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Abstract: (1) Objective: To design an artificial intelligence system for prostate cancer prediction
using the data obtained by shear wave elastography of the prostate, by comparing it with the
histopathological exam of the prostate biopsy specimens. (2) Material and methods: We have
conducted a prospective study on 356 patients undergoing transrectal ultrasound-guided prostate
biopsy, for suspicion of prostate cancer. All patients were examined using bi-dimensional shear wave
ultrasonography, which was followed by standard systematic transrectal prostate biopsy. The mean
elasticity of each of the twelve systematic biopsy target zones was recorded and compared with the
pathological examination results in all patients. The final dataset has included data from 223 patients
with confirmed prostate cancer. Three machine learning classification algorithms (logistic regression,
a decision tree classifier and a dense neural network) were implemented and their performance in
predicting the positive lesions from the elastographic data measurements was assessed. (3) Results:
The area under the curve (AUC) results were as follows: for logistic regression—0.88, for decision tree
classifier—0.78 and for the dense neural network—0.94. Further use of an upsampling strategy for
the training set of the neural network slightly improved its performance. Using an ensemble learning
model, which combined the three machine learning models, we have obtained a final accuracy of 98%.
(4) Conclusions: Bi-dimensional shear wave elastography could be very useful in predicting prostate
cancer lesions, especially when it benefits from the computational power of artificial intelligence and
machine learning algorithms.

Keywords: artificial intelligence system; shear wave elastography; prostate cancer

1. Introduction

Prostate cancer (PCa) is the most common malignancy diagnosed in Western men, and
represents the second highest cause of cancer death in men [1]. Despite the recent general
advances in prostate imaging and genetic testing, the actual diagnosis of PCa is still based
on the dosing of total serum prostate specific antigen (PSA), the digital rectal examination
(DRE) as screening methods and on the ultrasound-guided 12-core systematic prostate
biopsy as confirmation method [2].

Grey-scale transrectal ultrasonography (TRUS) is used during the transrectal or
transperineal prostate biopsy as the preferred mapping method of the prostatic regions,
although it has relatively low sensitivity and specificity for detecting PCa lesions, as the
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suspicious hypoechoic areas are not confirmed during biopsy in 60–80% of the cases [2]. In
order to increase the precision of prostate imaging, newer techniques including multipara-
metric magnetic resonance imaging (mp-MRI) have been developed and extensively tested,
but they unfortunately involve longer waiting times and significant costs [3].

In the last twenty years, ultrasound-based elastography has become an interesting
method for the assessment of organ stiffness [4]. More recently, elastographic targeted
prostate biopsy has become an alternative for conventional ultrasound-guided systematic
biopsy, as the studies of Mitterberger and Junker have shown that a 50% reduction of the
number of biopsy cores using elastography offered the same prostate cancer detection rate
as the standard randomized TRUS-guided biopsy [5–8].

The principle of elastography consists in its ability to differentiate the tissue struc-
tures according to their elasticity, as opposed to the standard ultrasonography, which
differentiates them through acoustic impedance [9–12]. Actually, there are two elasto-
graphic methods used in medicine: strain and shear wave elastography (SWE). Shear
wave elastography generates shear waves using a sonographic push pulse; the generated
image expresses tissue stiffness in a color-coded map [13]. SWE methods include transient
elastography (used for the assessment of liver stiffness), point shear wave elastography
(pSWE) and bi-dimensional shear wave elastography (2D-SWE) [14]. For the evaluation of
prostate lesions, 2D-SWE represents an attractive alternative, as tumor tissue is associated
with an increased density of cells and vessels, which is translated as a reduction of tissue
elasticity [5,15].

In recent years, medicine began to use artificial intelligence (AI) to help medical
practitioners in decision making, analyzing a high number of parameters in a very short
time and finally proposing solutions with a high level of confidence. AI is increasingly
used in daily medical practice, processing data for more patients, with a higher level of
confidence, from a myriad of systems and sensors [16].

AI is an innovative computer science discipline that aims to imitate and in some
specific tasks to completely replace human thinking. Following the development in the
fields of information technologies and computational power, several types of advanced
early detection models were developed, enabling the computer systems to learn patterns
from labeled data, in order to classify or to predict an output with a high statistical confi-
dence [17,18]. These models include, along with logistic regression (extensively used in
the previous decades), newer techniques as decision trees, support vector machines and
artificial neural networks [19–21].

Machine learning is a subset of AI which is capable of learning from experience
without being previously programmed to produce specific outputs, while deep learning is
a subset of machine learning, with a structure very similar to the physiology of the human
brain, able to use large datasets at the same time, which are reprocessed multiple times, in
order to reach a desired output [22]. Thus, deep learning is a very innovative tool, using
multi-layer neural networks to develop high-precision predictive models [18,23]. Deep
learning algorithms usually succeed in obtaining better accuracy and receiver operating
characteristic curves compared with more conventional analysis tools applied to the same
dataset [24].

In urology, deep learning algorithms were successfully used for the detection of
prostate cancer, correlating mp-MRI images with the results of prostate biopsy, and for the
outcome prediction after the robot-assisted radical prostatectomy, delivering an average
performance increase of 30–80%, compared with traditional diagnostic standards [25,26].
Moreover, machine learning algorithms provide, besides state of the art solutions, the much
needed continuous adaptation and improvement through learning, and therefore were the
obvious choice for completing the algorithmic part of our intelligent prediction system.

2. Aim of the Study

Our main objective was to design an artificial intelligence system able to predict
prostate cancer using the data obtained by shear wave elastography of the prostate, by com-
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paring it with the data gathered by the actual diagnosis gold standard, the histopathological
exam of the prostate biopsy specimens.

3. Material and Methods

We have performed a prospective study, which included patients from our outpatient
department, scheduled for transrectal ultrasound-guided prostate biopsy, for prostate
cancer suspicion, from January 2017 to November 2019. The study was approved by
the local Ethics Committee of our Hospital, and all participating patients have signed an
informed consent form.

We have used the following inclusion criteria for patient selection: at least one total
Prostate Specific Antigen (PSA) value over 4 ng/mL and/or an abnormal digital rectal exam-
ination, raising the suspicion of prostate cancer. Subsequently, we have applied the follow-
ing exclusion criteria: past history of prostate cancer, past history of surgical/endoscopic
procedures of the lower urinary tract, recent history or signs of acute/subacute prostatitis.

The following demographic and clinical parameters were recorded in all patients:
age, PSA value and interpretation of digital rectal examination performed by the same
urologist. In some of the patients, we gathered additional data, including free PSA, body
mass index (BMI), International Prostate Symptom Score (IPSS) value and the interpretation
of multiparametric prostate magnetic resonance imaging (mp-MRI). Since we were not able
to provide these parameters in all patients, we preferred to not include them in our actual
study, which evaluates the patient group with homogenous.

All patients have received a prophylactic dose of Levofloxacin 500 mg, 24 h before
the biopsy and another dose of 500 mg in the morning of the procedure. Some of the
patients were instructed to continue antibiotic therapy if they were considered at risk for
post-biopsy infection.

The combined approach, including conventional transrectal ultrasonography and
shear-wave elastography, was performed with a Aixplorer Supersonic Imagine machine
(Aixplorer, Aix-en-Provence, France), using a SE12-3 transrectal transducer, which had a
Civco needle guide system attached (Civco, Coralville, IA, USA), for directly performing
the biopsy right after the elastographic image acquisition.

After the insertion of the transrectal transducer with the patient in lithotomy position,
we have started our ultrasonographic evaluation. The prostate was divided into twelve
circular target zones with a diameter of 5 mm, six peripheral and six para-urethral, at
approximately 1 cm distance between each other, as shown in Figure 1. Each area was
evaluated initially for the existence of hypoechoic lesions in gray-scale ultrasonography,
which was followed by bidimensional shear wave elastography.

3.1. Methodology for Elastography

Bidimensional shear wave elastography (2D-SWE) was utilized to visualize and mea-
sure the rigidity of the target zones considered for biopsy. The rigid regions appeared
colored in red, while those soft and elastic were colored in blue. Hard regions with a
diameter of at least 5 mm were considered suspicious and potentially malignant (Figure 2).
Using the software implementation of the Young module of the ultrasound machine, we
have calculated the mean elasticity of each of the target zones.

The 2D-SWE assessment of the central area around the urethra was excluded, as this
area is often very stiff and difficult to evaluate. Accurate SWE results are generally not
reproducible, while the probability for detecting a prostate cancer lesion is very low [7].
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Figure 1. Prostate divided into twelve target zones, resulting a total of twelve biopsy fragments at
approximatively 1 cm distance between each other. Every target zone and tissue fragment corresponds
to a region evaluated with SWE measurements before the biopsies were taken (R = right, L = left,
B = base and A = apex).
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Figure 2. Concomitant transrectal visualization of the prostate bidimensional shear wave elastogra-
phy (upper image) and grey-scale ultrasonography (lower image). Four regions of interest raise the
suspicion of PCa (colored in red) at the level of the left prostatic lobe, and three of them were targeted
during transrectal prostate biopsy. The pathology report has confirmed the PCa lesions in all three
biopsy cores.

3.2. Methodology for Prostate Biopsy

Following the elastographic evaluation, we have performed local anesthesia, using
10 mL lidocaine 1%, injected through a 22 G needle. Thereafter, we have performed
the transrectal prostate biopsy, from the twelve target zones, using an 18 G biopsy nee-
dle attached to a BARD Magnum biopsy instrument (Bard Care, Covington, GA, USA)
(Figure 3). No additional biopsy cores were included in our analysis, even if the elasto-
graphic examination indicated a suspicious lesion outside the target zones, and we have
harvested some additional fragments from those areas. The biopsy core specimens were
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blinded to the results of the elastographic measurements and were processed using the
standard procedures of the Pathology Department from our Hospital. The pathology
report was made available for each of the biopsy cores, including data about tumor linear
extension and Gleason score, in confirmed PCa positive lesions.

Curr. Oncol. 2022, 29, FOR PEER REVIEW  6 
 

 

 

Figure 3. Scheme of the image processing and systematic biopsy of the twelve target areas. 

3.3. Creation of the Dataset 

The patients were included in the dataset only when the pathology report from the 

prostate biopsy was finalized and included at least one core fragment confirmed with 

prostate cancer; thus, all the p1412.6980atients with negative biopsy results, or with le-

sions such high grade prostatic intraepithelial neoplasia (HG-PIN) or atypical small acinar 

proliferation (ASAP) were excluded, as our intention was to train the AI system only with 

confirmed cancer cases. The dataset included the imaging parameters for each of the 

twelve target zones (mean elasticity, measured in kPa), and the corresponding biopsy re-

sults, marked with 0 for negative (no cancer) and with 1 for positive (confirmed cancer). 

3.4. Implementation of Machine Learning Techniques 

We have employed artificial intelligence techniques, designing a dynamical auto-

adaptive system customized for analyzing our dataset. We have implemented three ma-

chine learning classification algorithms, namely the logistic regression, a decision tree 

classifier and a fully connected feed-forward deep neural network [27–29]. 

Logistic regression is the first algorithm to try in a classification problem, and gener-

ally has the lowest accuracy and the lowest weight in the total ensemble. Decision trees 

and their ensembles as random forests are good shallow classifiers. The deep neural net-

work was chosen as our aim was to predict with the highest possible accuracy the positive 

diagnosis of prostate cancer using the numerical values associated to the elastographic 

regions of interest measured before the biopsy. 

3.5. Neural Network Classifier Implementation 

We have constructed our neural network classifier in TensorFlow version 2.5.0 

(Google, Mountain View, CA, USA), using Keras, as it is one of the most commonly used 

Python-based deep learning platforms, both among researchers and industry, with tools 

for building almost any type of neural network architecture [30,31]. For the logistic regres-

sion and decision tree, we have used the Python library Scikit-Learn [27,28]. 

The deep learning network was optimized for both the parameters (i.e., weights) to 

avoid overfitting, and hyper parameters (i.e., number of layers) to increase the classifica-

tion accuracy. We have used the ADAM (adaptive moment estimation) optimization al-

gorithm instead of the classical stochastic gradient descend procedure to update network 

weights in an iterative way ADAM updates a learning rate separately for each model pa-

rameter/weight, increasing the learning rate in the early layers, and thus improving the 

efficiency of deep neural networks [32]. 

We have considered finally the following model (Table 1): 

Figure 3. Scheme of the image processing and systematic biopsy of the twelve target areas.

3.3. Creation of the Dataset

The patients were included in the dataset only when the pathology report from the
prostate biopsy was finalized and included at least one core fragment confirmed with
prostate cancer; thus, all the patients with negative biopsy results, or with lesions such high
grade prostatic intraepithelial neoplasia (HG-PIN) or atypical small acinar proliferation
(ASAP) were excluded, as our intention was to train the AI system only with confirmed
cancer cases. The dataset included the imaging parameters for each of the twelve target
zones (mean elasticity, measured in kPa), and the corresponding biopsy results, marked
with 0 for negative (no cancer) and with 1 for positive (confirmed cancer).

3.4. Implementation of Machine Learning Techniques

We have employed artificial intelligence techniques, designing a dynamical auto-
adaptive system customized for analyzing our dataset. We have implemented three ma-
chine learning classification algorithms, namely the logistic regression, a decision tree
classifier and a fully connected feed-forward deep neural network [27–29].

Logistic regression is the first algorithm to try in a classification problem, and generally
has the lowest accuracy and the lowest weight in the total ensemble. Decision trees and
their ensembles as random forests are good shallow classifiers. The deep neural network
was chosen as our aim was to predict with the highest possible accuracy the positive
diagnosis of prostate cancer using the numerical values associated to the elastographic
regions of interest measured before the biopsy.

3.5. Neural Network Classifier Implementation

We have constructed our neural network classifier in TensorFlow version 2.5.0 (Google,
Mountain View, CA, USA), using Keras, as it is one of the most commonly used Python-
based deep learning platforms, both among researchers and industry, with tools for building
almost any type of neural network architecture [30,31]. For the logistic regression and
decision tree, we have used the Python library Scikit-Learn [27,28].

The deep learning network was optimized for both the parameters (i.e., weights) to
avoid overfitting, and hyper parameters (i.e., number of layers) to increase the classifi-
cation accuracy. We have used the ADAM (adaptive moment estimation) optimization
algorithm instead of the classical stochastic gradient descend procedure to update network
weights in an iterative way ADAM updates a learning rate separately for each model
parameter/weight, increasing the learning rate in the early layers, and thus improving the
efficiency of deep neural networks [32].
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We have considered finally the following model (Table 1):

Table 1. The structure of the dense neural network.

Layer (Type) Output Shape Parameter Number

dense_1 (Dense) (None, 24) 312

dense_2 (Dense) (None, 12) 300

dense_3 (Dense) (None, 6) 78

dense_4 (Dense) (None, 1) 7

The deep learning model with the activated weights after the training can be visualized
in Figure 4:
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numbered from the bottom to top on each layer in ascending order. The first layer is the input layer
with the elasticity values. The remaining four processing layers (three hidden and one output) are
described in Table 1. Activation weights are marked with a thicker line.
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3.6. Statistical Analysis

We have used as performance evaluation metrics the receiver operating characteristic
curve (ROC) created by plotting the true positive rate (TPR) against the false positive rate
(FPR), at various threshold settings [33]. We have utilized for normalized units the area un-
der the curve (AUC), which is equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a randomly chosen negative instance. Moreover, we
have calculated the sensitivity and specificity since they are statistical measures of the
performance of a binary classification test.

Cross-validation was performed, using the k-fold procedure, which divides all the
samples in groups of samples, called folds, of equal sizes. The prediction function was
learned using folds, and the fold left out was used for testing.

4. Results

From the total of 356 screened patients, which underwent the evaluations from our
protocol, a number of 223 were confirmed with prostate cancer. Their mean age was
64.2 years (standard deviation 11.9 years), and the mean PSA value was 18.9 ng/mL.
Using the Gleason score from the pathology reports, we have obtained the following table,
which correlates the International Society of Urologic Pathologists (ISUP) grading with the
average PSA and the percentage of positive cores (Table 2):

Table 2. Correlations between the ISUP grading and different patient parameters.

No. Mean Age Mean PSA % of Positive Cores % of DRE Positive

ISUP 1 90 63.21 10.915 34.2% 16.7%

ISUP 2 14 61.07 13.586 41% 28.6%

ISUP 3 61 64.83 17.776 47.3% 50.8%

ISUP 4 31 60.64 23.127 59.1% 80.6%

ISUP 5 27 71.88 46.383 68.8% 85.2%

After the finalization of the dataset, using the described parameters, we have per-
formed the three simulations, obtaining the following results (Table 3):

Table 3. The statistical results of the three simulations.

Classification
Algorithm Accuracy Score Sensitivity Specificity

Logistic regression 0.8041 0.6163 0.9160

Decision tree classifier 0.6862 0.8490 0.4297

Dense neural network 0.8697 0.8550 0.8223

The receiver operating characteristics of the three systems are presented in Figure 5:
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Figure 5. ROC curves of the three systems used for prediction: logistic regression (trained with
gradient descent instead or ordinary least squares, marked with blue; AUC = 0.88), decision tree
classifier (using the ID3 algorithm, marked with green; AUC = 0.78), and dense neural network (with
three hidden layers, marked with red; AUC = 0.94).

4.1. Re-Training of the Neural Network

Comparing our results, we have obtained the highest accuracy with the neural network
classifier (AUC = 0.94), followed by the logistic regression (AUC = 0.88), and the decision
tree (AUC = 0.78). The differences between the three classifiers reside, probably, from a
slight imbalance between the positive and negative prostate cancer biopsy cores. In order
to minimize this imbalance, we have used the upsampling strategy SMOTE (synthetic
minority oversampling technique) [34]. We used it only for the training set, such as the
newly generated samples will not influence the model prediction. After applying SMOTE,
we have obtained a well-balanced dataset; by retraining the deep neural network classifier,
the prediction was slightly improved, reaching an AUC = 0.95.

4.2. Ensemble Learning Model

Since we needed to further improve the accuracy of our model, we have employed a
weighted ensemble learning strategy. Ensemble methods are techniques that combine the
inferences of multiple machine learning models with the purpose to produce improved
results [35]. Ensemble methods are usually more accurate solutions than a single model.

We have combined the results from our three models, and we have employed a
majority voting and then a weighted voting, implemented using the Sci-kit learn library. In
the first scenario, we have used as votes the predictions from all our three models for each
test instance and the final output prediction was the one that received more than half of the
votes. Since we observed that the neural network usually produces the highest accuracy
prediction, we have decided to slightly upgrade the weight of its vote and we have given
similar weights for the logistic regression and decision tree. Using this ensemble learning
strategy, we were able to obtain a final accuracy of 98%, which is adequate given the size of
the original dataset. Since the dataset is under continuous update by incorporating new
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patients, our future goal is to apply an incremental learning classifier (such as e.g., ICARL)
to further develop our system [36].

5. Discussion

Our main objective was to prospectively evaluate the diagnostic performance of shear-
wave elastography (SWE) in the detection of prostate cancer, by designing an intelligent
system composed of a clinical part and an ensemble learning part, where we have compared
the predictions of 3 supervised classifiers, a logistic regression system, a decision tree and a
dense neural network.

As the sensitivity of TRUS-guided prostate biopsy in detecting PCa remains relatively
low, additional imaging techniques have been evaluated. Most of the actual studies are
concentrated on the role of multiparametric prostate MRI, and on the use of MRI/TRUS
fusion biopsy, with significant positive results, entitling some of the authors to declare
that the era of randomized systematic biopsy is starting to fade away [3]. Despite these
statements, there are some elements that need to be considered. First, mp-MRI is a time-
consuming procedure, which requires a high level of technician and physician training
and sophisticated equipment, in order to provide good quality scans and standardized
reports [37]. Second, fusion biopsy requires expensive ultrasound machines and proper
training, but is sometimes not able to give reproducible results, as still depends very much
on the type of fusion technology and equipment [38]. Of course, artificial intelligence could
be a game changer in this field, too, recent advances incorporating the use of AI into the
fusion software, with proven positive results [39].

On the other hand, the development of elastography in the last two decades has
improved the non-invasive assessment measuring the organ stiffness [40]. Most of the
studies were focused on liver elastography, but a lot of work was performed more recently
for the evaluation of the breast, thyroid, spleen or prostate [41]. For the assessment of
prostate stiffness, 2D-SWE is the most suitable method, as color coded imaging enables the
detection and evaluation of stiff areas, which raise the suspicion of prostate cancer, with a
higher sensitivity than the standard ultrasonography.

Several research groups have investigated the accuracy of real time elastography
in correlation with biopsy results for the detection of PCa. The most important limita-
tion of 2D-SWE is represented by its low performance in detecting tumors smaller than
5 mm [42]. Moreover, in order to determine the true sensitivity and specificity of the
method, a correlation with histo-pathological sections of radical prostatectomy specimens
is finally required [43]. A further limitation of the technique is represented by the operator
subjectivity in detecting prostate areas with high rigidity. In this matter, it is very impor-
tant to standardize the elastography method as much as possible, in order to increase the
accuracy of the measurements. False positive aspects raising the suspicion for PCa may
be encountered in chronic prostatitis, due to the “distance” and “attenuation” effects, in
adenomatous nodules, or due to the “striated” appearance of the base, often difficult to
recognize. False negative aspects, especially in the transitional zone, can be caused by any
lesion that may “hide” information, as intraprostatic calcifications, or peripheral infiltrative
lesions with capsule penetration [40].

Our current research has demonstrated the value of AI, which can significantly simplify
the prediction procedures, streamlining the decision making, reducing the bias and errors
due to methodological mistakes, and outperforming the standard statistical methods. Of
course, one of its drawbacks resides right from its ability to build non-linear response
functions, which are harder to explain, despite their remarkable accuracy [25].

6. Conclusions and Future Work

Our intelligent system finally provided a high level of accuracy, but considering the
relatively moderate size of the dataset, did not allow us to omit the randomized systematic
biopsy in favor of the SWE-targeted biopsy.
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As a future development of our research, we intend to enhance the performance of
a new combined technique, of multiparametric ultrasonography of the prostate, which
uses B-mode imaging, SWE and contrast-enhanced ultrasound with parametric maps,
by adding the computational and prediction capabilities of artificial intelligence systems,
including model-agnostic explainable artificial intelligence techniques such as LIME (local
interpretable model agnostic explanation) [44–46]. Moreover, future implementations of
these techniques should take into account the capacity to differentiate between indolent
and potentially aggressive PCa lesions, reducing the need for systematic prostate biopsies
and minimizing the complication risks [47].
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