The Synthesis and Crystallographic Characterization of Emissive Pt(II) and Au(I) Compounds Exploiting the 2-Ethynylpyrimidine Ligand

Sarah L. McDarmont 1, Mary Jo McCormick 2, Paul S. Wagenknecht 2, Lily E. Duplooy 3, Jared A. Pienkos 1,* and Colin D. McMillen 4,*

1 Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
2 Department of Chemistry, Furman University, Greenville, SC 29613, USA
3 Girls Preparatory High School, Chattanooga, TN 37405, USA
4 Department of Chemistry, Clemson University, Clemson, SC 29634, USA
* Correspondence: jared-pienkos@utc.edu (J.A.P.); cmcmill@clemson.edu (C.D.M.)

Abstract: The luminescent properties of Au(I) and Pt(II) compounds are commonly tuned by exploiting the alkynyl ligand with varying electron density. Herein, we describe the synthesis of three new emissive transition metal compounds, 2-bpyPt(C2pym)2, Ph3PAuC2pym, and Cy3PAuC2pym (where H2C2pym = 2-ethynylpyrimidine), verified by 1H-NMR, EA, and a single-crystal X-ray diffraction analysis. The 2-bpyPt(C2pym); complex crystallized as an Et2O solvate in the orthorhombic space group Pbca with Z = 24 with three unique Pt(II) species within the unit cell. The Cy3PAuC2pym species crystallizes in a monoclinic space group with one unique complex in the asymmetric unit. Changing the identity of the phosphine from Cy3P to Ph3P influences interactions within the unit cell. Ph3PAuC2pym, which also crystallizes in a monoclinic space group, has an aurophilic bonding interaction Au–Au distance of 3.0722(2) Å, which is not present in crystalline Cy3PAuC2pym. Regarding optical properties, the use of an electron-deficient heterocycle provides an alternate approach to blue-shifting the emission of Pt(II) transition metals’ compounds, where the aryl moiety is made more electron-deficient by exploiting nitrogen within this moiety instead of the typical strategy of decorating the aryl ring with electron withdrawing substituents (e.g., fluorines). This is indicated by the blue-shift in emission that occurs in 2-bpyPt(C2pym); (λmax, emission = 512 nm) compared to the previously reported 2-bpyPt(C2-py); (where HC2-py = 2-ethynylpyridine) complex (λmax, emission = 520 nm).

Keywords: alkynyl ligands; luminescence; gold (I); platinum (II); aurophilic bonding; crystal structure

1. Introduction

A systematic way to tune the emission and absorption of transition metal compounds is to modify the electronics of a pendant alkynyl ligand [1–3]. This method has been previously exploited with various Pt(II) [4,5] and Au(I) [6] compounds to generate luminescent materials, which have applications in numerous devices including OLEDs [7]. Despite progress in developing OLEDs using organometallic phosphors, the development of materials with deep blue emission still receives significant attention [8–11], and thus general strategies to blue-shift emission are important. Regarding Pt(II) species, the emission of these compounds can be blue-shifted by decreasing the electron density of the alkynyl ligand. For instance, the -C5F5 group (where H2C5F5 = 1-ethynyl-2,3,4,5,6-pentafluorobenzene) is commonly used as an electron-deficient ligand to tune the emission of Pt(II) species [4,5,12] as it raises the energy of the metal-to-ligand charge-transfer
(MLCT) and the ligand-to-ligand charge-transfer (LL’CT) excited states (ESs) [1, 4, 5, 12–16]. For example, in the series of compounds ‘bpyPt(C2R): (Figure 1), the ‘bpyPt(C2C6F5): complex has the most blue-shifted emission (λmax = 501 nm in CH2Cl2) [4, 17]. The electron-deficient -C2C6F6 ligand has also been exploited to tune Au(I) phosphors [6].

Figure 1. Pt(II) compounds of the form ‘bpyPt(C2R): (R = phenyl (left), pyridyl (center), and perfluorophenyl (right)) and their corresponding emission λmax in CH2Cl2.

An alternative approach to the fluorine-substituted -C2C6F6 ligand is the introduction of electron-deficient heteroatoms to decrease the electron density of the aryl ring appended to the alkyne. For instance, pyridine is more electron-deficient than benzene due to the presence of the nitrogen atom, and pyrazine rings containing two nitrogen atoms are even more electron-deficient. This is reflected in the basicity of the pyridine [18] and pyrazine [19, 20] ring systems. In emissive transition metal compounds, the presence of the pyridyl ring in ‘bpyPt(C2-2py): (where HC2-2py = 2-ethynylpyridine) blue-shifts emission relative to the ‘bpyPt(C2Ph): derivative (Figure 1), indicating the lowering of the MLCT and LL’CT ES. Similar to the aforementioned Pt(II) alkynyl compounds, the emission of Au(I) species of the form Cy3PAuC2R can be blue-shifted when the alkynyl group is made more electron-deficient [21]. Herein, we describe the synthesis and characterization of three new alkynyl compounds, which exploit 2-ethynylpyrimidine (HC2pym) to provide insight into how this electron-deficient heterocycle can impact the properties of these transition metal compounds.

2. Materials and Methods

2.1. General Methods

UV-Vis: Absorption spectra were collected using a Cary-50 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, CA, USA).

Emission spectra: Emission spectra were collected using a Horiba (Kyoto, Japan) Scientific Fluorolog-3 spectrofluorometer. All emission spectra were recorded when compound concentration was at approximately 10−5 M with the following excitation wavelengths: 380 nm for ‘bpyPt(C2pym) and 285 nm for Ph3PAuC2pym and Cy3PAuC2pym.

Excitation spectra: Excitation spectra were collected using a Horiba (Kyoto, Japan) Scientific Fluorolog-3 spectrofluorometer using an emission assay of 525 nm for ‘bpyPt(C2pym) and 450 nm for Ph3PAuC2pym and Cy3PAuC2pym.

NMR spectra: 1H NMR spectra were recorded on a JEOL (Peabody, MA, USA) ECX 400 MHz spectrometer. 1H NMR resonances were referenced against tetramethylsilane using residual proton signals.

Elemental analysis: Atlantic Microlabs (Norcross, GA, USA) performed all elemental analysis measurements using a Carlo Erba (Milan, Italy) 1108 analyzer.

All reactions were performed under N2. The compounds ‘bpyPtCl2 [22], Ph3PAuCl [23], and Cy3PAuCl [24] were prepared according to previously reported procedures. CH2Cl2 and MeOH were dried with Al2O3 (passed through a column), (iPr)2NH was distilled over KOH, and all other reagents were used as received.
\[
tbpyPt(C_{2}pym)_{2}: \text{tbpyPtCl}_{2} (299.9 \text{ mg, 0.5612 mmol}), \text{HC}_{2}pym (133.4 \text{ mg, 1.281 mmol}), \text{CuI} (16.5 \text{ mg, 0.0866 mmol}), \text{CH}_{2}Cl_{2} (40 \text{ mL}), \text{and (iPr)}_{2}\text{NH} (10 \text{ mL}) \text{ were combined and the yellow mixture was stirred at rt. After 18h, the yellow solution was dried in vacuo to give a brown solid, which was then redissolved in CH}_{2}Cl_{2} (100 \text{ mL}) \text{ and washed with sat. aq. Na}_{2}\text{CO}_{3} (5 \times 100 \text{ mL}), \text{H}_{2}O (100 \text{ mL}), \text{and sat. aq. NaCl (100 mL). The organic layer was dried over MgSO}_{4} \text{ and the solvent was removed in vacuo. The resulting solid was purified using flash chromatography (neutral Al}_{2}\text{O}_{3}, \text{~4 cm in a 60 mL fitted glass funnel). A yellow-brown band was eluted with 5% MeOH in CH}_{2}Cl_{2}, \text{and the fraction containing this colored band was dried in vacuo, treated with Et}_{2}\text{O (20 mL), and sonicated, and the resulting solid was collected by filtration and washed with Et}_{2}\text{O (3 \times 10 mL) to give \textbf{tbpyPt(C}_{2}\text{pym):} as a yellow-brown solid (266.8 mg, 0.3984 mmol, 71%).}
\]

\[
1H-NMR (\text{CDCl}_{3}): \delta 9.15 (d, J = 5.91 \text{ Hz, 2H}), 8.65 (d, J = 4.91 \text{ Hz, 4 H}), 8.50 (s, 2H), 7.38 (dd, J = 2.09, 6.04 \text{ Hz, 2 H}), 7.05 (t, J = 4.97 \text{ Hz, 2H}). \text{UV-Vis (CH}_{2}\text{Cl}_{2}): \lambda_{\text{max}} = 377 \text{ nm, } \epsilon = 9700. \text{ Elemental analysis (found, calculated) for C}_{30}\text{H}_{30}\text{N}_{6}\text{Pt} \bullet 1/2 \text{H}_{2}\text{O, C (52.99, 53.09), H (4.89, 4.60), N (12.00, 12.38).}
\]

\[
\text{Single crystals were grown by layering a CH}_{2}\text{Cl}_{2} \text{ solution of \textbf{tbpyPt(C}_{2}\text{pym): with acetone followed by Et}_{2}\text{O. Crystals formed within one day.}
\]

\[
\text{Ph}_{3}\text{PAuC}_{2}\text{pym}: \text{KOH (150.8 mg, 2.688 mmol), \text{HC}_{2}\text{pym (92.7 mg, 0.890 mmol), and MeOH (13 mL) were combined. To this, a solution of PPh}_{3}\text{AuCl (400.1 mg, 0.8088 mmol) in 1:1 MeOH/acetone (40 mL) was added, forming a light-brown solution. After 24h, the solvent was removed in vacuo and the resulting light-brown oil was suspended in CH}_{2}\text{Cl}_{2} (15 mL), sonicated, and filtered through celite. The celite was washed with CH}_{2}\text{Cl}_{2} (5 \times 10 \text{ mL}) \text{ and filterate was dried in vacuo, redissolved in minimal CH}_{2}\text{Cl}_{2} (\sim 1 \text{ mL}) \text{ and added to hexanes (20 mL). The resulting precipitate was collected by filtration and washed with hexanes (3 \times 10 \text{ mL}), giving \textbf{Ph}_{3}\text{PAuC}_{2}\text{pym} as a white solid (302.3 mg, 0.5376 mmol, 66%).}
\]

\[
1H-NMR (d_{6}-\text{acetone}): \delta 8.64 (d, J = 4.96 \text{ Hz, 2H}), 7.67–7.58 (m, 15 H), 7.25 (t, J = 4.87 \text{ Hz, 1H}). \text{UV-Vis (CH}_{2}\text{Cl}_{2}): \lambda_{\text{max}} = 275 \text{ nm, } \epsilon = 33,000. \text{ Elemental analysis (found, calculated) for C}_{24}\text{H}_{18}\text{AuN}_{2}\text{P, C (51.19, 51.26), H (3.28, 3.23), N (4.84, 4.98).}
\]

\[
\text{Single crystals were grown by layering a CH}_{2}\text{Cl}_{2} \text{ solution of \textbf{Ph}_{3}\text{PAuC}_{2}\text{pym with toluene followed by hexanes. Crystals formed after three days.}
\]

\[
\text{Cy}_{3}\text{PAuC}_{2}\text{pym}: \text{KOH (90.2 mg, 1.61 mmol), \text{HC}_{2}\text{pym (54.3 mg, 0.522 mmol), and MeOH (7.5 mL) were combined. To this, a solution of Cy}_{3}\text{PAuCl (241.8 mg, 0.4715 mmol) in 1:1 MeOH/acetone (25 mL) was added, forming a light-brown mixture. After 24h, the solvent was removed in vacuo. The resulting light-brown oil was suspended in CH}_{2}\text{Cl}_{2} (15 mL), sonicated, and filtered through celite. The celite was washed with CH}_{2}\text{Cl}_{2} (5 \times 10 \text{ mL}) \text{ and the collected filtrate was dried in vacuo, re-dissolved in minimal CH}_{2}\text{Cl}_{2} (\sim 1 \text{ mL}) \text{ and added to hexanes (20 mL). The resulting precipitate was collected by filtration and washed with hexanes (3 \times 10 \text{ mL}), giving \textbf{Cy}_{3}\text{PAuC}_{2}\text{pym as a white solid (215.1 mg, 0.3705 mmol, 79%).}
\]

\[
1H-NMR (\text{CDCl}_{3}): \delta 8.60 (d, J = 5.01, 2H), 7.06 (t, J = 4.98, 1H), 2.07–1.15 (m, 33 H). \text{UV-Vis (CH}_{2}\text{Cl}_{2}): \lambda_{\text{max}} = 275 \text{ nm, } \epsilon = 29,000. \text{ Elemental analysis (found, calculated) for C}_{24}\text{H}_{36}\text{AuN}_{2}\text{P, C (49.43, 49.66), H (6.37, 6.25), N (4.85, 4.83).}
\]

\[
\text{Single crystals were grown by layering a CH}_{2}\text{Cl}_{2} \text{ solution of \textbf{Cy}_{3}\text{PAuC}_{2}\text{pym with toluene followed by hexanes. Crystals formed after three days.}
\]

2.2. Single-Crystal X-ray Diffraction

Single-crystal X-ray diffraction data were collected at 100 K using a Bruker (Madison, WI, USA) D8 Venture diffractometer. The data were collected using phi and omega scans (0.50° frame width) with a Mo Ka (\(\lambda = 0.71073 \text{ Å}\)) microfocus source and Photon 2 detector. Data were integrated (SAINT) and corrected for absorption using the multi-scan technique (SADABS), both within the Apex3 suite [25]. The structures were solved by intrinsic phasing (SHELXT) and subsequently refined by full matrix least squares on \(F^2\) (SHELXL) [26,27]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbon atoms were refined in calculated positions using the appropriate riding models.

The \(\textbf{tbpyPt(C}_{2}\text{pym):} \text{ complex was found to crystallize as the diethyl ether solvate, with 0.25 molecules of Et}_{2}\text{O per formula unit. Due to their partial occupancy in the
structural voids, the disordered Et₂O molecules were refined using several restraints to maintain chemically reasonable interatomic distances and anisotropic displacement parameters. One of the unique solvent molecules is present in half-occupancy due to symmetry constraints and the second unique solvent molecule is present in partial (0.25) occupancy in the voids. The latter occupancy was first tested by free variable refinement and found to be very close to 0.25, so it was fixed at this value for the final refinement. Elsewhere in this structure, disorder was observed in the orientation of two of the pyrimidine rings of the Pt1 complex and in one of the t-butyl groups of the Pt3 complex. Restraints were again employed in these instances to maintain similarity between the respective disordered contributions, where the site occupancies of the disordered parts were freely refined with a unity sum. The Ph₃PAuC₂pym complex crystallized as a dinuclear complex via aurophilic bonding and was refined in a fully ordered model without restraints. The Cy₃PAuC₂pym complex crystallized as a mononuclear complex and was likewise fully ordered and required no restraints. Crystallographic data are summarized in Table 1. CCDC 2359466–2359468 contain the complete supplementary crystallographic data for this paper and can be obtained from the Cambridge Crystallographic Data Centre.

Table 1. Crystallographic data.

<table>
<thead>
<tr>
<th></th>
<th>fpyPt(C₂pym) · 0.25(Et₂O)</th>
<th>Ph₃PAuC₂pym</th>
<th>Cy₃PAuC₂pym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C₃H₅.5N₆O₂.5Pt</td>
<td>C₅H₃Au₂N₂P</td>
<td>C₅H₃AuN₃P</td>
</tr>
<tr>
<td>F. W. (g/mol)</td>
<td>688.22</td>
<td>1124.68</td>
<td>580.48</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pbca</td>
<td>P2₁/c</td>
<td>P2₁/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>29.784 (3)</td>
<td>13.4341 (9)</td>
<td>9.4051 (4)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>20.2605 (15)</td>
<td>13.1567 (7)</td>
<td>10.9640 (5)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>30.014 (3)</td>
<td>23.1407 (15)</td>
<td>22.0930 (11)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>90</td>
<td>97.518 (2)</td>
<td>91.3946 (17)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>18,112 (3)</td>
<td>4045.9 (4)</td>
<td>2277.50 (18)</td>
</tr>
<tr>
<td>Z</td>
<td>24</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D(calcd) (g/cm³)</td>
<td>1.514</td>
<td>1.842</td>
<td>1.693</td>
</tr>
<tr>
<td>μ, mm⁻¹</td>
<td>4.678</td>
<td>7.346</td>
<td>6.542</td>
</tr>
<tr>
<td>F(000)</td>
<td>8172</td>
<td>2160</td>
<td>1152</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.03 × 0.04 × 0.29</td>
<td>0.04 × 0.14 × 0.33</td>
<td>0.16 × 0.16 × 0.28</td>
</tr>
<tr>
<td>θ range, °</td>
<td>2.23 to 25.25</td>
<td>2.27 to 27.50</td>
<td>2.62 to 28.50</td>
</tr>
<tr>
<td>Reflns. collected</td>
<td>195,665</td>
<td>79,113</td>
<td>55,194</td>
</tr>
<tr>
<td>Indep. reflns.</td>
<td>16,382</td>
<td>9303</td>
<td>5746</td>
</tr>
<tr>
<td>R (int)</td>
<td>0.0875</td>
<td>0.0494</td>
<td>0.0296</td>
</tr>
<tr>
<td>No. of parameters</td>
<td>1240</td>
<td>505</td>
<td>254</td>
</tr>
<tr>
<td>No. of restraints</td>
<td>691</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R1, wR2 (I > 2σ(I))</td>
<td>0.0753, 0.1526</td>
<td>0.0216, 0.0525</td>
<td>0.0119, 0.0278</td>
</tr>
<tr>
<td>R1, wR2 (all data)</td>
<td>0.0885, 0.1585</td>
<td>0.0243, 0.0548</td>
<td>0.0129, 0.0283</td>
</tr>
<tr>
<td>S</td>
<td>1.180</td>
<td>1.078</td>
<td>1.110</td>
</tr>
<tr>
<td>Largest diff. peak/hole (eÅ⁻³)</td>
<td>2.465, −3.441</td>
<td>1.297, −1.715</td>
<td>0.462, −0.537</td>
</tr>
<tr>
<td>CCDC deposition no.</td>
<td>2359466</td>
<td>2359467</td>
<td>2359468</td>
</tr>
</tbody>
</table>
3. Results and Discussion

3.1. Synthesis of Alkynyl Compounds

The compounds \(^{1}bpyPt(C_{2}pym)_{2}\), Ph\(_{3}\)PAuC\(_{2}pym\), and Cy\(_{3}\)PAuC\(_{2}pym\) were synthesized from the chloride complexes \(^{1}bpyPtCl_{2}\), Ph\(_{3}\)PAuCl, and Cy\(_{3}\)PAuCl, respectively (Scheme 1). For \(^{1}bpyPt(C_{2}pym)_{2}\), the strategy reported by Lu et al. was utilized to deprotonate HC\(_{2}pym\) in the presence of CuI/iPr\(_{2}\)NH to form the desired alkynyl compound. It was found that upon purifying this species using flash chromatography often [iPr\(_{2}\)NH\(_{2}\)]Cl would coelute with our desired product and remain with our product following Et\(_{2}\)O precipitation. Therefore, a basic extraction (aqueous Na\(_{2}\)CO\(_{3}\)) was performed to remove this amine salt prior to column chromatography. Regarding the Ph\(_{3}\)PAuC\(_{2}pym\) and Cy\(_{3}\)PAuC\(_{2}pym\) alkynyl compounds, KOH was used to deprotonate HC\(_{2}pym\) in an acetone/MeOH solution to form the desired Au(I) compounds. The excess KOH and the KCl by-products from these reactions were removed by dissolving the mixture in CH\(_{2}\)Cl\(_{2}\) and filtering through a celite plug prior to precipitating (for Ph\(_{3}\)PAuC\(_{2}pym\)) or treating with hexanes (for Cy\(_{3}\)PAuC\(_{2}pym\)) to afford the desired solid.

Scheme 1. Synthesis of \(^{1}bpyPt(C_{2}pym)_{2}\), Ph\(_{3}\)PAuC\(_{2}pym\), and Cy\(_{3}\)PAuC\(_{2}pym\).

3.2. Crystallographic Characterization

The \(^{1}bpyPt(C_{2}pym)_{2}\) complex crystallized as an Et\(_{2}\)O solvate in the orthorhombic space group \(Pbca\) with \(Z = 24\). The asymmetric unit consists of three crystallographically unique complexes (Figure 2: Pt1, Pt2, Pt3), differing slightly in the relative rotational orientations of the pyrimidine rings and their attachment angle at the alkyne. The Pt atoms are all four-coordinate square planar with C–Pt–C angles of 91.7(5)° for Pt1, 91.0(6)° for Pt2, and 89.4(6)° for Pt3, with Pt–C ranging from 1.928(11) Å to 1.956(13) Å and Pt–N ranging from 2.038(10) Å to 2.074(10) Å. Though there are no metal complexes of \(LM(C_{2}pym)_{2}\) coordination reported in the CSD for direct comparison, these are comparable values to those in similar \(LPt(C_{2}-py)\): (\(L\) = benzo(h)quinoline [28], 4,4'-di-t-butyl-2,2'-bipyridine [29], and 1-benzyl-2-(2-pyridyl)benzimidazole [30]) complexes. Also similar to the ethynylpyridine complexes, the ethynylpyrimidine complex \(^{1}bpyPt(C_{2}pym)_{2}\) here exhibits Pt–C=C and C=C–C bonds that can deviate from linearity to accommodate packing with neighboring molecules.
The complexes form stacks along the b-axis, with the b-axis length of 20.2605(15) Å comprising six complexes and the unit cell in total containing four such stacks (Figure 3). Though the mean planes of the PtNiC$_2$ cores of the complexes are not formally parallel in the stacks, this spacing suggests an average distance of 3.38 Å between complexes. The orientation of the complexes alternates within these stacks via rotation in the ac plane, allowing the t-butyl groups and the ethynylpyrimidine arms to be adequately accommodated. This is a similar motif to what was observed in the ethynylpyridine complex [29], bpyPt(C$_2$py): (CSD refcode RUGWIC) with a b-axis stacking of six complexes over 20.4987(17) Å. In that structure, all six of the complexes were crystallographically unique. The rotation of the stacked complexes in bpyPt(C$_2$py): · 0.25(Et$_2$O) results in Pt···Pt distances ranging from 4.1659(7) Å to 4.3850(7) Å. The disordered Et$_2$O solvent molecules occupy voids between the stacks.

The structure of the dinuclear Ph$_3$PAuC$_2$py complex is shown in Figure 4. The Au–Au distance of 3.0722(2) Å is well within the range typically considered for an aurophilic bonding interaction [31], leading to our interpretation of Ph$_3$PAuC$_2$py as a dinuclear complex. All the atoms of the complex are crystallographically unique. Aurophilic
interactions are common among Ph3PAu complexes, though to our knowledge, there are only two examples in the CSD where aurophilic bonding occurs between Ph3P−Au−C≡C fragments: bis[(thiophen-2-yl)ethynyl]-bis(triphenylphosphine)-di-gold (CSD refcode VULB1Q, Au−Au = 3.144 Å, [32]) and bis(µ2-penta-1,4-diyne-3-one)-tetrakis(triphenylphosphine)-tetra-gold (CSD refcode XIKWOF, Au−Au = 2.983 Å, [33]). The Ph3PdAuC2pym complex has similar features about its Au centers to those other multinuclear complexes, namely approximately linear P−Au−C angles of 179.33(9)° and 173.11(9)°, Au−P distances of 2.2790(8) Å and 2.2788(7) Å, and Au−C distances of 1.998(3) Å and 1.996(3) Å.

Figure 4. Crystal structure of Ph3PdAuC2pym shown as displacement ellipsoids at 50% probability levels.

The Ph3PdAuC2pym complexes pack sufficiently well to not create large solvent-accessible voids (Figure 5a). In particular, one phenyl group of a Ph3PdAuC2pym complex fits between the two pyrimidyl groups of a neighboring complex to form chains of the complexes propagating along the b-axis via C−H···N interactions (Figure 5b). Additional C−H···N and complementary C−H···π interactions assist the formation of these chains. Numerous other C−H···π interactions extend the packing structure to three dimensions.
Figure 5. Packing of dinuclear complexes in Ph₃PAuC₂pym: (a) Packing diagram viewed along b-axis. (b) Selected intermolecular interactions in Ph₃PAuC₂pym resulting in formation of chains propagating along b-axis via C–H···N (dashed blue lines). Carbon atoms are gray, nitrogen atoms are purple, gold atoms are yellow, and phosphorus atoms are orange.

The Cy₃PAuC₂pym complex crystallized as a mononuclear gold complex (Figure 6) with one unique complex in the asymmetric unit. It exhibits similar features of linear P–Au–alkyne connectivity (P–Au–C angle of 176.36(4)°, Au–P distance of 2.2936(4) Å, and Au–C distance of 2.0044(16) Å) to other Cy₃PAu complexes [21]. The use of 2-ethynylpyrimidine in the present study is again unique in the structural literature for Cy₃PAu complexes. Here, it again enables the formation of C–H···N interactions from one pyrimidyl group of a complex to one of the pyrimidyl nitrogen atoms of a neighboring complex, thereby creating chains along the b-axis (Figure 7a). The PCy₃ groups of neighboring chains are then positioned for localized complementary packing, which again limits the solvent-accessible void space (Figure 7b). Both of these features bear some similarity to what occurs in the (2-(4′-pyridyl)ethynyl)-(tris(cyclohexyl)phosphine)–gold complex (CSD refcode MUPGUZ, [21]), albeit with a generally shorter C···N distance across the C–H···N interactions of Cy₃PAuC₂pym (3.562(2) Å with C–H···N of 151.2° compared to 3.916(7) Å with C–H···N of 172.6°).

Figure 6. Crystal structure of Cy₃PAuC₂pym shown as displacement ellipsoids at 50% probability levels.
Figure 7. Packing of complexes in Cy3PAuC2pym: (a) Selected intermolecular interactions in Cy3PAuC2pym resulting in formation of chains propagating along b-axis via C–H···N (dashed blue lines). (b) Packing diagram of Cy3PAuC2pym viewed along b-axis. Carbon atoms are gray, nitrogen atoms are purple, gold atoms are yellow, and phosphorus atoms are orange.

3.3. Characterization of the Alkynyl Pyrimidine Compounds

1H-NMR spectroscopy served as an initial indicator that bpyPt(C2pym)$_2$, Ph3PAuC2pym, and Cy3PAuC2pym were successfully synthesized. A key feature in all the spectra was the presence of a downfield doublet and triplet integrating in a 2:1 ratio indicative of the resonances on the pyrimidine ring. Elemental analyses confirmed the purity of all three species, and crystallographic characterization (vide infra) supported the proposed structures with full structural characterization.

UV-Vis, excitation, and emission spectra of bpyPt(C2pym)$_2$, Ph3PAuC2pym, and Cy3PAuC2pym were collected in CH$_2$Cl$_2$. Over the range of concentrations where data were collected, no indication of ground-state aggregation was observed as indicated by Beer’s law plots (Supplementary Materials). For each sample, the excitation spectra reasonably match the absorption spectra (Supplementary Materials), which indicates that the emission is not resultant of an impurity.

The UV-Vis spectra of bpyPt(C2pym)$_2$: contain transitions analogous to previously reported compounds of the form bpyPt(C$_2$R)$_2$ (Supplementary Materials). The low-energy band ($\lambda_{\text{max}} = 377$ nm) was assigned as a charge-transfer transition based on previously reported Pt(II) alkynyl compounds [4]. Lu et al. reported that this band is blue-shifted in CH$_2$Cl$_2$ when electron withdrawing groups are appended on the acetylide substituents, as indicated by the comparison of bpyPt(C$_2$-thio)$_2$: (where HC$_2$-thio = 2-ethynylthiophene), which has a $\lambda_{\text{max}} = 410$, and the more electron-deficient bpyPt(C$_2$C$_6$F$_5$)$_2$, which has a $\lambda_{\text{max}} = 381$ nm [4]. The emission λ_{max} of bpyPt(C2pym)$_2$: at 512 nm (Figure 8) is blue-shifted relative to the previously reported bpyPt(C$_2$-py)$_2$: namely due to the -C$_2$pym ligand being more electron-deficient than the -C$_2$-py ligand. The emission spectra of bpyPt(C2pym)$_2$: are unaffected by the presence of oxygen, unlike the R3PAu(C2pym) species (vide infra).

Figure 8. Excitation and emission spectra of bpyPt(C2pym)$_2$.

Regarding the Au(I) compounds, the UV-Vis spectra of both species (Supplementary Materials) show a low-energy feature ($\lambda_{\text{max}} = 275$ nm) assigned to an intraligand [$\pi \rightarrow \pi^*$ (C≡C)] transition based on the assignment for the previously synthesized Ph$_3$PAu(C$_2$4-py) complex (where HC$_4$-py = 4-ethynylpyridine) [34]. The higher-energy transitions were tentatively assigned to phosphine-centered intraligand (IL) transitions because these features are also observed in the precursor complexes, e.g., Ph$_3$PAuCl [35–38]. The emission
spectra of Ph3PAuC2pym (Supplementary Materials) and Cy3PAuC2pym (Figure 9) are similarly structured with an emission $\lambda_{max} = 434$ nm for Ph3PAuC2pym and emission $\lambda_{max} = 435$ nm for Cy3PAuC2pym. In both Au(I) species, there is approximately a 10-fold increase in emission intensity upon purging with argon.

Figure 9. Excitation and emission spectra of Cy3PAuC2pym.

4. Conclusions

Three new transition metal complexes bearing 2-ethynylpyrimidine ligands have been synthesized, structurally characterized by X-ray crystallography, and further characterized by excitation and emission spectroscopy to gauge the utility of the alkynyl ligands toward tuning the emissive properties of complexes. The complexes, bpypPt(C2pym), Ph3PAuC2pym, and Cy3PAuC2pym, were synthesized by the deprotonation of HC2pym in the presence of bpypPtCl_2, Ph3PAuCl, and Cy3PAuCl, respectively, to form the mixed-ligand species. The bpypPt(C2pym) complex is a square planar Pt(II) complex with three unique complexes in the asymmetric unit that form stacks along the b-axis. The Ph3PAuC2pym complex forms a dinuclear Au(I) complex of two linear Ph3PAuC2pym units joined through aurophilic bonding. The Cy3PAuC2pym is likewise a linear Au(I) complex, but without aurophilic interactions, thus crystallizing as a discrete complex. Of note, the emission of the bpypPt(C2pym) compound is blue-shifted relative to the previously reported bpypPt(C2-py): complex, indicating that the introduction of electron-deficient heteroatoms provides a means of tuning of the optical properties of emissive alkynyl compounds. This provides an alternative strategy to the use of fluorinated alkynes, mainly -C6F5, that are commonly utilized to blue-shift emission. Other pyrimidine derivatives (e.g., 2-ethynyl-5-fluoropyrimidine [39]) should be considered as ligands to blue-shift emission of transition metal compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/cryst14070587/s1, Figure S1: 1H-NMR of bpypPt(C2pym): in CDCl3, Figure S2: 1H-NMR of Ph3AuC2pym in d6-acetone, Figure S3: 1H-NMR of Cy3PAuC2pym in CDCl3, Figure S4: UV-Vis of bpypPt(C2pym): and Beer’s law plot, Figure S5: UV-Vis of Ph3PAuC2pym and Beer’s law plot, Figure S6: UV-Vis of Cy3AuC2pym and Beer’s law plot, Figure S7: Excitation and emission spectra of Ph3PAuC2pym.

visualization, M.J.M., C.D.M. and J.A.P.; supervision, J.A.P., P.S.W. and C.D.M.; project administration, J.A.P. All authors have read and agreed to the published version of the manuscript.

Funding: PSW acknowledges support from the National Science Foundation under Grant No. 2055326. Any opinions, findings or conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by the authors on request. CCDC 2359466–2359468 contain the supplementary crystallographic data for this paper. These data can be obtained from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033.

Conflicts of Interest: The authors declare no conflicts of interest.

References

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.