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Abstract: Squamous cell carcinoma (SCC) of the tongue is the most prevalent form of oral cavity
cancer, with surgical intervention as the preferred method of treatment. Achieving negative or free
resection margins of at least 5 mm is associated with improved local control and prolonged survival.
Nonetheless, margins that are close (1–5 mm) or positive (less than 1 mm) are often observed in
practice, especially for the deep margins. Ultrasound is a promising tool for assessing the depth
of invasion, providing non-invasive, real-time imaging for accurate evaluation. We conducted a
clinical trial using a novel portable 3D ultrasound imaging technique to assess ex vivo surgical margin
assessment in the operating room. During the operation, resected surgical specimens underwent 3D
ultrasound scanning. Four head and neck surgeons measured the surgical margins (deep, medial,
and lateral) and tumor area on the 3D ultrasound volume. These results were then compared with
the histopathology findings evaluated by two head and neck pathologists. Six patients diagnosed
with tongue SCC (three T1 stage and three T2 stage) were enrolled for a consecutive cohort. The
margin status was correctly categorized as free by 3D ultrasound in five cases, and one case with a
“free” margin status was incorrectly categorized by 3D ultrasound as a “close” margin. The Pearson
correlation between ultrasound and histopathology was 0.7 (p < 0.001), 0.6 (p < 0.001), and 0.3
(p < 0.05) for deep, medial, and lateral margin measurements, respectively. Bland–Altman analysis
compared the mean difference and 95% limits of agreement (LOA) for deep margin measurement
by 3D ultrasound and histopathology, with a mean difference of 0.7 mm (SD 1.15 mm). This clinical
trial found that 3D ultrasound is accurate in deep margin measurements. The implementation of
intraoperative 3D ultrasound imaging of surgical specimens may improve the number of free margins
after tongue cancer treatment.
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1. Introduction

Oral squamous cell carcinoma (SCC) is the eighth-most common cancer, with a sur-
vival rate of less than 60% for patients surpassing 5 years [1,2]. SCC of the tongue represents
the most prevalent form of oral cavity cancer, with surgery as the primary treatment modal-
ity [2,3]. The main objective in surgical oncology is to achieve complete tumor removal,
along with a margin of healthy tissue surrounding the tumor, ensuring the effective eradica-
tion of cancer. Simultaneously, preserving as much healthy tissue as possible during tongue
cancer surgery is crucial to maintain the patient’s quality of life, especially concerning vital
functions such as swallowing and speaking. Positive or inadequate surgical margins (mar-
gin ≤ 5 mm) raise the risk of local cancer recurrence and often require adjuvant treatments,
such as repeated surgery or radiation therapy, with greater morbidity and higher failure
rates. Frozen section biopsy is commonly used to assess intraoperative margins in head
and neck carcinomas [4]. Here, tissue samples from each margin of the surgical area are
taken and then sent as frozen sections for microscopic examination by a pathologist while
the patient is still under general anesthesia. A limitation of the frozen section analysis is
that only a few samples are examined [5], which may not represent the entire margin. A
meta-analysis found that frozen section analysis had a low sensitivity for close margins
and that its use did not lead to better local control [6]. Additionally, frozen section analysis
has a high cost [7] and may extend anesthesia duration by 15–45 min, increasing the risk
of complications for the patient. Margin status analysis has, therefore, been a focal point
in numerous clinical trials, with estimates suggesting that the percentage of inadequate
surgical margins could be in the range of 30–65% [5,8–10].

To improve surgical cancer treatment, intraoperative imaging techniques aimed at
optimizing complete tumor resection are imperative. Tumor-specific fluorescence optical
imaging is a promising new technique with high sensitivity to detect positive resection mar-
gins [11]. However, the sensitivity for detecting close margins in the deep resection planes is
lower due to the limited tissue penetration depth of fluorescence optical imaging [12]. This
is especially problematic in oral cancer surgery, as the deep margins are involved in 87% of
resection specimens with involved margins [13]. Instead, conventional 3D imaging modal-
ities have been investigated for margin evaluation in oral SCC [14], including magnetic
resonance imaging (MRI) [15,16] and computed tomography (CT) [3,17]. However, these
methods come with significant drawbacks: they are costly and can substantially increase
the duration of the operation as the surgical specimen needs to be transported from the
operating room to the radiology department. Instead, ultrasound is a portable, dynamic,
and cost-efficient imaging modality that offers high-resolution visualization of superficial
structures [18]. Ultrasound has been found to be superior to MRI and CT for assessing
the depth of invasion (DOI) in tongue SCC [3,18,19]. However, the limitations of ultra-
sound include its user-dependency and generation of two-dimensional images compared
to a 3D volume with cross-sectional imaging. Instead, 3D ultrasound imaging may offer
some promising potential in obtaining volumetric ultrasound images of tumors and over-
coming these challenges [20,21]. Currently, 3D ultrasound imaging is conducted by a 3D
probe [22–24], which is limited in its field of view, or the use of electromagnetic [25–27] or
optical tracker [28] systems, which are difficult to use in an operating theatre [29]. Instead,
we have developed a sensorless and compact three-dimensional (3D) ex vivo ultrasound
system (3Sonic, prototype) involving a mechanical arm and a gridded marker to calibrate
recorded 2D B-mode images into a 3D ultrasound volume. In this clinical trial, we aim to
explore the diagnostic accuracy of using this novel 3D ultrasound technique for analyzing
surgical margins during surgery for tongue cancer.

2. Materials and Methods

We conducted a prospective clinical study at the Department of Otorhinolaryngology,
Head and Neck Surgery & Audiology, Copenhagen University Hospital, Rigshospitalet,
including patients who were due for surgical treatment of tongue SCC. Ethical approval
was granted in the form of an exemption letter from the Committee on Biomedical Research
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Ethics of the Capital Region of Denmark (registration number: 21017915), and the study
protocol was registered with clinicaltrials.gov under the trial number NCT05740774. The
inclusion criteria were patients above 18 years old with biopsy-proven oral tongue SCC
scheduled for surgical treatment, and verbal and written informed consent were obtained
from the patients before enrollment. The exclusion criteria were patients who had prior
surgery or radiotherapy treatment for oral cavity cancer, had expected tumor invasion to
the bone, or were unable to understand verbal or written information.

2.1. Ex Vivo 3D Ultrasound Imaging

Under general anesthesia, the head and neck surgeon resected the tongue SCC using
surgical magnifying glasses, with a safe margin of approximately 10 mm of healthy tissue
around the tumor. The surgical margins of the resected specimen were clinically assessed by
the surgeon and were fixated onto a piece of cork using needles. The specimen was marked
either with a suture or by marking on the cork for orientation (anterior, posterior, medial,
or lateral). Then, the surgeon took additional biopsies from the in vivo wound edges and
sent them to the pathology department for frozen-section analysis. We then submerged
the surgical specimen in saline solution for a 3D ultrasound scan at the operation theatre
immediately after resection. We used a custom-made setup consisting of a motorized
mechanical arm to move the ultrasound transducer above the surgical specimen, using
saline as a coupling medium between the transducer and specimen. For calibration and
to coordinate system retrieval, a plastic grid was fixated in the saline bath to provide the
coordinate system information for the generation of a 3D ultrasound volume (see Figure 1).
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Figure 1. 3Sonic setup—schematic of components of the 3D ultrasound imaging technique.

Two different ultrasound machines were used in this study: the Hitachi Arietta 850
ultrasound system (Fujifilm, Ratingen, Germany), coupled with an L64 linear probe, and
the BK 5000 (BK Ultrasound, Burlington, MA, USA), coupled with an L18 linear probe.
Prior to the mechanical sweep of the probe, ultrasound image optimization was performed
at the center position of the specimen. Volume construction and ultrasound data calibration
were executed using a custom-made in-house script within the commercially available
programming tool MATLAB 2022b (www.mathworks.com). Data were analyzed using
MATLAB 2022b.

www.mathworks.com
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2.2. Three-Dimensional Ultrasound to Histopathology

After the surgery, the specimens were transferred to the pathology department for
formalin fixation. Here, the samples were fixed in 10% formaldehyde solution for 24 h. The
same pathologist (TKA) then performed parallel slicing at approximately equal intervals of
2 mm (See Figure 2).
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Figure 2. Parallel slicing of the surgical specimen by pathologist. The parallel red lines on the
macro image represent the position of the pathology slices, and the numbers the order of which they
were sliced.

The slices were transferred to cassettes for further processing and embedded in paraffin
to form formalin-fixated paraffin-embedded (FFPE) blocks. From each block, a 4 µm slice
was cut, mounted on glass slides, and stained with hematoxylin and eosin (H&E). Two
experienced head and neck pathologists (TKA and GL) assessed the surgical margin status
and delineated the tumor on the digital images of the histology slices. On each included
patient, the pathologists measured the tumor area and the distance of the smallest deep,
lateral, and medial margins of every slice (as illustrated in Figure 3). The measurements by
the two pathologists were averaged and considered as the gold standard.
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Figure 3. Schematic representation of the margin measurement directions on histopathology and
macro image of the surgical specimen. The tumor region has been delineated in red on the histology
image. The parallel red lines on the macro image represent the position of the pathology slices, and
the numbers the order of which they were sliced.

Three-dimensional ultrasound images were correlated to the corresponding histopathol-
ogy slices to evaluate the margin measurements. An example of the ultrasound-histology
correlation is presented in Figure 4.

Four blinded head and neck surgeons manually segmented the tumor region and
identified the slice-by-slice tumor area and surgical margins on the ultrasound images. We
provided surgeons with a macro image of the surgical specimen to offer an overview of
the sample. The selection of ultrasound frames was determined based on the specimen’s
overall dimensions shown in the micro image and the markings by the pathologist on
another image indicating the locations and orientations of the pathology slices. These
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chosen frames were compiled into a PowerPoint (PPT) file. Within this PPT file, surgeons
were tasked with segmenting the tumor region and delineating the surgical margins on
every slide. The surgeons conducted two rounds of measurements on the data.
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To measure the tumor area and margins on ultrasound frames based on the drawings
from the surgeons, we used a custom-made script in MATLAB 2022b. The results of the
surgical margin assessment from the 3D ultrasound scan of the surgical specimen were
compared to the final histopathology report.

2.3. Statistical Analysis

The histopathological margins were categorized as “free” (≥5 mm), “close” (1–5 mm),
or “positive” (<1 mm). The smallest margin of all slices determined the final margin
status for every patient. In this study, the positive class is defined as the close margins,
meaning a true positive (TP) is when both pathology and ultrasound classify the margin
as close. Likewise, the negative class refers to the free margins, meaning true negatives
(TN) are patients where the margins are classified as free on both modalities. To evaluate
the effectiveness of ultrasound in distinguishing between free and close surgical margins,
we calculate its sensitivity and specificity. Sensitivity, or the true positive rate (TPR), is
determined by dividing the number of true positives by the total number of positives. On
the other hand, specificity, which is the true negative rate (TNR), is calculated as the ratio
of true negatives to the total number of patients classified as negative. Likewise, the false
positive rate (FPR) and the false negative rate (FNR) can be calculated.

For continuous variables, statistically significant differences were determined with
an independent t-test. Modified Bland–Altman plots compared 3D ex vivo ultrasound
measurements with histopathological as the reference standard. Paired-sample t-tests were
performed to examine whether the mean differences between histological and US-based
measurements were statistically significant. We defined the level of statistical significance at
α = 0.05 with “ns” denoting non-significance. See Equations (A1) and (A2) in Appendix A
for the mean and SD calculations.

3. Results

We prospectively enrolled eight patients diagnosed with SCC of the tongue and
scheduled for primary surgical treatment between January 2023 and May 2023. We excluded
two of the eight patients due to technical issues with the scanning, leaving us with six
patients in the study. Of the six participants, three [50%] were women, and the mean age
was 67 years [IQR, 9 years]). Three participants were clinically T-staged as T1, and three
were T-staged as T2, all without suspicion of lymph node metastasis. Two of the six patients
had free margins based on the final histology report, and four had close margins. One of
the six participants had a cohesive invasion pattern (See Table 1). A total of 45 pathology
slices with a tumor seen on histopathology were compared to the corresponding ultrasound
images, with a median of 7.5 slices (range 3–13) for each patient.
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Table 1. Patient characteristics. No. pathology slices refer to slices containing tumor, and the margin
status is determined by whether a case contains a deep margin below 5 mm. The staging is presented
as cTNM (clinical TNM) or pTNM (pathological TNM), indicating whether the stage was determined
preoperatively or postoperatively.

Patient
No. Gender Age cTNM or

pTNM

No.
Pathology

Slices

Invasion
Pattern

Perineural
Invasion

Pathology
Margin
Status

Ultrasound Machine

1 Female 64 T2N0M0 13 Non-cohesive Yes Free
BK5000 (BK
Ultrasound,

Burlington, MA, USA)

2 Female 73 T2N0M0 7 Non-cohesive Yes Close Arietta 850 (Fujifilm,
Ratingen, Germany)

3 Male 81 T1N0M0 3 Non-cohesive No Free Arietta 850 (Fujifilm,
Ratingen, Germany)

4 Female 68 T1N0M0 7 Cohesive No Close Arietta 850 (Fujifilm,
Ratingen, Germany)

5 Male 50 T2N1M0 7 Non-cohesive Yes Close Arietta 850 (Fujifilm,
Ratingen, Germany)

6 Male 56 T1N0M0 8 Non-cohesive No Close Arietta 850 (Fujifilm,
Ratingen, Germany)

The mean surgical margin from all slices from the different patients measured by the
pathologists was 6.1 mm (IQR = 2.6 mm), 6.7 mm (IQR = 3.8 mm), and 8.6 mm (IQR = 4.0)
for the deep, medial, and lateral margins, respectively. The mean absolute difference
between the two pathologists’ measurements of the surgical margin from the slices was
0.5 mm (IQR = 0.5 mm), 1.4 mm (IQR = 1.4 mm), and 1 mm (IQR = 1.1 mm) for the deep,
medial, and lateral margins, respectively. The Pearson correlation for their deep, medial,
and lateral margin measurements were 0.9 (p = ns), 0.7 (p = ns), and 0.9 (p = ns), respectively.
The maximum difference between the two pathologists’ measurements of the deep margin
was 0.8 mm (patient 3), while the maximum difference was 2.3 mm (patient 1) and 1.9 mm
(patient 4) for the medial and lateral margins, respectively.

The mean surgical margins from the ultrasound images (corresponding to the pathol-
ogy slices) were 4.8 mm (IQR = 1.3 mm), 8.6 mm (IQR = 5 mm), and 7.3 mm (IQR = 1.8 mm)
for the deep, medial, and lateral margins, respectively, measured as an average between the
four head and neck surgeons. The median Pearson correlation for the four head and neck
surgeons’ measurements of the deep, medial, and lateral margins on the ultrasound images
was 0.7 (p < 0.01), 0.5 (ns), and 0.3 (p < 0.001), respectively. The mean differences between
the measurements of the minimum surgical margins on the ex vivo ultrasound images and
histopathology were 1.0 mm (SD 0.9 mm), 2.3 mm (SD 1.8 mm), and 1.8 mm (SD 1.7 mm)
for the deep, medial, and lateral margins, respectively. The Pearson correlation between
the ex vivo ultrasound images and histopathology measurements were 0.7 (p < 0.001),
0.6 (p < 0.001), and 0.3 (p < 0.05) for the deep, medial, and lateral margins, respectively.
Considering all deep margins, the TPR, TNR, FPR, and FNR based on the comparison of
all slices were 100%, 68%, 32%, and 0%, respectively (See Figure 5). By categorizing the
margin status based on the minimum deep margin measurements by ultrasound, we found
an accuracy of 83%, with one patient (case 1) incorrectly classified as close even though the
deep margin was free on histopathology (Table 2). See Table A1 in Appendix A for more
details about lateral and medial margins.

The mean area from all slices from the different patients measured by the pathologists
was 30.3 mm2 (IQR = 41.2 mm2). The mean absolute difference between the area of the
slices measured by the two pathologists was 4.6 mm2 (IQR = 5.7 mm2). The Pearson corre-
lation for their area measurements was 1.0 (p < 0.001). The maximum difference between
the two pathologists’ measurements of the area was 15.2 mm2 (patient 6). The mean area
measurement from the ultrasound images (corresponding to the pathology slices) was
41.5 mm2 (IQR = 39.8 mm2). See Figure A1 in Appendix A for more details about the tumor
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slice-by-slice area measurements on the ultrasound frames. The median Pearson correlation
for the four head and neck surgeons’ measurements of the area was 0.9 (p < 0.01). The Pear-
son correlation between the ex vivo ultrasound images and histopathology measurements
was 0.3 (p < 0.001). See Figures A2 and A3 and Table A2 in Appendix A for more details
about the area measurements from pathologists.
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Table 2. The smallest deep margins measured by four head and neck surgeons (A–D) on 3D ul-
trasound and two pathologists (A + B) on histopathology images for all patients. Ultrasound and
pathology status are based on the deep margin measurements. Abbreviations: FP = false positive,
TP = true positive, TN = true negative.

Patient
No.

Pathologist
Minimum Deep [mm]

3D Ultrasound
Minimum Deep [mm] Margin Status

A B Difference Mean A B C D Mean Mean Abs
Error 3D US HP Diagnosis

1 6.1 6.2 0.1 0.7 5.9 0.4 3.8 1.8 3.0 2.3 Close Free FP
2 3.9 4.3 0.5 0.4 3.1 1.9 2.7 2.4 2.5 2.2 Close Close TP
3 6.4 7.2 0.8 0.8 7.5 6.7 7.2 7.1 7.1 2.4 Free Free TN
4 3.8 3.3 0.6 0.5 2.8 2.6 3.2 2.6 2.8 2.0 Close Close TP
5 2.6 2.6 0.1 0.4 2.7 2.8 3.1 2.3 2.6 2.1 Close Close TP
6 4.7 4.9 0.2 0.1 5.1 4.4 4.9 4.8 4.8 0.2 Close Close TP

Overall 4.6 4.8 0.4 0.5 4.5 3.1 4.2 3.5 3.8 1.9 - - -

The mean deep margin measurements averaged over all slices for patients 1–6 were
5.5 mm (SD 1.7 mm), 3.9 mm (SD 1.4 mm), 7.4 mm (SD 0.3 mm), 4 mm (SD 0.3 mm), 3.7 mm
(SD 0.6 mm), and 5.3 mm (SD 0.4 mm), respectively (see Figure A4 in Appendix A). The
measurements for patient 1 and patient 3 exhibited greater inaccuracies. The smallest
normalized root mean square error (RMSE) was 0.1 (in patients 3 and 4), and the maximum
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error was 0.3 (in patients 1 and 2). See Table A3 and Equation (A3) in Appendix A for
detailed information about the calculated RMSEs.

The mean difference between the 3D ultrasound and histopathology in deep margin
measurement was 0.7 mm (±SD 1.15 mm); see Figures A5 and A6 in the Appendix A for
more details.

The median error for the surgeons were 0.4 mm (SD 1.0 mm), 1.5 mm (SD 2.2 mm),
1.2 mm (SD 1.3 mm), and 1.3 mm (SD 1.6 mm) (see Figures A7 and A8 in the Appendix A
for more details).

4. Discussion

This clinical feasibility trial evaluated the accuracy of a novel 3D ultrasound technique
for ex vivo imaging of resected tongue SCC margins in the operating room. We found that
3D ultrasound was well correlated with histopathology, especially the deep margins, and
could predict the final margin status in five out of six surgical tongue cancer cases. Three-
dimensional ultrasound imaging is a promising modality that may be used intraoperatively
to improve the rate of free margins after tongue cancer treatment.

Our trial is the first to explore a novel sensorless 3D ultrasound technique for the ex
vivo imaging of surgical specimen margins during tongue cancer surgery. Compared to
other 3D imaging modalities, the technique offers a low-cost image modality that could be
performed with any commercial ultrasound machine in the operating room. A strength of
the trial is that the patients were prospectively enrolled, and the surgical specimens were
cut with thin “loaf of bread” slices that allowed us to correlate histopathology slices with
corresponding ultrasound images. To establish gold standard pathology outcomes, two
pathologists outlined the tumor area and measured three margins (lateral, medial, and
deep) on each digital histology image for every slice. Further, we used four blinded head
and neck surgeons to draw tumor areas on the 3D ultrasound images to calculate the mean
area and decrease the ultrasound interrater variability. Our trial also has limitations to
consider. We only included six patients from the same center in the final analyses, and our
results may not be directly generalizable to the clinical setting. However, as the six surgical
specimens were sliced using the “loaf of bread” technique, we were able to compare a total
of 45 digital histopathology slices with the corresponding ultrasound images. We therefore
believe the sample size is sufficient to explore whether the novel 3D ultrasound technique is
feasible. Another limitation is that, even though the specimens were cut with thin parallel
“loaf of bread” slices, the pathologist used a free-hand knife for cutting. Therefore, we
cannot be sure all slices are evenly spaced, and only one histology slice from each FFPE
is produced for the pathologists to evaluate. As a result, the ultrasound frames are not
precisely aligned with the histopathology slices. It was, therefore, difficult to discriminate
whether a low tumor area correlation between the histopathology and ultrasound images
was due to unclear tumor borders on the ultrasound images or a misalignment of the
corresponding ultrasound frames and histology slices. To address this issue, a possible
solution could be using a slicing device to ensure more uniformly perpendicular and evenly
spaced tissue slicing [30]. This could help improve the alignment between ultrasound
images and histopathology slices, thereby enhancing the accuracy of tumor correlation.
Further, the effect of tissue shrinkage due to the use of formalin and paraffin in tissue
processing cannot be overlooked. El-Fol et al. have indicated that shrinkage could amount
to up to 42% [31]. These factors could account for any discrepancies in findings between
3D US and histopathology.

In addition to the applications of ultrasound in our study, it is important to consider
its role in the preoperative assessment of margins in tongue squamous cell carcinoma. For
instance, Limongelli et al. demonstrated that high-definition ultrasound, when used for the
evaluation of size and depth of early stage (cT1–T2) tongue squamous cell carcinoma, signif-
icantly aids in precise surgical planning. This approach, combined with three-dimensional
diode laser surgery, not only enhances the accuracy of tumor excision but also improves
patient outcomes by minimizing post-surgical complications and ensuring a higher rate
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of disease-free survival [32]. Our findings are aligned with several earlier studies that
demonstrated the advantages of using ultrasound to assess the surgical margins in tongue
SCC [10,19,33,34]. One previous study used an electromagnet tracking system to construct
3D ultrasound volumes [27]. However, this 3D technique is time-consuming and requires
setting up an electromagnet tracking system, which is difficult to use in an operating room
with limited space. Further, they used a radiologist for tumor segmentation—which is
not available in the operating room—and still only achieved an accuracy of 62.5% correct
margin assessments. Their lower diagnostic accuracy may be explained by their use of a
low-frequency curvilinear transducer providing the 3D volume with lower image resolu-
tion, which makes it difficult to assess the tumor borders. Instead, our trial used a simple
sensorless 3D ultrasound system with a high-frequency linear transducer, providing better
image quality and better assessment of tumor margins (83% versus 62.5%). Further, we
used four head and neck surgeons to delineate the tumor area and assess the margins on
3D ultrasound images to increase validity and explore interrater variability. Our clinical
trial therefore mimics the real-world use of a perioperative imaging technique evaluated
by the surgeon, as a radiologist is unlikely to be available in the operating room. Our
results showed that 3D ultrasound could predict the correct final margin status based
on the minimum deep margin for five out of six patients (Table 2). The only incorrectly
categorized patient was patient 1 (FP), where ultrasound underestimated the minimum
deep margin compared to histopathology and categorized the margin status as “close”,
while the true category was “free”. In our study, the measurements of the deep margin
using 3D ultrasound were generally smaller than those obtained through gold-standard
histopathology. This indicates that, when using ultrasound imaging, surgeons tended to
overestimate the extent of the tumor region. This may be explained by non-tumorous
tissues, such as muscle, dysplastic regions, and areas of inflammation, appearing—like
tumor tissues—hypoechoic on ultrasound images. This may lead to the misinterpretation
of the area of cancer invasion to be larger than seen in histopathology. Inflammation
around the tumor after a biopsy can appear hypoechoic on ultrasound and may lead to
an overestimation of the tumor. However, as the biopsies were performed weeks before
surgery in this study, we believe the inflammation around the tumor will be limited in this
study. As we used a traditional high-frequency linear transducer (18–22 MHz) for ex vivo
ultrasound imaging, a matrix or ultra-high frequency ultrasound transducer may achieve
greater resolution to differentiate between malignant tumors and benign tissue.

The greatest concordance between the two pathologists was observed in the measure-
ments of the deep margins, while the discrepancies in measurements for the lateral and
medial margins were larger. One reason for variation among individuals could be their
differing methods of compensating for folded or incomplete slices during measurement.
Additionally, adjustments made for tissue that is not straight but rather curved and folded
are also likely to vary between individuals. The higher pathologist variability also empha-
sizes that the mucosa margins are more difficult to reproduce and may therefore also be
more difficult to assess with ultrasound. The evaluation of the performance of the four
head and neck surgeons involved in the study showed a 1.1 mm median difference between
the best and the worst performers. This indicates the fact that it is possible to improve the
results by training the operator. Although all four surgeons were experienced with clinical
ultrasonography, none of them had experience with the ultrasound assessment of tumor
margins in ex vivo specimens. As experience with this 3D ultrasound method grows, there
may be a learning curve or an opportunity to enhance sensitivity by educating surgeons in
optimal techniques for margin interpretation.

A higher correlation between ultrasound and histopathology was observed in the deep
margin compared to the lateral margins. The lateral margin is typically not problematic, but
the deep margin often poses challenges, and ultrasound proves to be more effective in this
area. However, ultrasound may not be the optimal modality for evaluating the mucosa. For
this purpose, optical techniques such as fluorescence and narrow-band imaging (NBI) may
yield better results. Autofluorescence imaging is a technology that has shown a significant
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impact in improving the detection of oral SCC when used as an adjunct to conventional oral
examination [35,36]. Additionally, it has the potential to enhance the accuracy of measuring
lateral surgical margins, potentially leading to better surgical outcomes. NBI provides high
resolution enhancement of the tissue abnormality through selective wavelength reflectance
magnifying endoscopy [37]. As an optical technique, it could enhance the visualization of
mucosal neoplastic changes, which may better improve the lateral margin measurements.

If successful, future surgeon-based trials could also lead to the development of AI-
based 3D ultrasound interpretations, as AI is becoming increasingly recognized as a power-
ful tool in diagnostic imaging.

This clinical trial found that our novel technique could conduct 3D ultrasound in a
fast and feasible way in the operating room during surgery, with promising results. The
sensitivity of 3D ex vivo ultrasound for deep margins was 100% in this trial, meaning that
ultrasound detected all the patients with inadequate margins. However, ultrasound tends
to report smaller deep margins, and the specificity was 68%, as some patients with margin
>5 mm were classified as inadequate on the ultrasound images. This indicates that if 3D
ultrasound finds safe margins >5 mm, frozen section analyses may not be necessary. Instead,
frozen section analyses could be saved for cases where ultrasound measures inadequate
or positive margins, and the 3D ultrasound can guide the surgeon to decide where and
how much additional tissue should be cut for the frozen section analyses. Further, the
3D ultrasound volume will also provide the surgeon with 3D spatial visualization of
tumor spread, which may improve the assessment of resection margins compared to the
small biopsies from frozen section analysis. However, the major limitation of our study
is the small number of cases (six). This small sample size significantly limits our ability
to draw definitive conclusions, although the preliminary data suggest a tendency that
supports our thesis. It is important to note that this study serves as a pilot study to validate
the applicability of the proposed method. Future clinical trials with a larger cohort are
necessary to provide more statistical power and explore how 3D ultrasound will change
the perioperative decisions of the oncological surgeon and final patient outcome.

5. Conclusions

This pilot study found that 3D ultrasound imaging of surgical specimens shows
potential as a fast and feasible imaging modality in the operating room. Three-dimensional
ultrasound imaging demonstrated a good correlation to histopathology of the deep surgical
margins and predicted the final margin status in five out of six surgical tongue cancer cases.
However, the correlation with the lateral margins was lower and more difficult to predict.
While 3D ultrasound imaging is a promising modality that may be used intraoperatively to
improve the rate of free margins after tongue cancer treatment, these preliminary findings
are based on a small sample size. Further research with a larger cohort is necessary to
validate these results and confirm the clinical utility and reliability of this method.
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Appendix A

The mean of the results was calculated as follows:

µ(k) =
1
n

1
m∑n

i = 1 ∑m
j = 1 uij(k), (A1)

where k is the slide number, n is the number of repeated drawings on the same slide, m
is the number of physicians, and uij is the ultrasound measurement, whether it be deep
margin or area. The standard deviation (SD) was calculated similarly, as follows:

SD(k) =

√
1

nm − 1∑n
i = 1 ∑m

j = 1

(
uij(k)− µ(k)

)2. (A2)

For comparison with the gold-standard histopathology measurements, the RMSE is
reported, calculated with the following equation:

RMSE =

√
1
K ∑K

k = 1(µ(k)− h(k))2 (A3)

where K is the total number of slides, and h(k) is the gold-standard histopathology mea-
surement.
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Figure A1. Slice-by-slice comparison of area measurements performed on histopathology and
ultrasound respectively. The red shaded area indicates one standard deviation from the mean. The
trend in ultrasound area measurements follows the pathology cancer regions in patients 1, 2, 5, and 6,
while the correlation is less strong in patients 3 and 4.
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Table A1. The smallest lateral and medial margins measured by both 3D ultrasound (3D US) and
histopathology (HP) for all patients. The error is listed with positive numbers meaning ultrasound
underestimated the margins, and negative numbers meaning ultrasound overestimated the margins.
The Pearson correlation is computed using all measurements of a margin from a patient, and likewise,
a p-value is computed using a paired sample t-test with “ns” denoting non-significance.

Patient No.
Minimum Medial [mm] Minimum Lateral [mm]

3D US HP Error Pearson
(pval) 3D US HP Error Pearson

(pval)

1 6.6 8.6 2.0 −0.1 (<0.01) 6.3 3.1 −3.2 0.7 (<0.001)
2 4.9 6.2 1.4 0.9 (<0.001) 6.4 1.6 −4.8 0.5 (<0.01)
3 5.1 3.5 −1.6 0.1 (ns) 3.8 3.3 −0.5 −0.5 (ns)
4 4.9 3.9 −1.0 0.9 (ns) 5.8 4.0 −1.8 0.9 (ns)
5 6.3 6.1 −0.1 −0.6 (<0.05) 11.7 8.3 −3.4 0.1 (<0.001)
6 6.9 2.0 −5.0 0.6 (<0.001) 4.0 3.8 −0.2 0.6 (ns)
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Figure A4. Slice-by-slice comparison of deep margin measurements performed on histopathology
and 3D ultrasound. In these graphs, the dashed blue line represents the benchmark, which is the
average of evaluations from two pathologists. The solid red line indicates the average result of 3D
ultrasound assessments conducted by four head and neck surgeons. The shaded area shows the range
of variability, or standard deviation, of the ultrasound measurements. The variation in ultrasound
measurements depicted by the shaded region reflects the differences in tumor region delineations
made by four head and neck surgeons analyzing 3D ultrasound data. Notably, in patients 1 and 2, a
high standard deviation was observed. This variability suggests that the specific structure and tissue
composition of the specimen can significantly impact the surgeons’ ability to consistently identify the
tumor region.
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Table A2. A table of the mean absolute difference between the two pathologists’ measurements. The
most consistent measurements between the two pathologists were observed for the deep margins,
indicating the highest level of agreement in this area. Conversely, the greatest discrepancy in their
assessments was noted for the medial margins. On average, the smallest margin difference was
~0.5 mm for the deep margins, while the largest average difference was 1.3 mm for the medial margins.

Mean Absolute Difference [mm] Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Average over Cases

Medial 2.2 1.0 1.6 1.0 1.0 0.9 1.3
Deep 0.7 0.4 0.7 0.5 0.4 0.1 0.5

Lateral 0.9 0.3 0.2 1.4 1.8 0.7 0.9
Area 6.8 2.8 5.0 0.5 6.7 4.5 4.4

Table A3. RMSE [mm2] comparing fresh ultrasound specimens to histopathology case-wise. RMSE
values have been normalized by the largest area/deep margin measured by histopathology for
each case.

Case 1 2 3 4 5 6

Deep 0.3 0.3 0.1 0.1 0.2 0.2
Medial 0.3 0.4 0.2 0.2 0.4 0.2
Lateral 0.2 0.3 0.2 0.1 0.3 0.5
Area 0.3 0.4 0.6 1.3 0.2 0.3
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Figure A5. Bland–Altman depicting the difference between the measurement of ultrasound and
histopathology on all six patients. The difference between the two is depicted by the solid red line.
For case 1, it is −2.3 ± 1.1 mm; for case 2, it is −1.6 ± 0.6 mm; for case 3, it is −0.1 ± 1.3 mm; for case
4, it is −0.6 ± 0.5 mm; for case 5, it is −0.8 ± 1.22 mm; and for case 6, it is −1.1 ± 1.0 mm.
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