΓK/11 ± (π/6c) kz (13)

Coherent Electron–Phonon Coupling via Acoustic Nesting

As schematically shown in Figure 7a–c, the nesting between mid-points in different
Brillouin zones established favorable reference points for an electron–phonon coupling
condition between the opposite sides of the Fermi surface. These points are non-bonding
and establish a reference for the phase relationships. However, the coherence of the
electrons coupled by this same nesting phonon vector only survives without disturbance
while an intersection with any new Fermi surface associated with a different band of
unrelated symmetry is absent. Coherent coupling is also lost when the curvature of the
Fermi surfaces change, such that a nesting vector of fixed magnitude does not link electron
states on the opposite sides of the Fermi surface. For CaC6, examples of this loss of
connectivity by nesting vectors on opposite sides of the Fermi surface are shown as blue
(dotted) arrows in Figure 7a–c.

Figure 7 also enables the identification of two general types of nesting. These two
types are:

• nesting that connects the Fermi surface regions with a closed loop (e.g., the green and
yellow loop surrounding point A in Figure 7a) and

• nesting that connects the Fermi surface regions with an open loop (e.g., regions
connected by the diagonal orange, red, and purple dotted lines in Figure 7a–c).

Closed loops alone do not appear to be conducive to superconductivity but may be
indirectly involved in superconducting behavior. However, for this CaC6 system, open
loops were continuously connected in the extended Brillouin zone scheme. Thus, the open
loops correlated with superconductivity through the magnitude of the nesting vectors and
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the extent of the nested regions. In Figure 7a, the purple-colored vectors are parallel to the
red and orange arrows but are shorter in length. By comparing these vectors at pressures
of 0 GPa and 7.5 GPa, we identified other features, including the densities of states. In
Figure 7a,c, the purple-colored vectors are approximately one third and one half of the red
nesting vectors, respectively. This relationship suggests that the shorter purple vectors are
nesting vectors themselves, and given their multiplicity, they are indicators of the relative
population of the densities of states.

The proportions of a Fermi surface that participates, and remains, with a given acoustic
nesting vector, define a proportion of the cosine amplitude that remains coherently coupled.
This fraction, multiplied by the above-mentioned tight-binding gap, ETB Gap@Γ, provides an
accurate estimate of the superconducting gap (provided DFT calculations are carried out
with sufficient resolution [40]).

The superconducting TB gap value at 0 GPa is the ETB Gap@Γ value at Γ divided by
three, because of the three parallel nesting vectors that fit between the nested Fermi surface
spheres, multiplied by the fraction of the folded z*-axis that is nested, which is ~0.55 (see
Figure 7a). The superconducting TB gap value at 7.5 GPa is the value at Γ divided by two,
because there are two parallel nesting vectors that fit between the nested Fermi surface
spheres, multiplied by the fraction of the folded z*-axis that is nested, which is ~0.43 (see
Figure 7c).

The superconducting TB gap value at 4 GPa was obtained by linearly extrapolating
the number of parallel nesting vectors that fit between the nested Fermi surface spheres,
multiplied by the linear extrapolation of the fraction of the folded z*-axis that is nested.
These extrapolations resulted in 3.21 + (5.49 − 3.21) × (4/7.5) = 4.43, 0.55 − (0.55 − 0.43) ×
(4/7.5) = 0.486, and 4.43 × 0.486 = 2.15 for (i) the parallel nesting vectors, (ii) the fraction
of the z*-axis that can be nested, and (iii) the superconducting TB gap, respectively (see
Table 1). We estimate the error in determining the superconducting TB gap at ±0.09 meV.
The values of the calculated gaps for the other pressures are given in Table 1.

Table 1. Geometry optimized cell parameters for CaC6 at selected pressures; other parameters
extracted from calculated EBS.

Pressure
(GPa)

Cell Values
[Å]

Tight-Binding Gap
[meV] Eav

[meV]
Tc Exptl

[K]

Calc’d Ratios

a c @ Γ @ Γ/n z* Nested
Fraction

SC TB
Gap

SC TB
Gap Tc

0 4.31 13.12 10.3 3.43 (n = 3) 0.55 1.89 −198.3 11.4 1.00 1.00
4 4.29 12.84 11.1 4.76 (n~7/3) 0.49 2.31 −67.1 13.6 1.22 1.19

7.5 4.28 12.63 11.8 5.9 (n = 2) 0.43 2.54 22.8 15.1 1.34 1.32
12 4.26 12.41 12.8 -- -- -- 128.4 4.8 - 0.42

If we include the additional periodicity identified in Section 3.2 from the cosine
dependence of the average of the bonding and antibonding energies, we obtain a 4c
superlattice symmetry. This superlattice symmetry introduces an extra folding in the
reciprocal space at π/4c. This additional folding more accurately reflects the dynamic
symmetry of the structure, compared to calculations without additional folding. We
suggest that calculations in which the full z*-axis participates in nesting are more likely
to effectively represent coherent superconducting transport behavior. In addition, this
additional folding brings the non-bonding, cosine inflection points to Γ. This condition is,
intuitively, an appropriate locus for electron phonon coupling, which initiates the exchange
of sound velocity between the y- and z-directions, as the electrons travel the cosine bands
or the corresponding Fermi surface.

The highest Tc was obtained when the Fermi level and the non-bonding energy of
the cosine-shaped band coincide. This represents the most balanced distribution between
the fully occupied bonding states and the fully unoccupied antibonding states. This
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configuration suggests that the optimal conditions for superconductivity occur when the
smallest energy is needed for the excitation of electrons in the filled bonding states into
the empty antibonding states, and that this energy, translated for interactions between
quasiparticles, corresponds to the superconducting gap.

3.6. Phonon Frequencies and the Superconducting Gap Energy

This section focuses on the 0 GPa case with a similar extension to the DFT calculations
for CaC6 under higher-pressure conditions. The difference in the phonon vectors for
conserved momentum transfers in the y- and z-directions of the nested regions were
approximately ΓK/15 and 3ΓK/10 (=(9/2) ΓK/15), and ΓAH and ΓAH/3, respectively, as
shown in the inset of Figure 7a.

Figure 8 shows an expanded view of the phonon dispersion (PD) for 40CaC6, calculated
using the LDA functional and k-grid ∆k = 0.015 Å−1, with the CASTEP Materials Studio
2023 software. A PD for CaC6 with the Ca isotope 44 is also provided in the Supplemental
section (Figure S6).
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Figure 8. Phonon dispersion (PD) for CaC6 calculated with a hexagonal unit cell using DFT with
the LDA functional and k-grid 0.015 Å–1. The red dotted line is a constant frequency (or energy)
reference at 39.6 cm–1. The intersections of the red dotted line with the branches of the PD occurred
approximately at all the vectors identified using nesting and coherent conservation of momentum.

Figure 8 shows that all the phonon vectors associated with nesting (ΓK/15, 3ΓK/10,
ΓAH, and ΓAH/3) had values on the acoustic PD branches with a similar energy at 39.6 cm−1

(i.e., 4.91 meV). These acoustic energies (or multiples of energy depending on degeneracy or
multiplicity) accompanying the nested momentum transfers must be exchanged (absorbed
or provided) in an electron–phonon coupling, for the coupled electron movement along
the nested regions on either side of the Fermi surface to conserve energy and remain
coherent [21].

These calculations of PDs for CaC6 using the hexagonal unit cell shown in Figure 6c,d
are consistent with the calculated PDs for CaC6 using the rhombohedral cell by Calandra
and Mauri [29]. The latter gave the values of frequency for the equivalent of ~ ΓM/15 and
ΓK/15 that closely matched half the energy of the asymmetry in the cosine function (i.e., the
tight-binding gap) at Γ, as listed in Table 1 for the LDA (i.e., 10.3/2 meV = 5.15 meV;
although, depending on the pseudopotential, values as low as 9.8/2 = 4.9 meV were
obtained). In Figure 8, the frequency of 39.6 cm−1 was ~4.91 meV (=3 × 1.63 meV), or
approximately three times the superconducting gap energy [52,53] at 0 GPa. Thus, we
showed that there is a clear geometrical origin for the phonons engaged in the conservation
of energy, with electrons coupled via these nesting relationships.
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The rhombohedral calculations by Calandra and Mauri [29] also showed that:

ωL(ΓZ/6) = ωT(ΓZ/2) ≈ ωT(ΓT/2) (14)

or, alternatively, from our hexagonal calculations:

ωL(ΓA/3) = ωT(ΓA) ≈ ωT, L(ΓK/15) = ωT(3ΓK/10) (15)

These equivalences suggest that the interconversion of transverse phonons into longi-
tudinal phonons, and vice versa, by addition and subtraction is highly probable. Similarly,
longitudinal and transverse vibrations in the kx ky-plane may convert to the transverse
and longitudinal vibrations in the kz-direction, respectively [40]. This interaction favors
energy conversion between the different acoustic phonon branches and perhaps enhances
the creation of optical phonons; the latter may also be required to maintain coherency.

An outcome from the above is an emphasis on low-frequency phonons and the sensi-
tivity of superconducting mechanisms on the low energy (meV) domain. Photon energies
used for ARPES are often higher than the 9 eV used by Yang et al. [12]. Typical studies are
undertaken between 40 eV and 50 eV [22,23] or higher. Concentrated photon illumination
at these high energies is likely to excite electrons far below and far above the Fermi level.
This likelihood implies localized heating effects and complex interactions that may not
be inimical to superconductivity. For example, the Eliashberg calculations for CaC6 [14]
suggest that anomalies in the ARPES spectra originate from the out-of-plane and in-plane
vibrations of carbon atoms. However, these anomalies occur at energies that are equivalent
to temperatures well above room temperature.

The Isotope Effect for CaC6

Employing the McMillan formula [54], the critical transition temperature for 40Ca,
computed by Calandra and Mauri, [29] aligned well with the experimental data. Notably,
the calculated isotope effect for 44Ca relative to 40Ca differed by 0.24 K. This value contrasts
with the experimental observation of a larger isotope effect, a ~0.5 K difference in Tc
reported by Hinks et al. [55].

Figure 9 shows an overlay of the PDs calculated for a single hexagonal unit cell of
CaC6 using the two most abundant isotopes of Ca, namely 40Ca and 44Ca. Figure 9b is
an enlarged view of the acoustic region in the ΓA direction, highlighted by the orange
rectangle in Figure 9a. Figure 10 shows the low-frequency region of the phonon density
of states (PDOS), calculated for a single hexagonal unit cell of CaC6 and also using 40Ca
and 44Ca. The PDOS for the full frequency range is given in Supplementary Figure S7. The
reference lines are guides to the eye for the relative changes in frequency (or energy) with
the colors matching the respective isotopes.

The difference in acoustic frequencies at the Brillouin zone boundary, A, was
3.0 ± 0.4 cm−1 (=0.37 ± 0.05 meV). For the midpoint A/2, which corresponds to the
Brillouin zone boundary of the folded reciprocal space of the 2c superlattice, ~1.5 cm−1

(=0.18 meV). Therefore, if the isotope effect is predominantly controlled by the acoustic
frequencies, the change in Tc for the isotope effect should be proportional to the frequency
difference at the Brillouin zone boundaries of the 2c superlattice for the same nesting
phonon vector. We assume that the frequency of 39.6 cm−1 is proportional to the exper-
imentally determined Tc of 11.4 K (see Figure 5 and Section 3.4). Therefore, 1.5 cm−1

corresponds to 11.4 K × (1.5/39.6) = 0.43 ± 0.06 K. This calculated value for the difference
in Tc for the Ca isotopes is in close agreement with the experimentally measured isotope
shift determined by Hinks et al. [55].
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Figure 9. (a) Phonon dispersion (PD) for CaC6 calculated with a hexagonal unit cell, using DFT
with the LDA functional and k-grid value 0.015 Å–1. The PD in red was calculated for 40Ca and the
PD in blue for 44Ca isotope, respectively. (b) Magnification of the orange rectangle in (a), showing
differences in frequency (∆ω = 3.0 ± 0.4 cm–1) between both isotopes at reciprocal point A.
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Figure 10. Phonon density of states (PDOS) for 40Ca and for the 44Ca isotopes, showing relative shifts
in peak density (and differences in frequency, ∆ω) with the increase in phonon frequency. A shift in
relative frequencies of Ca isotopes occurs at ~60 cm–1 (yellow dotted circle).

Comparing the PDOS for the Ca isotopes (see Figure 10 and Supplementary Figure S7),
a change to their relative position occurs at ~60 cm−1 (see the dotted circle in Figure 10). The
first PDOS peak at low frequency shows a frequency difference in the 40Ca and 44Ca peak
positions that exceed the calculated value determined above for the isotope effect using
PDs. Moreover, the difference in the peak positions increases as the calculated frequencies
approach the range of the optical phonons.

This variation in the peak positions suggests that the Tc estimates based on the density
of states calculations will be inaccurate, particularly at higher frequencies than acoustic.
This inaccuracy may account for a limited success with the accuracy of the McMillan
equations and similar approaches, particularly for complex compounds. For the calculated
PDs of complex compounds, some optical modes may contribute non-linearities to the dis-
persion. As stated by Jones and March [56], densities of states are a conceptual compromise
when the full PD and EBS calculations are not available.
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4. Conclusions

We used a systematic approach to DFT modelling that extracts superconductivity
parameters from band structure and phonon dispersion calculations, enabled by a fine
k-grid and a large cut-off radius for meV resolution. This theoretical approach is employed
for CaC6, for which the superlattice constructs, motivated by experimental observations
on other layered superconductors and the topological similarities of EBs, are consistent
with the cosine-shaped band structures along the layer direction. Interrogation of Fermi
surfaces reveal important bonding–antibonding and nesting relationships that display
an asymmetry with a strong connection to superconductivity and the identification of
a superconductivity gap. The extent and nature of this asymmetry, evidenced in band
structures and Fermi surface projections, aligns with the experimentally determined change
in Tc with applied pressure. The gap energy was determined from the tight-binding bands
and the approximate nesting relationship, resulting in a good match with the experimentally
determined values as shown above. The approximate phonon nesting vectors identified
from the superlattice FS reciprocal space geometry results in phonon wavevectors that
have approximately the same frequency (or energy), which also match the experimentally
determined superconducting gap.

These results demonstrate that superconductivity is largely a geometrically tuned
phenomenon, implicit in the observations of superconductivity in many different crystal
structures of widely varying geometry. We have shown that accurate and mechanistic
information on superconductivity can be extracted from an analytical interrogation of EBS,
the Fermi surface, and PD calculations. Superlattice constructs, supported by extensive
experimental observations of their manifestation, for example using Raman and THz
spectroscopy, are useful tools for understanding this important phenomenon. We encourage
further experimental investigations on CaC6 with a focus on the low-frequency, acoustic
region. The acoustic phonon region is a key spectral region for superconductivity and an
energy domain that is commensurate with superconducting gap energies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst14060499/s1, Figures S1–S3: Calculated EBS for CaC6 with
rhombohedral and hexagonal cells; Figure S4: Calculated EBS for CaC6 with 2c hexagonal cells at
0 GPa and 7.5 GPa; Figure S5: Schematic of the CaC6 Fermi Surface; Figure S6: Calculated phonon
dispersions for 40CaC6 and 44CaC6; Figure S7: Calculated phonon density of states for 40CaC6 and
44CaC6.
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