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Abstract: Splenic marginal zone lymphoma (SMZL) is a small B-cell lymphoma, which has been
recognized as a distinct pathological entity since the WHO 2008 classification. It classically presents
an indolent evolution, but a third of patients progress rapidly and require aggressive treatments,
such as immuno-chemotherapy or splenectomy, with all associated side effects. In recent years,
advances in the comprehension of SMZL physiopathology have multiplied, thanks to the arrival
of new devices in the panel of available molecular biology techniques, allowing the discovery of
new molecular findings. In the era of targeted therapies, an update of current knowledge is needed
to guide future researches, such as those on epigenetic modifications or the microenvironment of
these lymphomas.

Keywords: splenic marginal zone lymphoma; review; genetic; molecular

1. Introduction

Splenic marginal zone lymphoma (SMZL) is a small B-cell lymphoma, which was
first described in 1992 and has been recognized as a distinct pathological entity since
the WHO 2008 classification. It accounts for 2% of lymphoid malignancies [1] and is
mostly clinically characterized by the progressive appearance of a pain-causing splenic
enlargement associated with the perturbation of complete blood count, cytopenia, or
appearance of autoimmune disorders such as autoimmune haemolytic anemia (AIHA). It
usually occurs at a mean age of 67 years and classically presents an indolent evolution,
with survival rates at 10 years ranging from 67% to 95% [2]. Even so, a third of patients
progress rapidly and require quite aggressive treatments, such as immuno-chemotherapy
(rituximab [2,3] sometimes associated with CHOP) or splenectomy, with all the side effects
involved (notably infectious complications after splenectomy). In addition, Perrone et al.
showed that after 10 years of follow-up, only 17% of patients would not require any
treatment [2]. The clinical and biological intergruppo Italiano Limfomi (ILL) score and
the hemoglobin-platelet-LDH-lymphadenopathy (HPLL) scores have been proposed to
identify patients at risk of relapse but remained controversial, depending on the studied
population [4,5] and used aspecific blood markers. The only currently admitted adverse
clinical prognostic factors include a large tumor mass and a poor general health status.
These data demonstrate a significant impact on public health costs and highlight the lack
of knowledge on the pathophysiology of this lymphoma and its prognostic markers. In
recent years, discoveries on pathophysiology, thanks to advances in molecular biology,
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have multiplied, but systemic reviews on this subject are rare [6]. This article reviewed the
recent advances in SMZL physiopathology based on new updates on biological findings,
histological features, and molecular biology.

2. Results
2.1. Clinical Presentation and Current Care

SMZL appears more often in women (with a sex ratio of 0.44) [7], between 59 and
65 years old. Clinical warning signs are splenomegaly (often revealed by abdominal pain
or heaviness or even discovered after a traumatic spleen rupture) and lymphocytosis, some-
times associated with cytopenias. Lymphadenopathies are rare in non-transformed cases
and classically localized in the hile of the spleen. B symptoms are uncommon but can be
observed. Bone marrow involvement is almost constant (83–100%), while peripheral blood
dissemination is variable (29–75%) [6]. Autoimmune disorders (autoimmune hemolytic
anemia, cryoglobulinemia, idiopathic thrombocytopenic purpura, and others) are frequent,
as well as monoclonal components (mostly Immunoglobulin M (IgM), classically with
levels of <3 g/dL in about 50% of the cases) [8].

Splenectomy is nowadays much less performed in the treatment of SMZL, because
there are alternatives, for both diagnosis and treatment. Splenectomy remains the reference
concerning the diagnosis. However, it can also be established, thanks to the cytological
analysis and flow cytometry of peripheral blood or bone marrow aspirate [9]. Regarding
treatment, management differs, depending on whether patients are symptomatic or not.
For asymptomatic patients, active surveillance is now recommended with regular follow-
up consultations [9]. In cases of isolated autoimmune disorders, it is recommended to treat
them specifically, for example, using rituximab therapy alone (375 mg/m2; 4-to-8-week
doses) [9]. Concerning symptomatic patients and according to the 2020 ESMO practical
guidelines, criteria for initiating treatment are the presence of progressive or symptomatic
splenomegaly and/or cytopenia (hemoglobin: <100 g/L; platelets: <80 g/L; neutrophils:
<1 g/L). In these cases, therapeutic options are splenectomy and rituximab, or conventional
chemotherapy such as CHOP (rituximab, cyclophosphamide, doxorubicin, and vincristine).
Response to splenectomy with correction of cytopenia occurs in approximately 90% of
patients [10] and has been associated with statistically significantly better overall survival
and progression-free survival than non-splenectomized patients in a recent study [11].

Nevertheless, SMZL patients are often elderly and have surgical risks. Since the
approval of rituximab, the treatment of such patients with the anti-CD20 antibody alone
or in combination with chemotherapy has shown remarkable responses [10]. Concerning
refractory or relapsing cases, ibrutinib has shown exciting results in relapsed/refractory
SMZL treated with prior rituximab, with an overall response rate of 62% [12].

2.2. Diagnosis
2.2.1. Cytology, Immunophenotype, and Pathology

Cytology shows a mixture of heterogeneous cells, including small lymphocytes (with a
round nucleus and compact chromatin, often condensed in small irregular clumps) admixed
with lymphoplasmacytic cells. They are sometimes associated with villous lymphocytes in
a tiny percentage and with shorter projections than other splenic lymphomas, particularly
splenic diffuse red pulp lymphoma (SDRPL) or hairy cell leukemia (HCL). In the bone
marrow, SMZL infiltration is classically nodular and intrasinusoidal but less frequently
interstitial [6]. However, intrasinusoidal infiltration is not specific for SMZL and can be
observed in other small B-cell lymphomas such as mantle cell lymphoma (MCL) or chronic
lymphocytic leukemia (CLL). In the spleen, SMZL is characterized by an expansion of
the splenic white pulp with the infiltration of the red pulp. As illustrated in Figure 1,
three patterns can be observed: two nodular patterns and an atrophic pattern; (i) the more
frequent is the biphasic pattern, in which small lymphocytes surround and replace the
germinal centers of the white pulp, giving it a cockade-like appearance; (ii) the second
nodular pattern, so-called monophasic pattern, also present an enlargement of the white
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pulp with a more homogeneous appearance; (iii) the third pattern displays an atrophic
white pulp with few infiltrating cells in the red pulp. The red pulp infiltration can either be
nodular, diffuse, mixed or even solely diffuse. Concerning differential diagnosis with other
entities of marginal zone lymphomas (MZL) such as mucosa-associated lymphoid tissue
(MALT lymphoma) or nodal MZL (NMZL), in cases where the disease is still at an early
stage, it is essentially the clinical presentation that will be useful (location, splenic, and/or
lymph node involvement). In patients with generalized disease at diagnosis, differential
diagnosis with a small B-cell lymphoma involving the spleen can be challenging. In these
cases, molecular biology can help clarify the diagnosis, mainly by finding the characteristic
abnormalities of SMZL, as described further below [13–18].
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with CD23 classically highlights a nodular network of follicular dendritic cells in the white 
pulp. By flow cytometry, cells are CD24+, CD27+, and FMC7+. They are classically stained 
by CD22 and CD11c but less bright than other splenic lymphomas (SDRPL or HCL). The 
CD123 is negative, and the CD103 may be dimly positive in rare cases. With both tech-
niques, cases are usually negative for Annexin A1 and CD25. The addition of CD180 in 
the flow cytometry and immunohistochemistry panel has made it possible to better clas-
sify these lymphomas with sensitivity and specificity evaluated at least at 75% and 90%, 
respectively [19,20], making CD180 a helpful immunologic marker in MZL. Moreover, the 
intensity of CD180 staining may favor a splenic origin of the lymphoma, as SMZL and 
SDRPL display particularly high levels of CD180 expression in flow cytometry [21]. In 
rare cases (10–15%), tumoral cells can be positive for CD23 or CD43 [22,23]. A group of 
CD5+ SMZL has been described, distinguished by a higher lymphocytosis and diffuse 
bone marrow infiltration [24], but the simultaneous expression of CD5 and/or CD43 with 
CD23 is rare. In these cases, chronic lymphocytic leukemia (CLL) should be excluded. 
CD200 expression constitutes a major immunological marker in the differential diagnosis 
of CD5+ small B-cell lymphomas; for example, mantle cell lymphoma is CD200-negative 

Figure 1. Histological patterns of splenic marginal zone lymphoma (SMZL; magnification: ×10).
(A) Biphasic pattern: small lymphocytes surround and replace the white pulp follicles and merge
with a peripheral zone of larger marginal zone (MZ)-like cells, including scattered transformed blasts,
giving the characteristic biphasic pattern. (B) Monophasic pattern: cases lack a central core of smaller
lymphocytes and have a monophasic pattern. (C) Atrophic pattern, with an atrophic white pulp and
few infiltrating cells in the red pulp.

In some cases, lymphoma cells may show a variable degree of plasmacytic differentia-
tion, up to 30% of tumoral cells, associated with a monotypic light chain expression, thus
making the differential diagnosis with lymphoplasmacytic lymphoma (LPL) sometimes
tricky. However, clinical presentation and molecular biology are different (see below). In
10% to 20% of cases, a histological transformation into a high-grade B-cell lymphoma, such
as diffuse large B-cell lymphoma, can occur [6].

The immunohistochemistry (Figure 2) shows a mature B phenotype with the expres-
sion of CD20, and CD79, without cyclin D1, CD10, or BCL6. The immunohistochemistry
with CD23 classically highlights a nodular network of follicular dendritic cells in the white
pulp. By flow cytometry, cells are CD24+, CD27+, and FMC7+. They are classically stained
by CD22 and CD11c but less bright than other splenic lymphomas (SDRPL or HCL). The
CD123 is negative, and the CD103 may be dimly positive in rare cases. With both tech-
niques, cases are usually negative for Annexin A1 and CD25. The addition of CD180
in the flow cytometry and immunohistochemistry panel has made it possible to better
classify these lymphomas with sensitivity and specificity evaluated at least at 75% and
90%, respectively [19,20], making CD180 a helpful immunologic marker in MZL. Moreover,
the intensity of CD180 staining may favor a splenic origin of the lymphoma, as SMZL and
SDRPL display particularly high levels of CD180 expression in flow cytometry [21]. In
rare cases (10–15%), tumoral cells can be positive for CD23 or CD43 [22,23]. A group of
CD5+ SMZL has been described, distinguished by a higher lymphocytosis and diffuse bone
marrow infiltration [24], but the simultaneous expression of CD5 and/or CD43 with CD23
is rare. In these cases, chronic lymphocytic leukemia (CLL) should be excluded. CD200
expression constitutes a major immunological marker in the differential diagnosis of CD5+
small B-cell lymphomas; for example, mantle cell lymphoma is CD200-negative (in contrast
to SMZL) and also in small B-cell lymphomas with villous cytoplasm; SDRPL is dimly
CD200-positive, whereas HCL is strongly CD200-positive [25]. Proliferative index using
Ki67/Mib1 is generally low, with a characteristical pattern (high in the germinal center and
the marginal zone and low elsewhere) [6].
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Figure 2. Immunohistochemical patterns of SMZL. (A) Hematoxylin-eosin-safran (HES) staining
showing a nodular (monophasic pattern) with the enlargement of the white pulp (magnification:
10×); (B) CD20 staining showing the hyperplasia of the white pulp with a variable involvement of
the red pulp (magnification: 10×); (C) CD3 staining by immunohistochemistry also showing variable
numbers of CD3 + T cells (magnification: 10×); (D) BCL2 showing that SMZL cells overexpressed
BCL2 (magnification: 10×); (E) BCL6 expressed in residual germinal centers but not on tumoral
cells (same staining using CD10; magnification: 20×); (F) CD38 staining highlighting a large number
of associated plasma cells (magnification: 10×); (G) CD5 staining of a CD5 + SMZL, with weaker
staining on B-cells than on T cells of the microenvironment (magnifications: 10× and 20×); (H) CD180
staining in SMZL (magnification: 20×); strong membranous and cytoplasmic positivity with perinu-
clear accentuation; (I) CD23 staining highlighting a nodular meshwork of follicular dendritic cells in
the white pulp (magnification: 20×).

2.2.2. Cytogenetics

Unlike other B-cell lymphomas, few recurrent abnormalities are observed. The most
frequent are 7q deletions (30–40%), likely in the loci 7q32 to 7q35 [26–28], or trisomies of
chromosomes 3 or 12 [13,29], and even 1q, 8q, 18, or 6q deletions [30]. The 7q deletion is
seen much more frequently in SMZL than similar B-cell neoplasms, and thus, it has even
been proposed as a primary diagnostic marker. Some authors suggest that it may be a
causative event rather than a simple pro-survival signal and that the 7q31–32 deletion may
be associated with a typical IgM+, IgDdim, CD5−, CD10−, or CD23− immunophenotype
and inversely correlated with trisomy 18 [27,31]. The gene(s) targeted by the 7q deletion and
the precise location of the specific deletion area remain unknown, even if numerous studies
have tried to highlight it, using high-resolution array comparative genomic hybridization
or studying miRNA (see below) [26–29,32,33]. Regarding its prognostic impact, Algara et al.
also associated the 7q31 deletion with poor overall survival [34], but this impact remains
controversial [27].
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2.3. Molecular Biology
2.3.1. Mutational Status of Immunoglobulin Heavy Chain (IGVH) Genes

It is expected that SMZL derives from a marginal zone B-cell with possible previous
antigen exposure. The rearrangements of the immunoglobulin genes found in 30% of SMZL
cases may suggest that this tumor derives from a highly selected B-cell population [34–37].
The initial hypothesis was, indeed, that SMZL derived from marginal zone B cells due
to a histological marginal zone differentiation in splenic specimens [34,38] and the use
of a limited repertoire, with a preferential usage of specific IGHV genes, such as IGHV1-
2*04 (31%), IGHV3-23 (8%), and IGHV4-34 (13%). In addition, approximately 10% of
cases express B-cell receptors (BCRs) with quasi-identical IGHV sequences, including the
antigen-binding site, strongly suggesting that antigen selection might contribute to the
lymphomagenesis of SMZL [36,39]. Moreover, Warsame et al. reported that SMZL with
an HV1-2 rearrangement is not associated with hepatitis C virus infection and produced
poly- and self-reactive antibodies [40]. Their results indicate that some SMZL arise from
poly-reactive B cells, a subset of marginal zone B cells important in the immunologic
defense against infection, raising the possibility that a “super-antigen” is involved in
its lymphomagenesis. Numerous studies confirm the presence of a biased repertoire
with a preferential usage of certain IGHV genes and suggest that some specific antigens
could trigger the lymphomagenesis of SMZL [31,34,37,39]. Some SMZL may then develop
themselves without passing through the germinal center. Mateo et al. showed that only
a minority of cases show BCL6 somatic mutations [41]. Algara et al. also confirmed
the molecular heterogeneity in this entity, with a group of SMZL that did not undergo
somatic hypermutation and in which 7q31 deletions and shorter overall survival were
more frequent [34].

2.3.2. MicroRNA

Studies have highlighted the putative role of microRNA in the pathogenesis of
these lymphomas and showed that the SMZL deregulates the expression of 51 miR-
NAs [26,42–44]. According to Arribas et al., the most overexpressed miRNAs seem to
be “miR-155, miR-21, miR-34a, miR-193b and miR-100, while the most repressed miRNAs
are miR-377, miR-27b, miR-145, miR-376a and miR-424” [42]. Focusing on miR-21-5p, its
overexpression seems to be correlated with the aggressiveness of the disease [45]. Never-
theless, these findings seem not to be stackable with results observed in other lymphomas
subtypes such as diffuse large B cell lymphomas (DLBCL), where miR-21 overexpression
seems associated with a good prognosis [46,47].

Regarding the 7q32 deletion, Watkins et al. used qRT-PCR in SMZL with and without
the 7q deletion to compare the levels of expression of numerous miRNA. They showed
that miR593, miR-129, miR-182, miR-96, miR-183, miR-335, miR-29a, and miR-29b1 are
consistently underexpressed in cases with 7q deletion as compared with those without
the deletion [26]. In a single-cell analysis using magnetic cell separation, Arribas et al.
also showed that miR-29b and miR-592 (located at 7q32) are repressed in SMZL B-cells
compared with in healthy donors [42]. The arrival of these new data has made it possible
to identify new potential target genes for the 7q deletion. For example, miR-29b is known
to be involved in the oncogene T Cell Leukemia 1 Family AKT Coactivator A (TCL1A)
upregulation [43]. However, Munari et al. evaluated TCL1A expression in a series of SMZL
and showed TCL1A staining is negative in 24/31 cases of SMZL (77%). Another potential
candidate is CAV1 (caveolin-1), located at 7q31, which can act either as an oncogene (as
described in bladder, thyroid, and esophageal cancers) or as a tumor suppressor gene (in
ovarian, lung, and mammary tumors), depending on the tissue type or the microenvi-
ronmental influence [22]. Ruiz-Ballesteros et al. showed a decrease in CAV1 expression
using cDNA microarray expression profiling in a cohort of 44 SMZLs [23]. Two hypotheses
could explain a loss of CAV1 in SMZL, either a direct loss by deletion of the 7q31 region
where this gene is located or indirectly via microRNA. Watkins et al. invalidated the first
hypothesis, showing that the deleted 7q region is between 7q32 and 7q35, excluding the
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7q31 region. This study leads to the second hypothesis, involving regulatory mechanisms
beyond chromosomal loss. Among the miRNA with reduced expression in SMZL, nine
can target CAV1, including miR-199a, miR-376, and miR-485, and may promote tumor
progression by inducing the overactivation of transcriptional factors (IGF1R for miR-376a;
IKKβ and NFκB pathway for miR-199a) [33]. The role of miR-485 is not yet evident, and
this data have yet been confirmed.

So far, the gene targeted by the 7q deletion is unknown, and further studies are
required to identify it and clarify the role of miRNA in SMZL.

2.3.3. Mutational Landscape

There are a growing number of studies describing the mutational landscape of
SMZL [48]. Most recurrent mutations are NOTCH2 (10–25% of cases), KLF2 (20–30% of
cases), TP53 (10–15% cases), and mutations involving the NFκB pathway such as CARD11,
TNFAIP3, TRAF3, or BIRC3. Active NFκB signaling is necessary for the generation and
maintenance of normal marginal zone B-cells. Mutations involving the NFκB pathway
concerned either the canonical pathway, passing by toll-like receptors such as MYD88
or by a weak B-cell-receptor (BCR) signaling thanks to mutations of CD79A/B, CARD11,
and/or IKBKB, or the non-canonical pathway with mutations of TRAF3 or BIRC3, inducing
CD40 signaling (Figure 3) [13,49,50]. The finality is the entry of the NFκB complex into the
nucleus, where it can act as a transcriptional factor. Both canonical NFκB signaling and
non-canonical NFκB signaling are deregulated. Another way to activate this pathway is by
deletions or mutations of its negative regulator, encoded by the TNFAIP3 (A20) gene, seen
in almost 13% of SMZLs [51].

Mutations of NOTCH2 occur in 10–25% of cases and mutations of NOTCH1 in 5%
of cases; these percentages are much lower in other subtypes of MZL [13,17,48,52–56].
The mutation of NOTCH2 typically arises in the TAD and PEST domains and leads to
constitutive activation of this pathway, resulting in the transcription of multiple genes.
Mutations of negative regulators of NOTCH signaling (such as SPEN, DTX1, and MAML2)
can also be seen, reinforcing the importance of this signaling pathway [13]. Moreover,
NOTCH2 mutations are associated with reduced treatment-free survival [57,58].

Mutations of KLF2 occur in 12–44% of cases [13,59–61]. It is also a transcription factor
of which the deficiency was previously shown to cause splenic marginal zone hyperplasia
in mice. Its mutation leads to a translocation out of the nucleus in the cytoplasm, where it
cannot inhibit the NFκB pathway. Clipson et al. demonstrated KLF2 mutation distinguishes
two subsets of SMZLs with distinct genetic changes. One subset with KLF2 mutations for
the 7q deletion rearranges IGHV1-2 with minimal somatic mutations with or without KL2
mutations, but with pathogenic variants of NOTCH2, TNFAIP3, and TRAF3 [59].

A mutation of MYD88 that plays a significant role in the innate immune cells through
Toll-like receptors (TLRs) can occur in 5% to 18% of SMZLs (mainly in those where
plasmacytic differentiation is seen). They concern mainly the p.L265P variant (65% of
cases) [57,62,63], but other variants of MYD88 including p.V217F, p.M232T, and p.S219C
have also been described [48]. MYD88 mutation is also present in more than 90% of cases,
raising the point of differential diagnosis. An isolated mutation of MYD88 may not be
discriminant; therefore, an isolated search for this mutation is not recommended in these
cases. In the challenging diagnosis with LPL, the clinical presentation is of significant
interest, with LPL being characterized by a medullar presentation with bone marrow in-
volvement and an IgM monoclonal gammopathy. Splenic involvement is rare in LPL. The
bone marrow’s involvement pattern is classically paratrabecular in LPL, whereas MZLs
present mostly a nodular pattern [64]. Concerning molecular biology, the diagnosis is based
on a set of arguments such as an association of MYD88 L265P with CXCR4, KNMT2D, or
ARID1A mutations, which are more in favor of an LPL [64–66]. MYD88 is also affected by
somatic mutations in 10% of NMZL and MALT lymphomas [13].
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Mutations of P53, involved in cell cycle control, are described in 15% of cases and
predominate at the DNA-binding domain [48]. These mutations seem to be associated with
short overall survival [29,58,61]. In the study of Clipson et al., MYD88 and TP53 mutations
are exclusively found in patients lacking KLF2 mutations. Moreover, MYD88 mutations
and the 7q deletion seem mutually exclusive [51].

Curr. Oncol. 2021, 28 6 
 

 

7q31 region. This study leads to the second hypothesis, involving regulatory mechanisms 
beyond chromosomal loss. Among the miRNA with reduced expression in SMZL, nine 
can target CAV1, including miR-199a, miR-376, and miR-485, and may promote tumor 
progression by inducing the overactivation of transcriptional factors (IGF1R for miR-376a; 
IKKβ and NFκB pathway for miR-199a) [33]. The role of miR-485 is not yet evident, and 
this data have yet been confirmed. 

So far, the gene targeted by the 7q deletion is unknown, and further studies are re-
quired to identify it and clarify the role of miRNA in SMZL. 

2.3.3. Mutational Landscape 
There are a growing number of studies describing the mutational landscape of SMZL 

[48]. Most recurrent mutations are NOTCH2 (10–25% of cases), KLF2 (20–30% of cases), 
TP53 (10–15% cases), and mutations involving the NFκB pathway such as CARD11, 
TNFAIP3, TRAF3, or BIRC3. Active NFκB signaling is necessary for the generation and 
maintenance of normal marginal zone B-cells. Mutations involving the NFκB pathway 
concerned either the canonical pathway, passing by toll-like receptors such as MYD88 or 
by a weak B-cell-receptor (BCR) signaling thanks to mutations of CD79A/B, CARD11, 
and/or IKBKB, or the non-canonical pathway with mutations of TRAF3 or BIRC3, inducing 
CD40 signaling (Figure 3) [13,49,50]. The finality is the entry of the NFκB complex into the 
nucleus, where it can act as a transcriptional factor. Both canonical NFκB signaling and 
non-canonical NFκB signaling are deregulated. Another way to activate this pathway is 
by deletions or mutations of its negative regulator, encoded by the TNFAIP3 (A20) gene, 
seen in almost 13% of SMZLs [51]. 

 
Figure 3. Summary of lymphomagenesis of SMZL created using BioRender.com thanks to these two reviews [48,50]. The 
mutation of NOTCH2 (arising in 10–25% of SMZLs) will lead to the translocation of its intracellular domain to the nucleus, 
inducing a constitutive activation of this pathway and resulting in the transcription of multiple genes. It is associated with 
mutations that will have the effect of activating the NFκB pathway, such as CARD11 (among 8% of cases) or MYD88 via 
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Figure 3. Summary of lymphomagenesis of SMZL created using BioRender.com thanks to these two
reviews [48,50]. The mutation of NOTCH2 (arising in 10–25% of SMZLs) will lead to the translocation
of its intracellular domain to the nucleus, inducing a constitutive activation of this pathway and
resulting in the transcription of multiple genes. It is associated with mutations that will have the
effect of activating the NFκB pathway, such as CARD11 (among 8% of cases) or MYD88 via Toll-like
receptors (TLRs). The canonical pathway for the NFκB activation also passes through IKKb (itself
mutated in 4% SMZL). Other mutations impact the MAP3K14 pathway, involving TRAF3 and BIRC3
(mutated in 4% of SMZLs) complexes, leading to the activation of NFκB via its non-canonical pathway,
passing through IKKa. Other mutations are inhibitory, such as the KLF2 (25%) or TNFAIP3 (13%)
mutations. Apart from mutations, these two molecules play a role in inhibiting the NFκB pathway.
Created with BioRender.com, accessed on 6 September 2021. Abbreviations: BIRC3, baculoviral IAP
repeat-containing protein 3; BCR, B-cell receptor; CARD11, caspase recruitment domain-containing
family member 11; CD40, cluster of differentiation 40; IGVH: immunoglobulin G heavy chain; IKKa/b,
inhibitor of nuclear factor kappa B kinase subunit alpha/beta; KLF2, Krüppel-like factor 2; MAPK,
mitogen-activated protein kinase; MYD88, myeloid differentiation primary response 88; NEMO,
NF-kappa-B essential modulator; NFκB, nuclear factor kappa B; NOTCH, neurogenic locus notch
homolog protein; TCL1A, T cell leukemia family AKT coactivator A; TLR, Toll-like receptor; TME,
tumor microenvironment; TNFAIP3, tumor necrosis factor alpha-induced protein 3; TP53, tumor
protein P53; TRAF3, tumor necrosis factor receptor-associated factor 3.
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As illustrated in Figure 4, the distribution patterns of genetic mutations suggest the
possibility of two or three distinct pathways of SMZL lymphomagenesis.

Figure 4. The top of the figure illustrates the two firsts pathways arising from a naïve B-cell and characterized by a deletion
of the long arm of chromosome 7. Pathway n◦1 is supposed not to pass through the germinal center. SMZL developed
from this pathway presents a repertory bias with a preferential use of IGHV1-2*04 and is supposed not to undergo somatic
hypermutation. Pathway n◦2 is supposed to pass through the germinal center where somatic hypermutation happens,
and mutations involving the non-canonical NFκB pathway and NOTCH1/2 are added (sometimes associated with KLF2
mutations). The third pathway is characterized by mutations of DNA repair genes (TP53) or TLRs genes (MYD88). More
studies are required to precisely define these pathways and correlate them with histological patterns, immunohistochemistry,
and clinical data (particularly prognosis). Created with BioRender.com. Abbreviations: BIRC3, baculoviral IAP repeat-
containing protein 3; IGVH, immunoglobulin G heavy chain; KLF2, Krüppel-like factor 2; MYD88, myeloid differentiation
primary response 88; NOTCH, neurogenic locus notch homolog protein; TNFAIP3, tumor necrosis factor alpha-induced
protein 3; TP53, tumor protein P53; TRAF3, tumor necrosis factor receptor-associated factor 3.

BIRC3 is also inactivated in SMZLs due to somatic mutations that disrupted its RING
domain [49]. As described in other lymphomas such as mantle cell lymphomas [67], these
genetic lesions activate the non-canonical NFκB pathway. In addition, its inhibition has
also been associated with poor prognosis in chronic lymphocytic leukemia [68] and leads
to fludarabine chemoresistance [69]. However, BIRC3 belongs to the family of inhibitors of
apoptosis proteins (IAPs) and has been designed to have a prosurvival and antiapoptotic
role in solid and hematological tumors [70]. This antiapoptotic activity could be targeted
using molecules such as second mitochondria-derived activator of caspases/direct IAP
binding with low PI (SMAC) mimetics. The role of BIRC3 warrants a more profound
analysis in SMZL to clarify its role in these specific lymphomas.
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As seen above, the differential diagnosis between the different subtypes of MZL can
be challenging in cases of disseminated disease. They share common mutations, including
those involving epigenetic regulation pathways (see below) or leading to an activation
of the NFκB pathway, described in Table 1. In particular, somatic mutations or deletions
of TNFAIP3 arise in 18 to 29% of extranodal MZLs, 9% to 33% of NMZLs, and 8% of
SMZLs [13,16,71]. However, each subtype also presents specific alterations that can be
used for their differential diagnosis. Concerning SMZL, KLF2 mutations are both relatively
sensitive and specific markers of a splenic origin. They are indeed seen in 12% to 44% of
SMZLs, only 9% to 20% of NMZLs, and 8% or 9% of MALT lymphomas [15,59,72]. To a
lesser extent, mutations of the NOTCH pathway are also frequently described in SZMLs
due to its role in homing B-cells to the splenic marginal zone [13]. Mutations of NOTCH2
occur in 10% to 25% of SMZLs cases but are also seen in 20% to 25% of nodal MZLs [16,73]
and 1.5% to 8% of extranodal MZLs [15,16,53,54,73]. NOTCH1 mutations occur in 5% of
SMZLs, but at a much lower frequency in NMZLs and not at all MALT lymphomas [74].
Conversely, NMZLs display an inactivation of PTPRD (14% in NMZLs vs. 3% in MALT
lymphomas) and a much higher prevalence of mutations affecting KMT2D (34% in NMZL
vs. 15% in MALT lymphomas) [13,16]. In MALT lymphomas, mutations of TNFAIP3 and
CREBBP (22% vs. 8%) are more frequent than in SMZLs [16]. Therefore, it is a set of
arguments that can help differentiate the different forms of MZL.

Table 1. Summarizing the principal SMZL biomarkers.

Biomarker Role of the Protein Consequence at Protein Level Frequency Literature

7q deletion - - 30%–40% [26,29–32]

Trisomy 3 - - 25% [29,30]

Trisomy 12 - - 10% [29,30]

Trisomy 12 - - 8%

Preferential usage of
specific IGHV genes:

- - [29,34,37,39]IGHV1-2*04 31%
IGHV3-23 8%
IGHV4-34 13%

NOTCH2 NFκB activation Activation 10%–25% [17,54,73]

KLF2 NFκB inhibition Inactivation 12%–40% [59,60,72]

MYD88 NFκB activation from the
Toll-like receptors Activation 5%–18% (p.L265P 65%) [48,60,62,65,66]

CARD11 NFκB activation from the
B cell receptors Activation 5%–9% [48,54,62]

P53 DNA damage and cycle
cell control Inactivation 15% [29,52,61]

BIRC3 MAP3K14 inactivation Inactivation by disruption of the
RING domain 5%–11% [49,54]

TRAF3 MAP3K14 inactivation Inactivation 3%–10% [49,54]

MAP3K14 NFκB activation Activation 1%–8% [49,54]

SPEN Notch inhibition repress Notch signaling 5%–10% [48,54]

TNFAIP3 NFκB inhibition Inactivation 7%–13% [48,71]

IKBKB NFκB activation Activation 7% [54]

KMT2D Epigenetic regulation Inactivation 9%–15% [48,58]

ARID1A
DNA damage, cycle cell
control, and epigenetic

regulation
Inactivation 4%–6% [58,61]
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Table 1. Cont.

Biomarker Role of the Protein Consequence at Protein Level Frequency Literature

EP300 Epigenetic regulation Inactivation 2% [58]

CREBBP Epigenetic regulation Inactivation 5% [58,61]

TBL1XR1 Epigenetic regulation Inactivation 1% [58]

Abbreviations: ARID1A, AT-rich interactive domain-containing protein 1A; BIRC3, baculoviral IAP repeat-containing protein 3; CARD11,
caspase recruitment domain-containing family member 11; CREBBP, C-AMP response element-binding protein; EP300, E1A-binding protein
P300; IGVH, immunoglobulin G heavy chain; IKKa/b, inhibitor of nuclear factor kappa B kinase subunit alpha/beta; KLF2, Krüppel-like
factor 2; KMT2D, histone-lysine N-methyltransferase 2D; MAPK, mitogen-activated protein kinase; MYD88, myeloid differentiation
primary response 88; NFκB, nuclear factor kappa B; NOTCH, neurogenic locus notch homolog protein; TBL1XR1, transducin (beta)-like
1 X-linked receptor 1; TNFAIP3, tumor necrosis factor alpha-induced protein 3; TP53, tumor protein P53; TRAF3, tumor necrosis factor
receptor-associated factor 3.

2.3.4. Epigenetic Regulation

However, regarding the consequences of those mutations, they are non-stereotypical
and unsatisfactory as a therapeutic target. One other mechanism widely studied in B-cell
lymphomas, but few in SMZLs, is post-transcriptional regulation via epigenetic modifica-
tions, such as the methylation of DNA promoter sequences. Indeed, mutations of genes
implicated in epigenetic regulation such as KMT2D (MLL2, one of the most frequently mu-
tated genes in NMZLs), ARID1A, EP300, CREBBP, and TBL1XR1 are well known in other
MZL, and some of them are described in SMZL too. These mutations are not discriminating
in the definition of the origin of the lymphoma (nodal, splenic, and mucosal) [16]. Ar-
ribas et al. realized a clustering analysis of 98 SMZL and identified 2 clusters with different
degrees of promoter methylation: the cluster with higher-promoter methylation, so-called
“High-M,” has poorer overall survival compared with the lower-promoter methylation
(“Low-M”) cluster [75]. Higher-promoter methylation is associated with mutations of the
NOTCH2 gene, 7q32 loss, and even histologic transformation.

2.4. Microenvironment

The importance of the microenvironment is well-known in other MZLs such as MALT
lymphoma, which develops in response to chronic infection, inflammation, or autoimmune
disease. Its development has been linked to the presence of pathogens such as Helicobacter
pylori in gastric MALT lymphoma. In this disease, the infectious agent does not directly
infect and transform lymphoid cells but rather chronically stimulates the immune system
to maintain a protracted proliferative state, which indirectly increases the probability of
lymphoid transformation. Helicobacter pylori indeed leads to the proliferation of marginal
zone B-cells supported by T helper cells [76] and promotes an inflammatory environment
in which neutrophils produce reactive oxygen species [77], all of which contribute to the
acquisition of genetic aberrations by tumor cells.

Focusing on SMZL, hepatitis C virus (HCV) infection is a risk factor in this disease [78].
Moreover, in HCV-associated SMZLs, antiviral treatment (protease inhibitors, NS5A, or
NS5B inhibitors) results in a marked reduction of lymphocytosis and splenomegaly. How-
ever, the underlying mechanisms are poorly understood [44].

These data illustrate the importance of focusing on the microenvironment to under-
stand the lymphomagenesis of each lymphoma subtype. As far as SMZLs are concerned,
few studies of this type exist at the moment.

Wickenden et al. performed multiplex semi-automated immunohistochemistry in a
study including three SMZLs and found an essential role of T follicular helper (TFH) lym-
phocytes and regulatory T lymphocytes (Tregs) in the tumor microenvironment (TME) [79].
TFH cells are, indeed, significantly more often found near Ki67+ B-cells than Treg cells, sug-
gesting for the first time that TFH cells might play a role in driving proliferation and hence
contribute to the varying clinical course of MZL. This study demonstrates the necessity of
a more profound understanding of immune effectors in SMZL TME. Other studies have
concerned the innate immune system; one of them from Verney et al. identified distinct
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TLRs profiles in SMZLs [80]. The dense CD40 expression by bone marrow stromal cells
(involving CD40 ligand expressed by mast cells) is correlated with a poorer prognosis [81].
The central hypothesis is that it happens through interactions of CD40 ligand with cells
composing the TME (such as helper T cells, B-cells, macrophages, mast cells, or dendritic
cells). The phosphorylation of STAT3 leads to the immune cell activation and secretion
of IL-6 or TNF. These cytokines have the effect of enhancing tumor magnification and
survival. Other cellular subtypes are less studied, such as neutrophils located around the
marginal zone of the spleen, a B-cell area specialized in T cell-independent immunoglob-
ulin responses to circulating antigen and act as B-cell helpers [82–84]. These neutrophils
seem to influence the induction of immunoglobulin class switching, as well as somatic
hypermutation or antibody production. They appear to activate B cells in the splenic
marginal zone through a mechanism involving cytokines such as BAFF, APRIL, or IL-21.
This particular type of neutrophils located in the splenic marginal zone could be present
in the microenvironment of SMZL and play a role in their lymphomagenesis due to their
ability to perform antigenic stimulation.

2.5. Limitations

As described above, there are many avenues of work in SMZL, but there are still few
studies. The principal limit in the field of researches is the rarity of these lymphomas.
Due to their low incidence, few human samples are available for research, all the more
so with the increasingly less frequent use of splenectomy. Studies in murine or other
animals models are also scarce [85], such as cell cultures that are very delicate in the field
of lymphoma, all the more if indolent.

Moreover, many results are contradictory with other studies, as illustrated with miR-
NAs (e.g., miR-21, associated with a poor prognosis in SMZL, but with a good prognosis
in DLCBL), or specific genetic mutations (e.g., BIRC3 inactivation associated with poor
prognosis in chronic lymphocytic leukemia [69], which is the contrary in other solid tumors
or hematologic malignancies [70]).

2.6. Future Perspectives
2.6.1. Future Studies

In the immune-checkpoint blockade therapies era, studies about the microenviron-
ment appear essential to achieve in this disease. It is now accepted that the huge hetero-
geneity of immune infiltrates between and within solid tumor metastases, underlying the
interest of considering the spatial organization of the whole tumor tissue to understand
tumor/microenvironment crosstalk and predict response to treatment, in particular in the
context of immunotherapy strategies. The microenvironment influences the survival and
the proliferation of the tumor, either directly by promoting its development or because the
tumor can acquire resistance mechanisms against its various components. One of the most
studied mechanisms to do this is the escape from the immune system’s surveillance, partic-
ularly by slowing down T cells’ action. Numerous studies have been carried out in solid
tumors to understand the link between tumor cells and their microenvironment [76,86–90].
Such studies have made it possible to develop monoclonal antibodies acting as inhibitors
of “checkpoints” or immune control points and allowing “waking up” the immune system,
such as ipilimumab, an antibody directed against the CTLA-4 protein (antigen 4 of cytotoxic
T lymphocytes) [91,92]. The arrival of these treatments in the panel of available therapies
has thus considerably improved the prognosis of melanoma.

These studies arrived much later in lymphomas, starting with classical Hodgkin
lymphoma (cHL), in which results of immune-checkpoint blockade therapies are even better
than in solid tumors, with moderate toxicity [86,93]. These clinical observations, coupled
with important scientific discoveries, have uncovered salient features of the lymphoma
microenvironment that correlate with immunotherapy response in patients. In small B-cell
lymphomas such as follicular lymphomas, tumor cells also appear to depend heavily on
the microenvironment for survival and proliferation [76]. For example, Carreras et al. have
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shown that numerous tumor-infiltrating lymphocytes (TIL) stained by PD1 before therapy
by using a monoclonal antibody against PD-1 seem prognostically favorable [94]. Even if
checkpoint blockade therapies are somewhat disappointing, for instance, in small B-cell
lymphomas, these results suggest that studies focusing on the microenvironment could help
develop such therapies in SMZL. Such meaningful approaches require state-of-the-art tools
to analyze numerous parameters with high resolution in situ, a major technologically unmet
need unsolved by classical single-cell RNAseq strategies. Among the available techniques,
multiplex immunohistochemistry or immunofluorescence has emerged to be particularly
promising, as illustrated by Wickenden and al. [79]. It provides high-throughput multiplex
staining and standardized quantitative analysis for highly reproducible, efficient, and
cost-effective tissue studies. Recent studies have demonstrated the interest in the technique
of “GeoMx Digital Spatial Profiler (DSP)” to define the mechanisms of immunosuppression
within the TME, in particular, to predict the response to anti-PD1 immunotherapies [95,96].
Such technologies open the field of possibilities to develop knowledge in these lymphomas
and identify new therapeutic targets.

2.6.2. Potentially Novel Therapeutic Targets

As described above, checkpoint blockade therapies are rather disappointing in small
B-cell lymphomas [93,97,98]. However, few data focusing on marginal zone lymphomas,
and in particular SMZLs, are available. Miller et al. described the case of a 77-year-
old man with SMZLs (with a TP53 mutation) associated with metastatic melanoma. In
this context, he benefited from treatment with pembrolizumab. Interestingly, the SMZL
seemed to respond to this treatment, reducing spleen size, decreasing lymphocytosis and
improving cytopenias [99]. Vincent-Fabert et al. also suggest that the PD-L1/PD-1 axis
is effective in SMZLs [100]. They studied 54 SMZLs using immunohistochemistry and
showed that, although tumoral cells are negative, PD-L1-positive cells are present in SMZL
tumor nodules and associated with PD-1-positive cells and tend to be associated with
shorter overall survival. However, here again, these data are controversial; another study,
however, on a smaller cohort, did not show labeling with PDL-1 in the tumor cells or the
microenvironment [101].

Some clinical trials test associations of pembrolizumab with idelalisib or ibrutinib
(NCT02332980) in low-grade small B-cell lymphomas, particularly chronic lymphocytic
leukemia also including SMZLs. Ibrutinib has proved its efficacy in CLL compared to
placebo [102], and CLL is characterized by an immunosuppressive environment [103]. As
previously shown, ibrutinib has also shown interesting results in relapsed or refractory
SMZL, with an overall response rate of 62% [11].

A better understanding of these lymphomas’ pathophysiology and microenvironment
could help develop new clinical trials using checkpoint blockade therapies and focusing
on SMZLs.

Studies of the microenvironment in large cohorts could shed light on some of contro-
versial biomarkers, some of which may also emerge as potential new therapeutic targets,
such as the BIRC3 pathway using Smac mimetics (if its role was clarified) [70,104], or
the protein NOTCH2 [105]. Concerning NOTCH2, some studies have tried to act on its
ubiquitin-mediated proteasomal degradation, using proteasome inhibitors such as borte-
zomib. In CLL, this treatment has been found to reduce DNA/NOTCH2 complexes and
cell viability. However, such treatments seem less effective on hematologic malignancies
with a gain of function due to mutations of the PEST domain, such as SMZLs [73,105,106].
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3. Conclusions

SMZL is becoming better characterized, notably on the histological and molecular
levels. Studies have even hypothesized different lymphomagenesis pathways with differ-
ent cytogenetic and molecular characteristics (including del 7q, IGVH repertoire bias, and
KLF2 mutations) and potentially different prognoses. Despite this, it remains challeng-
ing to perform functional studies, and many questions about lymphomagenesis remain
unanswered. It appears essential to improve our knowledge to ensure better patient man-
agement, because an unfavorable evolution requiring aggressive treatments is still often
observed. Studies about the microenvironment seem particularly interesting in the new era
of immunotherapy. Beyond the therapeutic consequences that such studies could have, the
discovery of prognostic markers that could predict the evolution of patients at diagnosis
is crucial.
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