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Abstract: Supervised contrastive learning optimizes a loss that pushes together embeddings of
points from the same class while pulling apart embeddings of points from different classes. Class
collapse—when every point from the same class has the same embedding—minimizes this loss but
loses critical information that is not encoded in the class labels. For instance, the “cat” label does
not capture unlabeled categories such as breeds, poses, or backgrounds (which we call “strata”).
As a result, class collapse produces embeddings that are less useful for downstream applications
such as transfer learning and achieves suboptimal generalization error when there are strata. We
explore a simple modification to supervised contrastive loss that aims to prevent class collapse by
uniformly pulling apart individual points from the same class. We seek to understand the effects of
this loss by examining how it embeds strata of different sizes, finding that it clusters larger strata more
tightly than smaller strata. As a result, our loss function produces embeddings that better distinguish
strata in embedding space, which produces lift on three downstream applications: 4.4 points on
coarse-to-fine transfer learning, 2.5 points on worst-group robustness, and 1.0 points on minimal
coreset construction. Our loss also produces more accurate models, with up to 4.0 points of lift across
9 tasks.

Keywords: contrastive learning; supervised contrastive learning; transfer learning; robustness; noisy
labels; coresets

1. Introduction

Supervised contrastive learning has emerged as a promising method for training deep
models, with strong empirical results over traditional supervised learning [1]. Recent
theoretical work has shown that under certain assumptions, class collapse—when the repre-
sentation of every point from a class collapses to the same embedding on the hypersphere,
as in Figure 1—minimizes the supervised contrastive loss LSC [2]. Furthermore, modern
deep networks, which can memorize arbitrary labels [3], are powerful enough to produce
class collapse.

Although class collapse minimizes LSC and produces accurate models, it loses infor-
mation that is not explicitly encoded in the class labels. For example, consider images with
the label “cat.” As shown in Figure 1, some cats may be sleeping, some may be jumping,
and some may be swatting at a bug. We call each of these semantically-unique categories of
data—some of which are rarer than others, and none of which are explicitly labeled—a stra-
tum. Distinguishing strata is important; it empirically can improve model performance [4]
and fine-grained robustness [5]. It is also critical in high-stakes applications such as medical
imaging [6]. However, LSC maps the sleeping, jumping, and swatting cats all to a single
“cat” embedding, losing strata information. As a result, these embeddings are less useful
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for common downstream applications in the modern machine learning landscape, such as
transfer learning.

In this paper, we explore a simple modification to LSC that prevents class collapse.
We study how this modification affects embedding quality by considering how strata are
represented in embedding space. We evaluate our loss both in terms of embedding quality,
which we evaluate through three downstream applications, and end model quality.
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Figure 1. Classes contain critical information that is not explicitly encoded in the class labels. Su-
pervised contrastive learning (left) loses this information, since it maps unlabeled strata such as
sleeping cats, jumping cats, and swatting cat to a single embedding. We introduce a new loss function
Lspread that prevents class collapse and maintains strata distinctions. Lspread produces higher-quality
embeddings, which we evaluate with three downstream applications.

In Section 3, we present our modification to LSC, which prevents class collapse by
changing how embeddings are pushed and pulled apart. LSC pushes together embeddings
of points from the same class and pulls apart embeddings of points from different classes.
In contrast, our modified loss Lspread includes an additional class-conditional InfoNCE loss
term that uniformly pulls apart individual points from within the same class. This term on
its own encourages points from the same class to be maximally spread apart in embedding
space, which discourages class collapse (see Figure 1 middle). Even though Lspread does
not use strata labels, we observe that it still produces embeddings that qualitatively appear
to retain more strata information than those produced by LSC (see Figure 2).

In Section 4, motivated by these empirical observations, we study how well Lspread
preserves distinctions between strata in the representation space. Previous theoretical tools
that study the optimal embedding distribution fail to characterize the geometry of strata.
Instead, we propose a simple thought experiment considering the embeddings that the
supervised contrastive loss generates when it is trained on a partial sample of the dataset.
This setup enables us to distinguish strata based on their sizes by considering how likely
it is for them to be represented in the sample (larger strata are more likely to appear in a
small sample). In particular, we find that points from rarer and more distinct strata are
clustered less tightly than points from common strata, and we show that this clustering
property can improve embedding quality and generalization error.

In Section 5, we empirically validate several downstream implications of these insights.
First, we demonstrate that Lspread produces embeddings that retain more information about
strata, resulting in lift on three downstream applications that require strata recovery:
• We evaluate how well Lspread’s embeddings encode fine-grained subclasses with coarse-

to-fine transfer learning. Lspread achieves up to 4.4 points of lift across four datasets.
• We evaluate how well embeddings produced by Lspread can recover strata in an un-

supervised setting by evaluating robustness against worst-group accuracy and noisy
labels. We use our insights about how Lspread embeds strata of different sizes to im-
prove worst-group robustness by up to 2.5 points and to recover 75% performance
when 20% of the labels are noisy.

• We evaluate how well we can differentiate rare strata from common strata by construct-
ing limited subsets of the training data that can achieve the highest performance under
a fixed training strategy (the coreset problem). We construct coresets by subsampling
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points from common strata. Our coresets outperform prior work by 1.0 points when
coreset size is 30% of the training set.
Next, we find that Lspread produces higher-quality models, outperforming LSC by up

to 4.0 points across 9 tasks. Finally, we discuss related work in Section 6 and conclude
in Section 7.
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Figure 2. Lspread produces embeddings that are qualitatively better than those produced by LSC.
We show t-SNE visualizations of embeddings for the CIFAR10 test set and report cosine similarity
metrics (average intracluster cosine similarities, and similarities between individual points and the
class cluster). Lspread produces lower intraclass cosine similarity and embeds images from rare strata
further out over the hypersphere than LSC.

2. Background

We present our generative model for strata (Section 2.1). Then, we discuss supervised
contrastive learning—in particular the SupCon loss LSC from [1] and its optimal embedding
distribution [2]—and the end model for classification (Section 2.2).

2.1. Data Setup

We have a labeled input dataset D = {(xi, yi)}N
i=1, where (x, y) ∼ P for x ∈ X and

y ∈ Y = {1, . . . , K}. For a particular data point x, we denote its label as h(x) ∈ Y with
distribution p(y|x). We assume that data is class-balanced such that p(y = i) = 1

K for all
i ∈ Y . The goal is to learn a model p̂(y|x) on D to classify points.

Data points also belong to categories beyond their labels, called strata. Following [5],
we denote a stratum as a latent variable z, which can take on values in Z = {1, . . . , C}. Z
can be partitioned into disjoint subsets S1, . . . , SK such that if z ∈ Sk, then its corresponding
y label is equal to k. Let S(c) denote the deterministic label corresponding to stratum c. We
model the data generating process as follows. First, the latent stratum is sampled from
distribution p(z). Then, the data point x is sampled from the distribution Pz = p(·|z),
and its corresponding label is y = S(z) (see Figure 2 of [5]). We assume that each class
has m strata, and that there exist at least two strata, z1, z2, where S(z1) 6= S(z2) and
supp(z1) ∩ supp(z2) 6= ∅.

2.2. Supervised Contrastive Loss

Supervised contrastive loss pushes together pairs of points from the same class (called
positives) and pulls apart pairs of points from different classes (called negatives) to train
an encoder f : X → Rd. Following previous works, we make three assumptions on the
encoder: (1) we restrict the encoder output space to be Sd−1, the unit hypersphere; (2) we
assume K ≤ d + 1, which allows Graf et al. [2] to recover optimal embedding geometry;
and (3) we assume the encoder f is “infinitely powerful”, meaning that any distribution on
Sd−1 is realizable by f (x).

2.2.1. SupCon and Collapsed Embeddings

We focus on the SupCon loss LSC from [1]. Denote σ(x, x′) = f (x)> f (x′)/τ, where
τ is a temperature hyperparameter. Let B be the set of batches of labeled data on D and
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P(i, B) = {p ∈ B\i : h(p) = h(i)} be the points in B with the same label as xi. For an

anchor xi, the SupCon loss is L̂SC( f , xi, B) = −1
|P(i,B)| ∑p∈P(i,B) log exp(σ(xi ,xp))

∑a∈B\i exp(σ(xi ,xa))
, where

P(i, B) forms positive pairs and B\i forms negative pairs.
The optimal embedding distribution that minimizes LSC has one embedding per class,

with the per-class embeddings collectively forming a regular simplex inscribed in the
hypersphere Graf et al. [2]. Formally, if h(x) = i, then f (x) = vi for all x ∈ B. {vi}K

i=1
makes up the regular simplex, defined by: a) ∑K

i=1 vi = 0; b) ‖vi‖2 = 1; and c) ∃cK ∈ R s.t.
v>i vj = cK for i 6= j. We describe this property as class collapse and define the distribution of
f (x) that satisfies these conditions as collapsed embeddings.

2.2.2. End Model

After the supervised contrastive loss is used to train an encoder, a linear classifier
W ∈ RK×d is trained on top of the representations f (x) by minimizing cross-entropy loss
over softmax scores. We assume that ‖Wy‖2 ≤ 1 for each y ∈ Y . The end model’s empirical

loss can be defined as L̂(W,D) = ∑xi∈D − log
exp( f (xi)

>Wh(xi)
)

∑K
j=1 exp( f (xi)>Wj)

. The model uses softmax

scores constructed with f (x) and W to generate predictions p̂(y|x), which we also write as
p̂(y| f (x)). Finally, the generalization error of the model on P is the expected cross-entropy
between p̂(y|x) and p(y|x), namely L(x, y, f ) = Ex,y∼P [− log p̂(y| f (x))].

3. Method

We now highlight some theoretical problems with class collapse under our generative
model of strata (Section 3.1). We then propose and qualitatively analyze the loss function
Lspread (Section 3.2).

3.1. Theoretical Motivation

We show that the conditions under which collapsed embeddings minimize gener-
alization error on coarse-to-fine transfer and the original task do not hold when distinct
strata exist.

Consider the downstream coarse-to-fine transfer task (x, z) of using embeddings f (x)
learned on (x, y) to classify points by fine-grained strata. Formally, coarse-to-fine transfer
involves learning an end model with weight matrix W ∈ RC×d and fixed f (x) (as described
in Section 2.2) on points (x, z), where we assume the data are class-balanced across z.

Observation 1. Class collapse minimizes L(x, z, f ) if for all x, (1) p(y = h(x)|x) = 1, meaning
that each x is deterministically assigned to one class, and (2) p(z|x) = 1

m where z ∈ Sh(x). The
second condition implies that p(x|z) = p(x|y) for all z ∈ Sy, meaning that there is no distinction
among strata from the same class. This contradicts our data model described in Section 2.1.

Similarly, we characterize when collapsed embeddings are optimal for the original
task (x, y).

Observation 2. Class collapse minimizes L(x, y, f ) if, for all x, p(y = h(x)|x) = 1. This
contradicts our data model.

Proofs are in Appendix D.1. We also analyze transferability of f on arbitrary new
distributions (x′, y′) information-theoretically in Appendix C.1, finding that a one-to-one
encoder obeys the Infomax principle [7] better than collapsed embeddings on (x′, y′).
These observations suggest that a distribution over the embeddings that preserves strata
distinctions and does not collapse classes is more desirable.



Comput. Sci. Math. Forum 2022, 3, 4 5 of 27

3.2. Modified Contrastive Loss Lspread

We introduce the loss Lspread, a weighted sum of two contrastive losses Lattract and
Lrepel . Lattract is a supervised contrastive loss, while Lrepel encourages intra-class separation.
For α ∈ [0, 1],

Lspread= αLattract + (1− α)Lrepel . (1)

For a given anchor xi, define xaug
i as an augmentation of the same point as x. Define

the set of negative examples for i to be N(i, B) = {a ∈ B\i : h(a) 6= h(i)}. Then,

L̂attract( f , xi, B) =
−1

|P(i, B)| ×∑
p∈P(i,B)

log
exp(σ(xi, xp))

exp(σ(xi, xp)) + ∑a∈N(i,B) exp(σ(xi, xa))
(2)

L̂repel( f , xi, B) = − log
exp(σ(xi, xaug

i ))

∑p∈P(i,B) exp(σ(xi, xp))
. (3)

L̂attract is a variant of the SupCon loss, which encourages class separation in embedding
space as suggested by Graf et al. [2]. L̂repel is a class-conditional InfoNCE loss, where the
positive distribution consists of augmentations and the negative distribution consists of
i.i.d samples from the same class. It encourages points within a class to be spread apart, as
suggested by the analysis of the InfoNCE loss by Wang and Isola [8].

Qualitative Evaluation

Figure 2 shows t-SNE plots for embeddings produced with LSC versus Lspread on
the CIFAR10 test set. Lspread produces embeddings that are more spread out than those
produced by LSC and avoids class collapse. As a result, images from different strata can
be better differentiated in embedding space. For example, we show two dogs, one from a
common stratum and one from a rare stratum (rare pose). The two dogs are much more
distinguishable by distance in the Lspread embedding space, which suggests that it helps
preserve distinctions between strata.

4. Geometry of Strata

We first discuss some existing theoretical tools for analyzing contrastive loss geometri-
cally and their shortcomings with respect to understanding how strata are embedded. In
Section 4.2, we propose a simple thought experiment about the distances between strata in
embedding space when trained under a finite subsample of data to better understand our
prior qualitative observations. Then, in Section 4.3, we discuss implications of represen-
tations that preserve strata distinctions, showing theoretically how they can yield better
generalization error on both coarse-to-fine transfer and the original task and empirically
how they allow for new downstream applications.

4.1. Existing Analysis

Previous works have studied the geometry of optimal embeddings under contrastive
learning [2,8,9], but their techniques cannot analyze strata because strata information is not
directly used in the loss function. These works use the infinite encoder assumption, where
any distribution on Sd−1 is realizable by the encoder f applied to the input data. This allows
the minimization of the contrastive loss to be equivalent to an optimization problem over
probability measures on the hypersphere. As a result, solving this new problem yields a
distribution whose characterization is solely determined by information in the loss function
(e.g., labels information [2,9]) and is decoupled from other information about the input
data x and hence decoupled from strata.

More precisely, if we denote the measure of x ∈ X as µX , minimizing the contrastive
loss over the mapping f is equal (at the population level) to minimizing over the pushfor-
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ward measure µX ◦ f−1 : Sd−1 → [0, 1]. The infinite encoder assumption allows us to relax
the problem and instead consider optimizing over any µ ∈ M(Sd−1) in the Borel set of
probability measures on the hypersphere. Then, the optimal µ? learned is independent of
the distribution of the input data P beyond what is in the relaxed objective function.

This approach using the infinite encoder assumption does not allow for analysis of
strata. Strata are unknown at training time and thus cannot be incorporated explicitly
into the loss function. Their geometries will not be reflected in the characterization of
the optimal distribution obtained from previous theoretical tools. Therefore, we need
additional reasoning for our empirical observations that strata distinctions are preserved in
embedding space under Lspread.

4.2. Subsampling Strata

We propose a simple thought experiment based on subsampling the dataset—randomly
sampling a fraction of the training data—to analyze strata. Consider the following: we
subsample a fraction t ∈ [0, 1] of a training set of N points from P . We use this subsampled
dataset Dt to learn an encoder f̂t, and we study the average distance under f̂t between two
strata z and z′ as t varies.

The average distance between z and z′ is δ( f̂t, z, z′) = ‖Ex∼Pz [ f̂t(x)]−Ex∼Pz′
[ f̂t(x)]‖2

and depends on whether z and z′ are both in the subsampled dataset. We study when z and
z′ belong to the same class. We have three cases (with probabilities stated in Appendix C.2)
based on strata frequency and t—when both, one, or neither of the strata appears in Dt:

1. Both strata appear in Dt The encoder f̂t is trained on both z and z′. For large N, we
can approximate this setting by considering f̂t trained on infinite data from these strata.
Points belonging to these strata will be defined in the optimal embedding distribution
on the hypersphere, which can be characterized by prior theoretical approaches [2,8,9].
With Lspread, δ( f̂t, z, z′) depends on α, which controls the extent of spread in the
embedding geometry. With LSC, points from the two strata would asymptotically
map to one location on the hypersphere, and δ( f̂t, z, z′) would converge to 0. This
case occurs with probability increasing in p(z), p(z′), and t.

2. One stratum but not the other appears in Dt Without loss of generality, suppose that
points from z appear in Dt but no points from z′ do. To understand δ( f̂t, z, z′), we
can consider how the end model p̂(y| f̂t(x)) learned using the “source” distribution
containing z performs on the “target” distribution of stratum z′ since this downstream
classifier is a function of distances in embedding space. Borrowing from the literature
in domain adaptation, the difficulty of this out-of-distribution problem depends on
both the divergence between source z and target z′ distributions and the capacity
of the overall model. The H∆H-divergence from Ben-David et al. [10,11], which is
studied in lower bounds in Ben-David and Urner [12], and the discrepancy difference
from Mansour et al. [13] capture both concepts. Moreover, the optimal geometries of
Lspread and LSC induce different end model capacities and prediction distributions,
with data being more separable under LSC, which can help explain why Lspread better
preserves strata distances. This case occurs with probability increasing in p(z) and
decreasing in p(z′) and t.

3. Neither strata appears inDt The distance δ( f̂t, z, z′) in this case is at most 2DTV(Pz,Pz′)
(total variation distance) regardless of how the encoder is trained, although differences
in transfer from models learned on Z\z, z′ to z versus z′ can be further analyzed. This
case occurs with probability decreasing in p(z), p(z′), and t.

We make two observations from these cases. First, if z and z′ are both common
strata, then as t increases, the distance between them depends on the optimal asymptotic
distribution. Therefore, if we set α = 1 in Lspread, these common strata will collapse.
Second, if z is a common strata and z′ is uncommon, the second case occurs frequently
over randomly sampled Dt, and thus the strata are separated based on the difficulty of the
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respective out-of-distribution problem. We thus arrive at the following insight from our
thought experiment:

Common strata are more tightly clustered together, while rarer and more semantically
distinct strata are far away from them.

Figure 3 demonstrates this insight. It shows a t-SNE visualization of embeddings
from training on CIFAR100 with coarse superclass labels, and with artifically imbalanced
subclasses. We show points from the largest subclasses in dark blue and points from the
smallest subclasses in light blue. Points from the largest subclasses (dark blue) cluster
tightly, whereas points from small subclasses (light blue) are scattered throughout the
embedding space.

500 Points
250 Points 
100 Points
50 Points

Subclass Size

Figure 3. Points from large subclasses cluster tightly; points from small subclasses scatter (CIFAR100-
Coarse, unbalanced subclasses).

4.3. Implications

We discuss theoretical and practical implications of our subsampling argument. First,
we show that on both the coarse-to-fine transfer task (x, z) and the original task (x, y),
embeddings that preserve strata yield better generalization error. Second, we discuss
practical implications arising from our subsampling argument that enable new applications.

4.3.1. Theoretical Implications

Consider f̂1, the encoder trained on D with all N points using Lspread, and suppose

a mean classifier is used for the end model, e.g., Wy = Ex|y

[
f̂1(x)

]
and Wz = Ex|z

[
f̂1(x)

]
.

On coarse-to-fine transfer, generalization error depends on how far each stratum center is
from the others.

Lemma 1. There exists λz > 0 such that the generalization error on the coarse-to-fine transfer task
is at most

L(x, z, f̂1) ≤ Ez

[
log
(

∑
z′∈Z

exp
(
− λz

(1
2

δ( f̂1, z, z′)2 − 1
)))]

− 1, (4)

where δ( f̂1, z, z′) is the average distance between strata z and z′ defined in Section 4.2.

The larger the distances between strata, the smaller the upper bound on generalization
error. We now show that a similar result holds on the original task (x, y), but there is an
additional term that penalizes points from the same class being too far apart.

Lemma 2. There exists λy > 0 such that the generalization error on the original task is at most

L(x, y, f̂1) ≤ Ez

[
Ez′ |S(z)

[
1
2

δ( f̂1, z, z′)2 − 1
]

(5)

+ log
(

∑
y∈Y

exp
(
Ez′ |y

[
− λy

(1
2

δ( f̂1, z, z′)2 − 1
)]))]

. (6)
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This result suggests that maximizing distances between strata of different classes is
desirable, but less so for distances between strata of the same class as suggested by the first
term in the expression. Both results illustrate that separating strata to some extent in the
embedding space results in better bounds on generalization error. In Appendix C.3, we
provide proofs of these results and derive values of the generalization error for these two
tasks under class collapse for comparison.

4.3.2. Practical Implications

Our discussion in Section 4.2 suggests that training with Lspread better distinguishes
strata in embedding space. As a result, we can use differences between strata of different
sizes for downstream applications. For example, unsupervised clustering can help recover
pseudolabels for unlabeled, rare strata. These pseudolabels can be used as inputs to worst-
group robustness algorithms, or used to detect noisy labels, which appear to be rare strata
during training (see Section 5.3 for examples). We can also train over subsampled datasets
to heuristically distinguish points that come from common strata from points that come
from rare strata. We can then downsample points from common strata to construct minimal
coresets (see Section 5.4 for examples).

5. Experiments

This section evaluates Lspread on embedding quality and model quality:
• First, in Section 5.2, we use coarse-to-fine transfer learning to evaluate how well the

embeddings maintain strata information. We find that Lspread achieves lift across four
datasets.

• In Section 5.3, we evaluate how well Lspread can detect rare strata in an unsupervised
setting. We first use Lspread to detect rare strata to improve worst-group robustness by
up to 2.5 points. We then use rare strata detection to correct noisy labels, recovering
75% performance under 20% noise.

• In Section 5.4, we evaluate how well Lspread can distinguish points from large strata
versus points from small strata. We downsample points from large strata to construct
minimal coresets on CIFAR10, outperforming prior work by 1.0 points at 30% labeled
data.

• Finally, in Section 5.5, we show that training with Lspread improves model quality, vali-
dating our theoretical claims that preventing class collapse can improve generalization
error. We find that Lspread improves performance in 7 out of 9 cases.

5.1. Datasets and Models

Tabel 1 lists all the datasets we use in our evaluation. CIFAR10, CIFAR100, and
MNIST are the standard computer vision datasets. We also use coarse versions of each,
wherein classes are combined to create coarse superclasses (animals/vehicles for CIFAR10,
standard superclasses for CIFAR100, and <5, ≥5 for MNIST). In CIFAR100-Coarse-U,
some subclasses have been artificially imbalanced. Waterbirds, ISIC and CelebA are image
datasets with documented hidden strata [5,14–16]. We use a ViT model [17] (4 × 4, 7 layers)
for CIFAR and MNIST and a ResNet50 for the rest. For the ViT models, we jointly optimize
the contrastive loss with a cross entropy loss head. For the ResNets, we train the contrastive
loss on its own and use linear probing on the final layer. More details in Appendix E.
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Table 1. Summary of the datasets we use for evaluation.

Dataset Notes

CIFAR10 Standard computer vision dataset
CIFAR10-Coarse CIFAR10 with animal/vehicle coarse labels
CIFAR100 Standard computer vision dataset
CIFAR100-Coarse CIFAR100 with standard coarse labels
CIFAR100-Coarse-U CIFAR100 with standard coarse labels, but with some fine classes

sub-sampled
MNIST Standard computer vision dataset
MNIST-Coarse MNIST with <5 and ≥5 coarse labels
Waterbirds Robustness dataset mixing up images of birds and their

backgrounds [14]
ISIC Images of skin lesions [15]
CelebA Images of celebrity faces [16]

5.2. Coarse-to-Fine Transfer Learning

In this section, we use coarse-to-fine transfer learning to evaluate how well Lspread
retains strata information in the embedding space. We train on coarse superclass labels,
freeze the weights, and then use transfer learning to train a linear layer with subclass labels.
We use this supervised strata recovery setting to isolate how well the embeddings can
recover strata in the optimal setting. For baselines, we compare against training with LSC
and the SimCLR loss LSS.

Table 2 reports the results. We find that Lspread produces better embeddings for coarse-
to-fine transfer learning than LSC and LSS. Lift over LSC varies from 0.2 points on MNIST
(16.7% error reduction), to 23.6 points of lift on CIFAR10. Lspread also produces better
embeddings than LSS, since LSS does not encode superclass labels in the embedding space.

Table 2. Performance of coarse-to-fine transfer on various datasets compared against contrastive
baselines. In these tasks, we first train a model on coarse task labels, then freeze the representation
and train a model on fine-grained subclass labels. Lspread produces embeddings that transfer better
across all datasets. Best in bold.

Coarse-to-Fine Transfer

Dataset LSS LSC Lspread

CIFAR10-Coarse 71.7 52.5 76.1
CIFAR100-Coarse 62.0 62.4 63.9
CIFAR100-Coarse-U 61.9 59.5 62.4
MNIST-Coarse 97.1 98.8 99.0

5.3. Robustness Against Worst-Group Accuracy and Noise

In this section, we use robustness to measure how well Lspread can recover strata
in an unsupervised setting. We use clustering to detect rare strata as an input to worst-
group robustness algorithms, and we use a geometric heuristic over embeddings to correct
noisy labels.

To evaluate worst-group accuracy, we follow the experimental setup and datasets
from Sohoni et al. [5]. We first train a model with class labels. We then cluster the embed-
dings to produce pseudolabels for hidden strata, which we use as input for a Group-DRO
algorithm to optimize worst-group robustness [14]. We use both LSC and cross entropy
loss [5] for training the first stage as baselines.

To evaluate robustness against noise, we introduce noisy labels to the contrastive loss
head on CIFAR10. We detect noisy labels with a simple geometric heuristic: points with
incorrect labels appear to be small strata, so they should be far away from other points of
the same class. We then correct noisy points by assigning the label of the nearest cluster in
the batch. More details can be found in Appendix E.
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Table 3 shows the performance of unsupervised strata recovery and downstream worst-
group robustness. We can see that Lspread outperforms both LSC and Sohoni et al. [5] on
strata recovery. This translates to better worst-group robustness on Waterbirds and CelebA.

Figure 4 (left) shows the effect of noisy labels on performance. When noisy labels are
uncorrected (purple), performance drops by up to 10 points at 50% noise. Applying our
geometric heuristic (red) can recover 4.8 points at 50% noise, even without using Lspread.
However, Lspread recovers an additional 0.9 points at 50% noise, and an additional 1.6 points
at 20% noise (blue). In total, Lspread recovers 75% performance at 20% noise, whereas LSC
only recovers 45% performance.

Table 3. Unsupervised strata recovery performance (top, F1), and worst-group performance (AUROC
for ISIC, Acc for others) using recovered strata. Best in bold.

Sub-Group Recovery

Dataset Sohoni et al. [5] LSC Lspread

Waterbirds 56.3 47.2 59.0
ISIC 74.0 92.5 93.8
CelebA 24.2 19.4 24.8

Worst-Group Robustness

Waterbirds 88.4 86.5 89.0
ISIC 92.0 93.3 92.6
CelebA 55.0 66.1 67.8
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90

Ac
c

0% 20% 40%
Noise Rate

Noisy Label Performance, CIFAR10

96

92

88

100% 60% 20%
Coreset Size

Coreset Performance, CIFAR10

Correction, Lspread
Correction, LSC 
No Correction

Ours
Forgetting
GradNorm
L2Norm
Random

Figure 4. (Left) Performance of models under various amounts of label noise for the contrastive
loss head. (Right) Performance of a ResNet18 trained with coresets of various sizes. Our coreset
algorithm is competitive with the state-of-the-art in the large coreset regime (from 40–90% coresets),
but maintains performance for small coresets (smaller than 40%). At the 10% coreset, our algorithm
outperforms [18] by 32 points and matches random sampling.

5.4. Minimal Coreset Construction

Now we evaluate how well training on fractional samples of the dataset with Lspread
can distinguish points from large versus small strata by constructing minimal coresets for
CIFAR10. We train a ResNet18 on CIFAR10, following Toneva et al. [18], and compare
against baselines from Toneva et al. [18] (Forgetting) and Paul et al. [19] (GradNorm,
L2Norm). For our coresets, we train with Lspread on subsamples of the dataset and record
how often points are correctly classified at the end of each run. We bucket points in the
training set by how often the point is correctly classified. We then iteratively remove points
from the largest bucket in each class. Our strategy removes easy examples first from the
largest coresets, but maintains a set of easy examples in the smallest coresets.

Figure 4 (right) shows the results at various coreset sizes. For large coresets, our algorithm
outperforms both methods from Paul et al. [19] and is competitive with Toneva et al. [18]. For
small coresets, our method outperforms the baselines, providing up to 5.2 points of lift
over Toneva et al. [18] at 30% labeled data. Our analysis helps explain this gap; removing
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too many easy examples hurts performance, since then the easy examples become rare and
hard to classify.

5.5. Model Quality

Finally, we confirm that Lspread produces higher-quality models and achieves better
sample complexity than both LSC and the SimCLR loss LSS from [20]. Table 4 reports the
performance of models across all our datasets. We find that Lspread achieves better overall
performance compared to models trained with LSC and LSS in 7 out of 9 tasks, and matches
performance in 1 task. We find up to 4.0 points of lift over LSC (Waterbirds), and up to
2.2 points of lift (AUROC) over LSS (ISIC). In Appendix F, we additionally evaluate the
sample complexity of contrastive losses by training on partial subsamples of CIFAR10.
Lspread outperforms LSC and LSS throughout.

Table 4. End model performance training with Lspread on various datasets compared against con-
trastive baselines. All metrics are accuracy except for ISIC (AUROC). Lspread produces the best
performance in 7 out of 9 cases, and matches the best performance in 1 case. Best in bold.

End Model Perf.

Dataset LSS LSC Lspread

CIFAR10 89.7 90.9 91.5
CIFAR10-Coarse 97.7 96.5 98.1
CIFAR100 68.0 67.5 69.1
CIFAR100-Coarse 76.9 77.2 78.3
CIFAR100-Coarse-U 72.1 71.6 72.4
MNIST 99.1 99.3 99.2
MNIST-Coarse 99.1 99.4 99.4
Waterbirds 77.8 73.9 77.9
ISIC 87.8 88.7 90.0

6. Related Work and Discussion

From work in contrastive learning, we take inspiration from [21], who use a latent
classes view to study self-supervised contrastive learning. Similarly, [22] considers how
minimizing the InfoNCE loss recovers a latent data generating model. We initially started
from a debiasing angle to study the effects of noise in supervised contrastive learning
inspired by [23], but moved to our current strata-based view of noise instead. Recent work
has also analyzed contrastive learning from the information-theoretic perspective [24–26],
but does not fully explain practical behavior [27], so we focus on the geometric perspec-
tive in this paper because of the downstream applications. On the geometric side, we
are inspired by the theoretical tools from [8] and [2], who study representations on the
hypersphere along with [9].

Our work builds on the recent wave of empirical interest in contrastive learning [20,28–31]
and supervised contrastive learning [1]. There has also been empirical work analyzing the
transfer performance of contrastive representations and the role of intra-class variability
in transfer learning. [32] find that combining supervised and self-supervised contrastive
loss improves transfer learning performance, and they hypothesize that this is due to both
inter-class separation and intra-class variability. [33] find that combining cross entropy
and self-supervised contrastive loss improves coarse-to-fine transfer, also motivated by
preserving intra-class variability.

We derive Lspread from similar motivations to losses proposed in these works, and
we futher theoretically study why class collapse can hurt downstream performance. In
particular, we study why preserving distinctions of strata in embedding space may be
important, with theoretical results corroborating their empirical studies. We further propose
a new thought experiment for why a combined loss function may lead to better separation
of strata.
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Our treatment of strata is strongly inspired by [5,6], who document empirical conse-
quences of hidden strata. We are inspired by empirical work that has demonstrated that
detecting subclasses can be important for performance [4,34] and robustness [14,35,36].

Each of our downstream applications is a field in itself, and we take inspiration
from recent work from each. Our noise heuristic is similar to the ELR [37] and takes
inspiration from a various work using contrastive learning to correct noisy labels and for
semi-supervised learning [38–40]. Our coreset algorithm is inspired by recent work in
coresets for modern deep networks [19,41,42], and takes inspiration from [18] in particular.

7. Conclusions

We propose a new supervised contrastive loss function to prevent class collapse
and produce higher-quality embeddings. We discuss how our loss function better main-
tains strata distinctions in embedding space and explore several downstream applications.
Future directions include encoding label hierarchies and other forms of knowledge in
contrastive loss functions and extending our work to more modalities, models, and ap-
plications. We hope that our work inspires further work in more fine-grained supervised
contrastive loss functions and new theoretical approaches for reasoning about generaliza-
tion and strata.
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We provide a glossary in Appendix A. Then we provide definitions of terms in
Appendix B. We discuss additional theoretical results in Appendix C. We provide proofs
in Appendix D. We discuss additional experimental details in Appendix E. Finally, we
provide additional experimental results in Appendix F.

Appendix A. Glossary

The glossary is given in Table A1 below.

Table A1. Glossary of variables and symbols used in this paper.

Symbol Used for

LSC SupCon (see Section 2.2), a supervised contrastive loss introduced by [1].
Lspread Our modified loss function defined in Section 3.2.
x Input data x ∈ X .
y Class label y ∈ Y = {1, . . . , K}.
D Dataset of N points {(xi, yi)}N

i=1 drawn i.i.d. from P .
h(x) The class that x belongs to, i.e., h(x) is a label drawm from p(y|x). This label

information is used as input in the supervised contrastive loss.
p̂(y|x) The end model’s predicted distribution over y given x.
z A stratum is a latent variable z ∈ Z = {1, . . . , C} that further categorizes data

beyond labels.
Sk The set of all strata corresponding to label k (deterministic).
S(c) The label corresponding to strata c (deterministic).
Pz The distribution of input data belonging to stratum z, i.e., x ∼ p(·|z).
m The number of strata per class.
d Dimension of the embedding space.
f The encoder f : X → Rd maps input data to an embedding space and is learned by

minimizing the contrastive loss function.
Sd−1 The unit hypersphere, formally {v ∈ Rd : ‖v‖2 = 1}.
τ Temperature hyperparameter in contrastive loss function.

σ(x, x′) Notation for f (x)> f (x′)
τ .

B Set of batches of labeled data on D.
P(i, B) Points in B with the same label as xi, formally {p ∈ B\i : h(p) = h(i)}.
{vi}K

i=1 A regular simplex inscribed in the hypersphere (see Definition A1).
W The weight matrix that parametrizes the downstream linear classifier

(end model) learned on f (x).
L̂(W,D) The empirical cross entropy loss used to learn W over dataset D (see (A1)).
L(x, y, f ) The generalization error of the end model of predicting output y on x using

encoder f (see (A2) and (A3)).
Lattract A variant on SupCon that is used in Lspread that pushes points of a class together

(see (2)).
Lrepel A class-conditional InfoNCE loss that is used in Lspread to pull apart points

within a class (see (3)).
α Hyperparameter α ∈ [0, 1] controls how to balance Lattract and Lrepel .
xaug An augmentation of data point x.
N(i, B) Points in B with a label different from that of xi, formally {a ∈ B\i : h(a) 6= h(i)}.
t Fraction of training data t ∈ [0, 1] that is varied in our thought experiment.
Dt Randomly sampled dataset from P with size equal to t · N fraction of D.
f̂t Encoder trained on sampled dataset Dt.
δ( f̂t, z, z′) The distance between centers of strata z and z′ under encoder f̂t,

namely δ( f̂t, z, z′) = ‖Ex∼Pz [ f̂t(x)]−Ex∼Pz′
[ f̂t(x)]‖2.

Appendix B. Definitions

We restate definitions used in our proofs.

Definition A1 (Regular Simplex). The points {vi}K
i=1 form a regular simplex inscribed in the

hypersphere if

1. ∑K
i=1 vi = 0
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2. ‖vi‖ = 1 for all i
3. ∃cK ≤ 1 s.t. v>i vj = cK for i 6= j

Definition A2 (Downstream model). Once an encoder f (x) is learned, the downstream model
consists of a linear classifier trained using the cross-entropy loss:

L̂(W,D) = ∑
xi∈D
− log

exp( f (xi)
>Wh(xi)

)

∑K
j=1 exp( f (xi)>Wj)

. (A1)

Define Ŵ := argmin‖W‖2≤1 L̂(W,D). Then, the end model’s outputs are the probabilities

p̂(y|x) = p̂(y| f (x)) =
exp( f (x)>Ŵy)

∑K
j=1, exp( f (x)>Ŵj)

, (A2)

and the generalization error is

L(x, y, f ) = Ex,y[− log p̂(y| f (x))]. (A3)

Appendix C. Additional Theoretical Results

Appendix C.1. Transfer Learning on (x′, y′)

We now show an additional transfer learning result on new tasks (x′, y′). Formally,
recall that we learn the encoder f on (x, y) ∼ P . We wish to use it on a new task with target
distribution (x′, y′) ∼ P ′. We find that an injective encoder f (x) is more appropriate to be
used on new distributions than collapsed embeddings based on the Infomax principle [7].

Observation A1. Define fc(y) as the mapping to collapsed embeddings and f1−1(x) as an injective
mapping, both learned on P . Construct a new variable ỹ with joint distribution (x′, ỹ) ∼ p(y|x) ·
p′(x′) and suppose that ỹ ⊥⊥ y′|x′. Then, by the data processing inequality, it holds that I(ỹ, y′) ≤
I(x′, y′) where I(·, ·) is the mutual information between two random variables. We apply fc to ỹ
and f1−1 to x′ to get that

I( fc(ỹ), y′) ≤ I( f1−1(x′), y′).

Therefore, f1−1 obeys the Infomax principle [7] better on P ′ than fc. Via Fano’s inequality,
this statement implies that the Bayes risk for learning y′ from x′ is lower using f1−1 than fc.

Appendix C.2. Probabilities of Strata z, z′ Appearing in Subsampled Dataset

As discussed in Section 4.2, the distance between strata z and z′ in embedding space
depends on if these strata appear in the subsampled datasetDt that the encoder was trained
on. We define the exact probabilities of the three cases presented. Let Pr(z, z′ ∈ Dt) be the
probability that both strata are seen, Pr(z ∈ Dt, z′ /∈ Dt) be the probability that only z is
seen, and Pr(z, z′ /∈ Dt be the probability that neither are seen.

First, the probability of neither strata appearing in Dt is easy to compute. In particular,
we have that Pr(z, z′ /∈ Dt) = (1− p(z)− p(z′))tN . This quantity decreases in p(z) and
p(z′), confirming that it is less likely for two common strata to not appear in Dt.

Second, the probability of z being in Dt and z′ not being in Dt can be expressed
as Pr(z ∈ Dt|z′ /∈ Dt) · Pr(z′ /∈ Dt). Pr(z′ /∈ Dt) is equal to (1− p(z′))tN , and Pr(z ∈
Dt|z′ /∈ Dt) = 1 − Pr(z /∈ Dt|z′ /∈ Dt) = 1 − (1 − p(z|z ∈ Z\z′))tN . Finally, note
that p(z|z ∈ Z\z′) = p(z)

1−p(z′) . Putting this together, we get that Pr(z ∈ Dt, z′ /∈ Dt) =

(1− p(z′))tN − (1− p(z′)− p(z))tN , and we can similarly construct Pr(z′ ∈ Dt, z /∈ Dt).
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This quantity depends on the difference between p(z) and p(z′), so this case is common
when one stratum is common and one is rare.

Lastly, the probability of both z and z′ being inDt is thus Pr(z, z′ ∈ Dt) = 1−Pr(z, z′ /∈
Dt) − Pr(z′ ∈ Dt, z /∈ Dt) − Pr(z ∈ Dt, z′ /∈ Dt) = 1 + (1 − p(z′) − p(z))tN − (1 −
p(z′))tN − (1− p(z))tN . This quantity increases in p(z) and p(z′).

Appendix C.3. Performance of Collapsed Embeddings on Coarse-to-Fine Transfer and Original Task

Lemma A1. Denote fc to be the encoder that collapses embeddings such that fc(x) = vy for any
(x, y) ∼ P . Then, the generalization error on the coarse-to-fine transfer task using fc and a linear
classifier learned using cross entropy loss is at least

L(x, z, fc) ≥ log(m exp(1) + (C−m) exp(cK)− 1,

where cK is the dot product of any two different class-collapsed embeddings. The generalization
error on the original task under the same setup is at least

L(x, y, fc) ≥ log(exp(1) + (K− 1) exp(cK))− 1.

Proof. We first bound generalization error on the coarse-to-fine transfer task. For collapsed
embeddings, f (x) = vi when h(x) = i, where h(x) is information available at training
time that follows the distribution p(y|x). We thus denote the embedding f (x) as vh(x).
Therefore, we write the generalization error with an expectation over h(x) and factorize
the expectation according to our generative model.

Ex,z,h(x)[− log p̂(z| f (x))] = −
C

∑
z=1

K

∑
h(x)=1

∫
p(x, z, h(x)) log p̂(z|h(x))dx

= −
C

∑
z=1

K

∑
h(x)=1

∫
p(z)p(x|z)p(h(x)|x) log p̂(z|h(x))dx

= −
C

∑
z=1

K

∑
h(x)=1

∫
p(z)p(x|z)p(h(x)|x) log

exp( f>h(x)Wz)

∑C
i=1 exp( f>h(x)Wi)

dx

=
C

∑
z=1

p(z)Ex∼Pz

[
K

∑
y=1

p(y|x)
(
− v>y Wz + log

C

∑
i=1

exp(v>y Wi)
)]

.

Furthermore, since the W learned over collapsed embeddings satisfies Wz = vy for
S(z) = y, we have that log ∑C

i=1 exp(v>y Wi) = m exp(1) + (C−m) exp(cK) for any y, and
our expected generalization error is

C

∑
z=1

p(z)Ex∼Pz [−p(y = S(z)|x)− p(y 6= S(z)|x)δ + log(m exp(1) + (C−m) exp(cK))]

= log(m exp(1) + (C−m) exp(cK))− cK − (1− cK)
C

∑
z=1

p(z)Ex∼Pz [p(y = S(z)|x)].

This tells us that the generalization error is at most log(m exp(1) + (C−m) exp(cK))−
cK and at least log(m exp(1) + (C−m) exp(cK))− 1.

For the original task, we can apply this same approach to the case where m = 1, C = K
to get that the average generalization error is

Eh(x)

[
L(x, y, f̂1)

]
= log(exp(1) + (K− 1) exp(cK))

− cK − (1− cK)
C

∑
z=1

p(z)Ex∼Pz [p(y = S(z)|x)].
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This is at least log(exp(1) + (K − 1) exp(cK)) − 1 and at most log(exp(1) + (K −
1) exp(cK))− cK.

Appendix D. Proofs

Appendix D.1. Proofs for Theoretical Motivation

We provide proofs for Section 3.1. First, we characterize the optimal linear classifier
(for both the coarse-to-fine transfer task and the original task) learned on the collapsed
embeddings. Note that this result appears similar to Corollary 1 of [2], but their result
minimizes the cross entropy loss over both the encoder and downstream weights (i.e., in a
classical supervised setting where only cross entropy is used in training).

Lemma A2 (Downstream linear classifier for coarse-to-fine task). Suppose the dataset Dz is
class-balanced across z, and the embeddings satisfy f (x) = vi if h(x) = i where {vi}K

i=1 form the
regular simplex. Then the optimal weight matrix W? ∈ RC×d that minimizes L̂(W,Dz) satisfies
W?

z = vy for y = S(z).

Proof. Formally, the convex optimization problem we are solving is

minimize −
K

∑
y=1

∑
z∈Sy

log
exp(v>y Wz)

∑C
j=1 exp(v>y Wj)

(A4)

s.t. ‖Wz‖2
2 ≤ 1 ∀z ∈ Z (A5)

The Lagrangian of this optimization problem is

K

∑
y=1

∑
z∈Sy

−v>y Wz + m
K

∑
y=1

log
( C

∑
j=1

exp(v>y Wj)

)
+

C

∑
i=1

λi(‖Wi‖2
2 − 1),

and the stationarity condition w.r.t. Wz is

−vS(z) + m
K

∑
y=1

vy exp(v>y Wz)

∑C
j=1 exp(v>y Wj)

+ 2λzWz = 0. (A6)

Substituting Wz = vS(z), we get−vS(z) + m ∑K
y=1

vy exp(v>y vS(z))

∑C
j=1 exp(v>y vS(j))

+ 2λzvS(z) = 0. Using

the fact that v>i vj = δ for all i 6= j, this equals −vS(z) + m · vS(z) exp(1)+exp(δ)∑y 6=S(z) vy

m exp(1)+(C−m) exp(δ) +

2λzvS(z) = 0. Next, recall that ∑K
i=1 vi = 0. Then, λz =

1
2
(
1−m · exp(1)−exp(δ)

m exp(1)+(C−m) exp(δ)

)
≥ 0,

satisfying the dual constraint. We can further verify complementary slackness and primal
feasibility, since ‖W?

z ‖2
2 = 1, to confirm that an optimal weight matrix satisfies W?

z = vy for
y = S(z).

Corollary A1. When we apply the above proof to the case when m = 1, we recover that the optimal
weight matrix W? ∈ RK×d that minimizes L̂(W,D) for the original task on (x, y) ∼ P satisfies
W?

y = vy for all y ∈ Y .

We now prove Observation 1 and 2. Then, we present an additional result on transfer
learning on collapsed embeddings to general tasks of the form (x′, y′) ∼ P ′.
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Proof of Observation 1. We write out the generalization error for the downstream task,
L(x, z, f ) = Ex,z[− log p̂(z|x)] using our conditions that p(y = h(x)|x) = 1 and p(z|x) = 1

m .

L(x, z, f ) = −
∫

p(x)
C

∑
z=1

p(z|x) log p̂(z| f (x))dx

= −
∫

p(x)
C

∑
z=1

p(z|x) log
exp( f (x)>Wz)

∑C
i=1 exp( f (x)>Wi)

dx

= −
K

∑
y=1

∫
x:h(x)=y

p(x) · 1
m ∑

z∈Sy

log
exp( f (x)>Wz)

∑C
i=1 exp( f (x)>Wi)

.

To minimize this, f (x) should be the same across all x where h(x) is the same value,
since p(z|x) does not change across fixed h(x) and thus varying f (x) will not further
decrease the value of this expression. Therefore, we rewrite f (x) as fh(x). Using the fact
that y is class balanced, our loss is now

L(x, y, z) = − 1
m

K

∑
y=1

∑
z∈Sy

∫
x:h(x)=y

p(x) log
exp( f>h(x)Wz)

∑C
i=1 exp( f>h(x)Wz)

dx

= − 1
C

K

∑
y=1

∑
z∈Sy

log
exp( f>y Wz)

∑C
i=1 exp( f>y Wi)

.

We claim that fy = vy and Wz = vy for all S(z) = y minimizes this convex function.
The corresponding Lagrangian is

K

∑
y=1

∑
z∈Sy

− f>y Wz + m
K

∑
y=1

log
( C

∑
i=1

exp( f>y Wi)

)
+

K

∑
y=1

νy(‖ fy‖2
2 − 1) +

C

∑
i=1

λi(‖Wi‖2
2 − 1).

The stationarity condition with respect to Wz is the same as (A6), and we have already
demonstrated that the feasibility constraints and complementary slackness are satisfied on
W. The stationarity condition with respect to fy is

− ∑
z∈Sy

Wz + m ·
∑C

i=1 Wi exp( f>y Wi)

∑C
i=1 exp( f>y Wi)

+ 2λy fy = 0.

Substituting in Wi = vS(i) and fy = vy, we get −∑z∈Sy vy + m · ∑C
i=1 vS(i) exp(v>y vS(i))

∑C
i=1 exp(v>y vS(i))

+

2λyvy = 0. From the regular simplex definition, this is −mvy + m mvy exp(1)−mvy exp(δ)
m exp(1)+(C−m) exp(δ) +

2λyvy = 0. We thus have that λy = m
2

(
1 − m(exp(1)−exp(δ))

m exp(1)+(C−m) exp(δ)

)
, and the feasibility

constraints are satisfied. Therefore, fy = Wz = vy for y = S(z) minimizes the generalization
error L(x, z, f ) when p(h(x)|x) = 1 and p(z|x) = 1

m .
p(z|x) = 1

m and p(y = h(x)|x) = 1, so p(z)=
∫

x:h(x)=S(z) p(z, x)dx= 1
m
∫

x:h(x)=S(z) p(x)

= 1
mK = 1

C . p(z) being class balanced means that p(x|z) = p(z|x)p(x)
p(z) = Kp(x) =

p(y|x)p(x)
p(y) = p(x|y). Therefore, this condition suggests that there is no distinction among

the strata within a class.

Proof of Observation 2. This observation follows directly from Observation 1 by repeating
the proof approach with z = y, m = 1.

Lastly, suppose it is not true that p(y = h(x)|x) = 1. Then, the generalization error
on the original task is L(x, y, f ) = −

∫
X ∑K

y=1 p(x)p(y|x) log p̂(y| f (x)), which is mini-
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mized when p̂(y| f (x)) = p(y|x). Intuitively, a model constructed with label information,
p̂(y|h(x)), will not improve over one that uses x itself to approximate p(y|x).

Appendix D.2. Proofs for Theoretical Implications

We provide proofs for Section 4.3.

Proof of Lemma 1. The generalization error is

L(x, z, f̂1) = −Ez

[
Ex∼Pz

[
log

exp( f̂1(x)>Wz)

∑C
i=1 exp( f̂1(x)>Wi)

]]

= Ez

[
Ex∼Pz

[
− f̂1(x)>Wz + log

C

∑
i=1

exp( f̂1(x)>Wi)

]]
.

Using the definition of the mean classifier,

L(x, z, f̂1) = Ez

[
−1 +Ex∼Pz

[
log

C

∑
i=1

exp
(

f̂1(x)>Ex∼Pi [ f̂1(x)]
)]]

= −1 +Ez

[
Ex∼Pz

[
log

C

∑
i=1

exp
(

f̂1(x)>Ei[ f̂1(x)]
)]]

.

Since f̂1(x) is bounded, there exists a constant λ > 0 such that

Ex∼Pz

[
log

C

∑
i=1

exp
(

f̂1(x)>Ei[ f̂1(x)]
)]
≤ log

( C

∑
i=1

exp
(
λEz[ f̂1(x)]>Ei[ f̂1(x)]

))
.

We can also rewrite the dot product between mean embeddings per strata in terms of
the distance between them:

L(x, z, f̂1) ≤ −1 +Ez

[
log
( C

∑
i=1

exp
(
λEz[ f̂1(x)]>Ei[ f̂1(x)]

))]

= −1 +Ez

[
log
( C

∑
i=1

exp
(
− λ

2
‖Ez[ f̂1(x)]−Ei[ f̂1(x)]‖2 + λ

))]
.

This directly gives us our desired bound.

Proof of Lemma 2. The generalization error is

L(x, y, f̂1) = −Ez

[
Ex∼Pz

[
log

exp( f̂1(x)>WS(z))

∑K
i=1 exp( f̂1(x)>Wi)

]]

= Ez

[
Ex∼Pz

[
− f̂1(x)>WS(z) + log

K

∑
i=1

exp( f̂1(x)>Wi)

]]
.

We substitute in the definition of the mean classifier to get

L(x, y, f̂1) = Ez

[
−∑
z′∈SS(z)

p(z′|S(z))Ez[ f̂1(x)]>Ez′ [ f̂1(x)]

+Ex∼Pz

[
log

K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si) f̂1(x)>Ez′ [ f̂1(x)]
)]]

.
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We can rewrite the dot product between mean embeddings per strata in terms of the
distance between them:

L(x, y, f̂1) =Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
‖Ez[ f̂1(x)]−Ez′ [ f̂1(x)]‖2 − 1

)

+Ex∼Pz

[
log

K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si) f̂1(x)>Ez′ [ f̂1(x)]
)]]

.

We can write ‖Ez[ f̂1(x)]−Ez′ [ f̂1(x)]‖ in the above expression as δ( f̂1, z, z′), which we
have analyzed:

L(x, y, f̂1) =Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
δ( f̂1, z, z′)2 − 1

)

+Ex∼Pz

[
log

K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si) f̂1(x)>Ez′ [ f̂1(x)]
)]]

.

From our previous proof, there exists λ > 0 such that this is at most

L(x, y, f̂1) ≤Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
δ( f̂1, z, z′)2 − 1

)

+ log
( K

∑
i=1

exp( ∑
z′∈Si

p(z′|Si)λEz[ f̂1(x)]>Ez′ [ f̂1(x)])
)]

=Ez

[
∑

z′∈SS(z)

p(z′|S(z)) ·
(1

2
δ( f̂1, z, z′)2 − 1

)

+ log
( K

∑
i=1

exp
(

∑
z′∈Si

p(z′|Si)
(
− λ

2
‖Ez[ f̂1(x)]−Ez′ [ f̂1(x)]‖2 + λ

)))]
.

We can write each weighted summation over p(z′|S(z)) and p(z′|Si) as an expectation
and use the definition of δ( f̂1, z, z′) to obtain our desired bound.

Appendix E. Additional Experimental Details

Appendix E.1. Datasets

We first describe all the datasets in more detail:

• CIFAR10, CIFAR100, and MNIST are all the standard computer vision datasets.
• CIFAR10-Coarse consists of two superclasses: animals (dog, cat, deer, horse, frog,

bird) and vehicles (car, truck, plane, boat).
• CIFAR100-Coarse consists of twenty superclasses. We artificially imbalance subclasses

to create CIFAR100-Coarse-U. For each superclass, we select one subclass to keep
all 500 points, select one subclass to subsample to 250 points, select one subclass to
subsample to 100 points, and select the remaining two to subsample to 50 points. We
use the original CIFAR100 class index to select which subclasses to subsample: the
subclass with the lowest original class index keeps all 500 points, the next subclass
keeps 250 points, etc.

• MNIST-Coarse consists of two superclasses: <5 and ≥5.
• Waterbirds [14] is a robustness dataset designed to evaluate the effects of spurious

correlations on model performance. The waterbirds dataset is constructed by cropping
out birds from photos in the Caltech-UCSD Birds dataset [43], and pasting them on
backgrounds from the Places dataset [44]. It consists of two categories: water birds and
land birds. The water birds are heavily correlated with water backgrounds and the
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land birds with land backgrounds, but 5% of the water birds are on land backgrounds,
and 5% of the land birds are on water backgrounds. These form the (imbalanced)
hidden strata.

• ISIC is a public skin cancer dataset for classifying skin lesions [15] as malignant or be-
nign. 48% of the benign images contain a colored patch, which form the hidden strata.

• CelebA is an image dataset commonly used as a robustness benchmark [14,16]. The
task is blonde/not blonde classification. Only 6% of blonde faces are male, which
creates a rare stratum in the blonde class.

Appendix E.2. Hyperparameters

For all model quality experiments for Lspread, we first fixed τ = 0.5 and swept
α ∈ [0.16, 0.25, 0.33, 0.5, 0.67]. We then took the two best-performing values and swept
τ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]. For LSC and LSS, we swept τ ∈ [0.1, 0.3, 0.5, 0.7, 0.9]. Final
hyperparameter values for (τ, α) for Lspread were (0.9, 0.67) for CIFAR10, (0.5, 0.16) for
CIFAR10-coarse, (0.5, 0.33) for CIFAR100, (0.5, 0.25) for CIFAR100-Coarse, (0.5, 0.25) for
CIFAR100-Coarse-U, (0.5, 0.5) for MNIST, (0.5, 0.5) for MNIST-coarse, (0.5, 0.5) for ISIC,
and (0.5, 0.5) for waterbirds.

For coarse-to-fine transfer learning, we fixed τ = 0.5 for all losses and swept α ∈
[0.16, 0.25, 0.33, 0.5, 0.67]. Final hyperparameter values for α were 0.25 for CIFAR10-Coarse,
0.25 for CIFAR100-Coarse, 0.25 for CIFAR100-Coarse-U, and 0.5 for MNIST-Coarse.

Appendix E.3. Applications

We describe additional experimental details for the applications.

Appendix E.3.1. Robustness Against Worst-Group Performance

We follow the evaluation of [5]. First, we train a model on the standard class labels. We
evaluate different loss functions for this step, including Lspread, LSC, and the cross entropy
loss LCE. Then we project embeddings of the training set using a UMAP projection [45], and
cluster points to discover unlabeled subgroups. Finally, we use the unlabeled subgroups in
a Group-DRO algorithm to optimize worst-group robustness [14].

Appendix E.3.2. Robustness Against Noise

We use the same training setup as we use to evaluate model quality, and introduce
symmetric noise into the labels for the contrastive loss head. We train the cross entropy
head with a fraction of the full training set. In Section 5.3, we report results from training
with 20% labels to cross entropy. We report additional levels in Appendix F.

We detect noisy labels with a simple geometric heuristic: for each point, we compute
the cosine similarity between the embedding of the point and the center of all the other
points in the batch that have the same class. We compare this similarity value to the average
cosine similarity with points in the batch from every other class, and rank the points by the
difference between these two values. Points with incorrect labels have a small difference
between these two values (they appear to be small strata, so they are far away from points
of the same class). Given the noise level ε as an input, we rank the points by this heuristic
and mark the ε fraction of the batch with the smallest scores as noisy. We then correct their
labels by adopting the label of the closest cluster center.

Appendix E.3.3. Minimal Coreset Construction

We use the publicly-available evaluation framework for coresets from [18] (https://
github.com/mtoneva/example_forgetting, accessed on 1 October 2021). We use the official
repository from [19] (https://github.com/mansheej/data_diet, accessed on 1 October 2021)
to recreate their coreset algorithms.

https://github.com/mtoneva/example_forgetting
https://github.com/mtoneva/example_forgetting
https://github.com/mansheej/data_diet
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Our coreset algorithm proceeds in two parts. First, we give each point a difficulty
rating based on how likely we are to classify it correctly under partial training. Then we
subsample the easiest points to construct minimal coresets.

First, we mirror the set up from our thought experiment and train with Lspread on
random samples of t% of the CIFAR10 training set, taking three random samples for each of
t ∈ [10, 20, 50] (and we train the cross entropy head with 1% labeled data). For each run, we
record which points are classified correctly by the cross entropy head at the end of training,
and bucket points the training set by how often the point was correctly classified. To
construct a coreset of size t%, we iteratively remove points from the largest bucket in each
class. Our strategy removes easy examples first from the largest coresets, but maintains a
set of easy examples in the smallest coresets.

Appendix F. Additional Experimental Results

In this section, we report three sets of additional experimental results: the performance
of using Lattract on its own to train models, sample complexity of Lspread compared to LSC,
and additional noisy label results (including a bonus de-noising algorithm).

Appendix F.1. Performance of Lattract

In an early iteration of this project, we experienced success with using Lattract on its
own to train models, before realizing the benefits of adding in an additional term to prevent
class collapse. As an ablation, we report on the performance of using Lattract on its own
in Table A2. Lattract can outperform LSC, but Lspread outperforms both. We do not report
the results here, but Lattract also performs significantly worse than LSC on downstream
applications, since it more direclty encourages class collapse.

Table A2. Performance of Lspread compared to LSC and using Lattract on its own. Best in bold.

End Model Perf.

Dataset LSS LSC Lattract Lspread

CIFAR10 89.7 90.9 91.3 91.5
CIFAR100 68.0 67.5 68.9 69.1

Appendix F.2. Sample Complexity

Figure A1 shows the performance of training ViT models with various amounts
of labeled data for Lspread, LSC, and LSS. In these experiments, we train the cross en-
tropy head with 1% labeled data to isolate the effect of training data on the contrastive
losses themselves.

Lspread outperforms LSC and LSS throughout. At 10% labeled data, Lspread outper-
forms LSS by 13.9 points, and outperforms LSC by 0.5 points. By 100% labeled data (for
the contrastive head), Lspread outperforms LSS by 25.4 points, and outperforms LSC by
10.3 points.
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Figure A1. Performance of training ViT with Lspread compared to training with LSC and LSS on
CIFAR10 at various amounts of labeled data. Lspread outperforms the baselines at each point. The
cross entropy head here is trained with 1% labeled data to isolate the effect of training data on the
contrastive losses.

Appendix F.3. Noisy Labels

In Section 5.3, we reported results from training the contrastive loss head with noisy
labels and the cross entropy loss with clean labels from 20% of the training data.

In this section, we first discuss a de-noising algorithm inspired by [23] that we ini-
tially developed to correct for noisy labels, but that we did not observe strong empirical
results from. We hope that reporting this result inspires future work into improving
contrastive learning.

We then report additional results with larger amounts of training data for the cross
entropy head.

Appendix F.3.1. Debiasing Noisy Contrastive Loss

First, we consider the triplet loss and show how to debias it in expectation under noise.
Then we present an extension to supervised contrastive loss.

Noise-Aware Triplet Loss

Consider the triplet loss:

Ltriplet = Ex∼P ,x+∼p+(·|x),
x−∼p−(·|x)

[
− log

exp(σ(x, x+))
exp(σ(x, x+)) + exp(σ(x, x−))

]
. (A7)

Now suppose that we do not have access to true labels but instead have noisy labels
denoted by the weak classifier ỹ := h̃(x). We adopt a simple model of symmetric noise
where p̃ = Pr(noisy label is correct).

We use ỹ to construct P̃+ and P̃− as p(x+|h̃(x) = h̃(x+)) and p(x−|h̃(x) 6= h̃(x−)).
For simplicity, we start by looking at how the triplet loss in (A7) is impacted when noise is
not addressed in the binary setting. Define Ltriplet

noisy as Ltriplet used with P̃+ and P̃−.

Lemma A3. When class-conditional noise is uncorrected, Lnoisy
triplet is equivalent to
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( p̃3 + (1− p̃)3)Ltriplet + p̃(1− p̃)E x∼P
x+1 ,x+2 ∼p+(·|x)

[
− log

exp(σ(x, x+1 ))

exp(σ(x, x+1 )) + exp(σ(x, x+2 ))

]

+ p̃(1− p̃)E x∼P
x−1 ,x−2 ∼p−(·|x)

[
− log

exp(σ(x, x−1 ))

exp(σ(x, x−1 )) + exp(σ(x, x−2 ))

]

+ p̃(1− p̃)E x∼P
x+∼p+(·|x)
x−∼p−(·|x)

[
− log

exp(σ(x, x−))
exp(σ(x, x+)) + exp(σ(x, x−))

]
.

Proof. We split Lnoisy
triplet depending on if the noisy positive and negative pairs are truly

positive and negative.

Lnoisy
triplet = E x∼P

x̃+∼ p̃+(·|x)
x̃−∼ p̃−(·|x)

[
− log

exp(σ(x, x̃+))
exp(σ(x, x̃+)) + exp(σ(x, x̃−))

]

= p(h(x) = h(x̃+), h(x) 6= h(x̃−))E x∼P
x+∼p+(·|x)
x−∼p−(·|x)

[
− log

exp(σ(x, x+))
exp(σ(x, x+)) + exp(σ(x, x−))

]

+ p(h(x) = h(x̃+), h(x) = h(x̃−))E x∼P
x+

1 ,x+
2 ∼p+(·|x)

[
− log

exp(σ(x, x+1 ))

exp(σ(x, x+1 )) + exp(σ(x, x+2 ))

]

+ p(h(x) 6= h(x̃+), h(x) 6= h(x̃−))E x∼P
x−1 ,x−2 ∼p−(·|x)

[
− log

exp(σ(x, x−1 ))

exp(σ(x, x−1 )) + exp(σ(x, x−2 ))

]

+ p(h(x) 6= h(x̃+), h(x) = h(x̃−))E x∼P
x+∼p+(·|x)
x−∼p−(·|x)

[
− log

exp(σ(x, x−))
exp(σ(x, x+)) + exp(σ(x, x−))

]
.

Define p̃ = p(noisy label is correct). Note that

p(h(x) = h(x̃+), h(x) 6= h(x̃−)) = p̃3 + (1− p̃)3,

(i.e., all three points are correct or all reversed, such that their relative pairings are
correct). In addition, the other three probabilities above are all equal to p̃(1− p̃).

We now show that there exists a weighted loss function that in expectation equals
Ltriplet.

Lemma A4. Define

L̃triplet = E x∼P ,
x̃+1 ,x̃+2 ∼P̃

+(·|x)
x̃−1 ,x̃−2 ∼P̃

−(·|x)

[
− w+σ(x, x̃+1 ) + w−σ(x, x̃−1 )

+ w1 log
(

exp
(

σ(x, x̃+1 )
)
+ exp

(
σ(x, x̃−1 )

))
− w2 log

(
(exp(σ(x, x̃+1 )) + exp(σ(x, x̃+2 ))) · (exp(σ(x, x̃−1 )) + exp(σ(x, x̃−2 )))

)]
,

where



Comput. Sci. Math. Forum 2022, 3, 4 24 of 27

w+ =
p̃2 + (1− p̃)2

(2p̃− 1)2 w− =
2p̃(1− p̃)
(2p̃− 1)2 w1 =

p̃2 + (1− p̃)2

(2p̃− 1)2 w2 =
p̃(1− p̃)
(2p̃− 1)2 .

Then, E
[

L̃triplet

]
= Ltriplet.

Proof. We evaluate E
[
−w1σ(x, x̃+1 ) + w2σ(x, x̃−1 )

]
and the other terms separately. Using

the same probabilities as computed in Lemma A3,

E
[
−w1σ(x, x̃+1 ) + w2σ(x, x̃−1 )

]
= −( p̃2 + (1− p̃)2)w1E

[
σ(x, x+1 )

]
− 2p̃(1− p̃)w1E

[
σ(x, x−1 )

]
+ ( p̃2 + (1− p̃)2)w2E

[
σ(x, x−1 )

]
+ 2p̃(1− p̃)w2E

[
σ(x, x+1 )

]
= −E

[
σ(x, x+1 )

]
.

We evaluate the remaining terms:

E
[
w3 log

(
exp

(
σ(x, x̃+1 )

)
+ exp

(
σ(x, x̃−1 )

))]
=

( p̃2 + (1− p̃)2)w3E
[
log
(

exp
(

σ(x, x+1 )
)
+ exp

(
σ(x, x−1 )

))]
+ p̃(1− p̃)w3E

[
log
(
(exp(σ(x, x̃+1 )) + exp(σ(x, x̃+2 ))) · (exp(σ(x, x̃−1 )) + exp(σ(x, x̃−2 )))

)]
.

and

E
[
w4 log

(
exp

(
σ(x, x̃+1 )

)
+ exp

(
σ(x, x̃+2 )

))]
+E

[
w4 log

(
exp

(
σ(x, x̃−1 )

)
+ exp

(
σ(x, x̃−2 )

))]
=

( p̃2 + (1− p̃)2)w4E
[
log
(

exp
(

σ(x, x+1 )
)
+ exp

(
σ(x, x+2 )

))]
+ 4p̃(1− p̃)w4E

[
log
(

exp
(

σ(x, x+1 )
)
+ exp

(
σ(x, x−1 )

))]
+ ((1− p̃)2 + p̃2)w4E

[
log
(

exp
(

σ(x, x−1 )
)
+ exp

(
σ(x, x−2 )

))]
.

Examining the coefficients, we see that

( p̃2 + (1− p̃)2)w3 − 4p̃(1− p̃)w4 =
( p̃2 + (1− p̃)2)2

(2p̃− 1)2 − 4p̃2(1− p̃)2

(2p̃− 1)2 = 1

p̃(1− p̃)w3 − ( p̃2 + (1− p̃)2)w4 =
p̃(1− p̃)( p̃2 + (1− p̃)2)

(2p̃− 1)2 − ( p̃2 + (1− p̃)2) p̃(1− p̃)
(2p̃− 1)2 = 0,

which shows that only the term E
[
log
(

exp
(

σ(x, x+1 )
)
+ exp

(
σ(x, x−1 )

))]
persists. This

completes our proof.

We now show the general case for debiasing Lattract, which uses more negative samples.

Proposition A1. Define m = n + 1 (as the “batch size” in the denominator), and

L̃attract = E x∼P
{x̃+i }

m
i=1

{x̃−j }
m
j=1

[
− w+σ(x, x̃+1 ) + w−σ(x, x̃−1 ) (A8)

+
m

∑
k=0

wk log
( k

∑
i=1

exp
(

σ(x, x̃+i )
)
+

m−k

∑
j=1

exp
(

σ(x, x̃−j )
))]

. (A9)
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w+ and w− are defined in the same was as before. ~w = {w0, . . . wm} ∈ Rm+1 is the solution to the
system Pw = e2 where e2 is the standard basis vector in Rm+1 where the 2nd index is 1 and all
others are 0. The i, jth element of P is Pij = p̃Qi,j + (1− p̃)Qm−i,j where

Qi,j =

∑
min{j,m−i}
k=0 ( j

k)(
m−j

i−j+k)(1− p̃)i−j+2k p̃m+j−i−2k j ≤ i

∑
min{i,m−j}
k=0 (m−j

k )( j
j−i+k)(1− p̃)j−i+2k p̃m−j+i−2k j > i

Then, E
[

L̃attract

]
= Lattract.

We do not present the proof for Proposition A1, but the steps are very similar to
the proof for the triplet loss case. We also note that a different form of E

[
L̃attract

]
must

be computed for the multi-class case, which we do not present here (but can be derived
through computation).

Observation A2. Note that the values of Qi,j have high variance in the noise rate as m increases.
Additionally, note that the number of terms in the summation of Qi,j increase combinatorially with
m. We found this de-noising algorithm very unstable as a result.

Appendix F.3.2. Additional Noisy Label Results

Now we report the performance of denoising algorithms with additional amounts
of labeled data for the cross entropy loss head. We also report the performance of using
L̃attract to debias noisy labels.

Figure A2 shows the results. Our geometric correction together with Lspread works
the most consistently. Using the geometric correction with LSC can be unreliable, since
LSC can learn memorize noisy labels early on in training. The expectation-based debiasing
algorithm L̃attract occasionally shows promise but is unreliable, and is very sensitive to
having the correct noise rate as an input.
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Figure A2. Performance of models under various amounts of label noise for the contrastive loss head,
and various amounts of clean training data for the cross entropy loss.
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