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Abstract: The integration of multidisciplinary tumor boards (MTBs) is fundamental in delivering
state-of-the-art cancer treatment, facilitating collaborative diagnosis and management by a diverse
team of specialists. Despite the clear benefits in personalized patient care and improved outcomes,
the increasing burden on MTBs due to rising cancer incidence and financial constraints necessitates
innovative solutions. The advent of artificial intelligence (AI) in the medical field offers a promising
avenue to support clinical decision-making. This review explores the perspectives of clinicians dedi-
cated to the care of cancer patients—surgeons, medical oncologists, and radiation oncologists—on
the application of AI within MTBs. Additionally, it examines the role of AI across various clinical
specialties involved in cancer diagnosis and treatment. By analyzing both the potential and the
challenges, this study underscores how AI can enhance multidisciplinary discussions and optimize
treatment plans. The findings highlight the transformative role that AI may play in refining oncology
care and sustaining the efficacy of MTBs amidst growing clinical demands.

Keywords: artificial intelligence in oncology; multidisciplinary tumor boards; clinical decision
support systems; personalized cancer treatment; data-driven oncology; AI-enhanced cancer care
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1. Introduction

The established protocol to ensure state-of-the-art cancer treatment includes the use of
multidisciplinary tumor boards (MTBs) [1]. The multidisciplinary approach to manage-
ment (MDM) is progressively gaining a leading role, highlighted by the creation of tumor
committees or MTBs meetings [2]. These formal meetings involve key experts who meet
regularly, often on a weekly basis, to review and discuss the diagnosis and management
of patients with cancer. Participation in such assemblies is typically reserved for a small
group of professionals: medical oncologists, surgeons, radiologists, pathologists, radiation
oncologists, and other specialists, in accordance with the nature and specialization of the
oncology committee. MTBs meetings play a crucial role in refining diagnoses for patients
suffering from malignant tumors: they contribute significantly to increase the likelihood
that these patients will benefit from personalized care, allowing them to access the best
treatment [3]. This procedure is based on the most modern and sophisticated scientific
and medical knowledge, guaranteeing a cutting-edge approach to ensuring the well-being
of patients. Currently, treatment choices are delegated to a MTBs which has shown an
improvement in patient outcomes. However, recently, the MDT system in oncology care
has experienced increasing strains, due to rising cancer incidence, the growing popularity
of MDT work, and financial pressures [4].

The evolution of artificial intelligence (AI) in the medical field contributes to the
progression of programs specifically designed to help doctors make diagnoses, make
treatment decisions, and predict outcomes [5]. These systems are meticulously designed to
provide substantial support to healthcare professionals in their daily activities, facilitating
their engagement in tasks that include data manipulation and knowledge management.
Among the technologies used are artificial neural networks (ANN), evolutionary computing
and hybrid intelligent systems. In 2020, Lee K et al. analyzed the effectiveness of Watson for
Oncology (WfO), an advanced clinical decision support system based on AI [6]. It should
be noted that WfO does not play a direct role in the treatment of patients, but it offers to the
medical staff essential tools to manage and monitor patients’ health, while also facilitating
access to crucial medical information. The system thoroughly evaluates patients’ medical
information against a broad spectrum of clinical evidence, such as medical journals, cancer
treatment guidelines, drug information, and medical texts. The study mainly focused
on assessing patient satisfaction and perception of the hospital. Of the 285 participants
involved in the research, 45.3% (129 patients) underwent treatment by a Multidisciplinary
Team using Watson for Oncology (MDT-WfO), while the remaining 54.7% (156 patients)
was treated by a conventional MDT. In the MDT-WfO group, a notable rate of positive
change in patient perception after treatment was observed, standing at 86.8%, while in
the MDT group this rate was 71.2%. Increasingly widespread adoption highlights the
growing importance of AI, including the fields of machine learning (ML) and deep learning
(DL), in the context of clinical decision-making [7]. The widespread implementation
of AI algorithms in healthcare could pave the way for clinically relevant information,
revolutionizing the approach to patient classification, treatment development, disease
study, and clinical decisions.

To our knowledge, no other study has conducted an analysis and review of the impact
of AI on MTBs from a broad perspective encompassing multiple specialties and disciplines
dedicated to the care of cancer patients in a multidisciplinary environment. The present
study aimed to examine the possible impact of AI on surgical oncology, medical oncology,
and radiotherapy perspectives in their specialties and sub-specialties within MTBs.

2. Surgeon Perspective

AI has gained significant traction in the surgical specialties in recent times. While
Surgical Decision Support (SDS) and AI are distinct concepts, SDS can leverage AI tech-
niques to enhance the delivery of surgical care. This enhancement may occur through
direct patient interaction via diagnostic and therapeutic measures or by providing clinicians
with data-driven insights into their own performance. Previous studies have explored
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the diagnostic and therapeutic potential of SDS and AI, especially with the main focus on
their application in surgical education [8–11]. This includes decision support, coaching,
feedback mechanisms, and performance assessment. The dissemination of surgical practice
through technology has the potential to empower surgeons worldwide to enhance the
quality of global surgical care. Research has consistently shown a correlation between
surgical technique, skill, and patient outcomes [12,13]. Therefore, AI has the capacity to
aggregate surgical experiences, akin to initiatives in genomics and biobanks, aiming to
integrate decision-making capabilities and techniques from the global surgical community
into every surgical procedure [14]. By utilizing the concept of big data, a “collective surgical
consciousness” could be established, encapsulating the comprehensive knowledge of the
field. This could pave the way for technology-driven real-time clinical decision support,
such as intraoperative guidance similar to GPS navigation. The different applications of AI
in surgery are summarized in Figure 1 and Table 1.
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Figure 1. Application of artificial intelligence (AI) across different phases of surgical oncology, in-
cluding surgical performance and education, diagnostic/preoperative settings, and intraoperative
support. Surgical Performance/Education: AI-based automated surgical scene recognition enhances
advanced perceptual functions such as object recognition and scene analysis. Systems like GoNo-
GoNet, DeepCVS, and CholeNet facilitate real-time operative guidance with a 70–90% pixel accuracy
compared to ground truth data. Diagnostic/Preoperative Setting: Traditional machine learning and
deep learning techniques improve lesion detection and prognosis prediction. While these techniques
enhance diagnostic capabilities, they face challenges related to limited generalizability and explain-
ability. Intraoperative Support: Tools like 3D reconstruction, SLAM (Simultaneous Localization
and Mapping), SVM (Support Vector Machine), and Hololens provide real-time 3D reconstruction,
localization, and navigation in dynamic tissue environments, aiding surgeons during operations.
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Table 1. AI Applications in Surgical Performance, Preoperative Planning, and Intraoperative Support.

Category Details

AI to Enhance
Surgical Performance
and Education

High rates of preventable adverse events in surgery highlight the need for improved judgment and
decision-making. AI and machine learning, particularly computer vision, are used to develop algorithms
for error reduction and real-time guidance. Challenges include variability in anatomical structures and
expert cognitive behaviors. Tools like GoNoGoNet and CholeNet offer real-time guidance by identifying
safe and hazardous areas during surgeries like laparoscopic cholecystectomy. DeepCVS model predicts
critical views of safety (CVS) in surgical procedures.

AI to Enhance
Preoperative Setting

AI aids in surgical planning using medical records and imaging (X-ray, CT, MRI). Techniques include
anatomical classification, detection, segmentation, and registration. Deep learning enhances these tasks
but faces challenges like generalizability and explainability. Collaborative efforts and personalized data
integration are essential for early detection and treatment.

AI for Intraoperative
Support

AI in MIS provides improved visualization and localization through shape instantiation, endoscopic
navigation, tissue tracking, and augmented reality. Advances in 3D reconstruction from 2D images and
navigation techniques like SLAM help guide endoscopes. Tissue tracking is improved with
learning-based methods. Augmented reality enhances intraoperative vision by overlaying preoperative
images. Challenges include textureless surfaces, variable illumination, and organ deformation during
surgery. Future AI must integrate multimodal data and adapt to micro- and nanorobotics.

2.1. AI to Enhance Surgical Performance and Training

Over the past three decades, data have revealed alarmingly high rates of preventable
adverse events among hospitalized surgical patients [15]. Root-cause analyzes often at-
tribute these errors to events occurring during surgery, emphasizing errors in judgment
or decision-making leading to adverse outcomes [16–21]. Cognitive skills are deemed
crucial for developing elite surgeons, as supported by literature in surgical education
highlighting the significance of intraoperative judgment and decision-making for surgical
performance and outcomes [20,22,23]. For instance, errors in visual pattern recognition can
result in misinterpreting surgical anatomy, leading to critical injuries during procedures
like laparoscopic cholecystectomy [24]. The digitalization of the surgical field has enabled
the collection of vast datasets from the operating room (OR), including images and videos,
prompting interest in ML to augment surgical teams’ performance. Advances in computer
vision, particularly DL, offer opportunities to develop algorithms capable of advanced
perceptual functions, such as object recognition and scene analysis within surgical videos.
Given that most errors stem from advanced cognitive skills, there is significant potential
in developing algorithms to analyze surgical data and enhance decision-making. How-
ever, applying computer vision to surgery presents challenges. Anatomical structures
are often poorly demarcated and obscured by tissues, complicating model training for
intraoperative guidance. Additionally, surgical videos exhibit variability in quality and
background noise, posing challenges for algorithm development. Moreover, there is con-
siderable variation among experts in cognitive behaviors, hindering the establishment of
a gold-standard reference for algorithm training and evaluation. To address these chal-
lenges, Madani A et al. [25] proposed the visual concordance test (VCT) to establish expert
consensus within surgical fields.

Surgeons annotate frames from surgical videos, with annotations compiled to cre-
ate a “heat map” indicating agreement among experts. Leveraging VCT, models like
GoNoGoNet and CholeNet were developed to detect safe and dangerous areas during la-
paroscopic cholecystectomy, offering real-time guidance to surgeons [26]. These algorithms
were designed to automatically identify and delineate safe dissection areas (referred to
as “Go zones”), hazardous dissection areas (“No-Go zones”), and other anatomical struc-
tures during laparoscopic cholecystectomy. In this investigation, a dataset comprised of
290 laparoscopic cholecystectomy videos sourced from 136 institutions across 37 countries
was utilized to train these algorithms, achieving over 90% pixel accuracy and substantial
spatial overlap compared to ground truth data. The real-time overlay of Go and No-Go
zones could offer feedback and guidance to surgeons seeking to acquire new skills, en-
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hance their performance, or manage particularly challenging operations. Considering the
promising outcomes of GoNoGoNet, its potential applications in surgical oncology are
noteworthy. The primary objective of most cancer surgeries is to perform an adequate
oncologic resection while minimizing perioperative morbidity. Deviating from the ideal
dissection plane can result in either an oncologically inadequate resection or an increased
risk of complications due to damage to surrounding structures. Several research groups
are presently endeavoring to develop models that offer real-time guidance on the optimal
dissection plane during cancer surgeries to mitigate early perioperative complications and
enhance long-term oncologic outcomes. Surgical decision-making does not always pertain
to a specific location within the surgical field (e.g., where to dissect); it often involves
higher-level considerations regarding the tactical approach of the operation. Therefore,
AI-based automated scene recognition and assessment could prove beneficial in critical
decision points of procedures, particularly in scenarios with significant operator variabil-
ity. For instance, during laparoscopic cholecystectomy, it is crucial not only to maintain
dissection within a safe plane to minimize the risk of major bile duct injury but also to
refrain from dividing cystic structures until achieving a critical view of safety (CVS) [27,28].
Given that the determination of CVS is highly dependent on the operator, a model offering
decision support to surgeons in real-time regarding the most optimal strategy could be
immensely advantageous [29,30]. Mascagni et al. [31] recently presented their findings
on DeepCVS, a two-stage model for segmenting hepatocystic anatomy and predicting
the achievement of each element of the CVS. The model demonstrated a mean average
precision exceeding 70%, suggesting its potential to augment intraoperative judgment in
challenging situations.

2.2. AI to Enhance Preoperative Setting

AI plays a pivotal role in preoperative settings, where surgeons plan surgical proce-
dures based on patients’ medical records and imaging [32]. Common imaging modalities
include X-ray, CT, ultrasound, and MRI, facilitating tasks such as anatomical classifica-
tion, detection, segmentation, and registration. In classification tasks, AI determines the
diagnostic value of medical images or organ/lesion volumes and dimensions. Traditional
ML and image analysis methods are prevalent, but DL-based techniques are gaining
prominence [33]. These methods typically employ convolutional layers to extract informa-
tion and fully connected layers to assess diagnostic value. For instance, a classification
pipeline utilizing Google’s Inception and ResNet architecture was proposed for segment-
ing lung, bladder, and breast cancers. DL models have been demonstrated to recognize
intracranial hemorrhage, midline shift, and mass effect from head CT scans, improving pre-
diction accuracy for patient outcomes after cardiosurgical care compared to conventional
tools [34,35]. Detection involves spatially localizing regions of interest, often represented as
bounding boxes or landmarks, and may include image- or region-level classification. DL
approaches excel in detecting anomalies or medical conditions, employing convolutional
layers for feature extraction and regression layers to determine bounding box properties.
For example, a deeply stacked convolutional autoencoder was trained to detect prostate can-
cer from 4D positron-emission tomography images, while a 3D CNN with roto-translation
group convolutions showed promising results in pulmonary nodule detection [36]. Deep
reinforcement learning based on an extension of the deep Q-network was utilized to learn
a search policy from dynamic contrast-enhanced MRI for breast lesion detection [37]. In
addition to these advancements, AI optimization algorithms have emerged as critical tools
in enhancing the accuracy and efficiency of preoperative planning. Algorithms such as
the Enhanced Moth-Flame Optimizer and Enhanced Gaussian Bare-Bones Grasshopper
Optimization have been effectively applied in the segmentation and diagnosis of tumors,
which is essential for multidisciplinary treatment approaches [38,39]. These algorithms
optimize feature selection and image segmentation, enabling more precise identification
and classification of tumors, thereby supporting the formulation of effective treatment
plans across various medical specialties [40]. Anyway, while DL-based methods show
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potential superiority over conventional approaches, they face challenges such as limited
generalizability and explainability.

Collaboration between surgeons and AI researchers is essential to generate large-scale
annotated datasets and develop techniques like meta-learning for improved performance.
Disparities between medical and natural images may hinder clinical applicability, requiring
exploration of transfer learning techniques. Additionally, integrating personalized patient
data into AI development could enhance early detection and treatment options, minimizing
surgical risks and recovery time.

2.3. AI for Intraoperative Support

Computer-assisted intraoperative guidance has long been fundamental to Minimally Inva-
sive Surgery (MIS). Learning strategies have been extensively incorporated into the evolution
of intraoperative guidance to offer improved visualization and localization during surgery that
can be categorized into four primary areas: shape instantiation, endoscopic navigation, tissue
tracking, and augmented reality [32]. For intraoperative 3D reconstruction, various imaging
modalities such as MRI, CT, or ultrasound are employed to scan 3D volumes. However, this
process can be time-consuming or yield scans with low resolution. Streamlining the number
of images required for 3D shape reconstruction can enable real-time reconstruction of a sur-
gical scene, while improved protocols can enhance reconstruction resolution. Real-time 3D
shape instantiation from a limited amount of 2D images is an emerging research area [41].
For instance, researchers have instantiated a 3D prostate shape from multiple nonparallel 2D
ultrasound images using a radial basis function [42]. Similarly, 3D shapes of stent grafts in
different deployment states were instantiated from single 2D fluoroscopy projections using
mathematical modeling and neural networks. Additionally, methods like equally weighted
focal U-Net were proposed to automatically segment markers on stent grafts, enhancing in-
traoperative shape instantiation efficiency. Principal component analysis (PCA), statistical
shape model (SSM), and partial least square regression (PLSR) were utilized to instantiate
liver shapes from single 2D projections [35,43]. Recently, advanced DL strategies have been
proposed for 3D shape instantiation from single 2D images. These advancements contribute
to real-time and efficient intraoperative 3D shape instantiation, facilitating enhanced surgical
guidance. Additionally, the current surgical trend is shifting towards intraluminal procedures
and endoscopic surgery, driven by the emphasis on early detection and intervention. To
guide endoscopes accurately during procedures, navigation techniques have been developed,
utilizing learning-based depth estimation, visual odometry, and simultaneous localization and
mapping (SLAM) with endoscopic images. Depth estimation from endoscopic images is crucial
for camera motion estimation and 3D environment mapping. This process is challenged by
the scarcity of high-quality training data and the textureless nature of surgical scenes. Various
approaches have been proposed to address these challenges, including self-supervised depth
estimation, domain transfer learning, and image-to-image translation methods [44]. Visual
odometry estimates camera pose using consecutive video frames, with CNN-based approaches
adopted for feature extraction and dynamics estimation. However, the feasibility of these
approaches has mainly been validated in lung and gastrointestinal phantom data. Real-time
3D reconstruction and localization are vital for navigation in dynamic tissue environments.
Traditional SLAM algorithms face limitations in surgical settings due to the deformable nature
of tissues [45]. Researchers have proposed novel approaches such as compensating for tissue
motion caused by respiration, using monocular SLAM in hernia repair surgery, and implement-
ing dense deformable SLAM for stereoendoscope localization. In endovascular interventions,
intravascular ultrasound (IVUS) has emerged as a valuable tool for intraoperative guidance.
Researchers have developed frameworks for 3D vasculature reconstruction using IVUS and
electromagnetic sensing data fusion [32]. Improved methods have been proposed to handle
errors and uncertainties, enhancing the efficiency of data fusion, and reducing the need for
preregistration between preoperative CT data and electromagnetic sensing data [32].

Learning methods have also been employed for tracking soft tissue in MIS. Mountney P
and Yang G [46] developed an online learning framework that continuously updates the fea-
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ture tracker by selecting suitable features using decision tree classification. Ye M et al. [47]
introduced a detection method that integrates a structured support vector machine (SVM) with
an online random forest to retarget a predefined optical biopsy region on the gastrointestinal
(GI) tract’s soft tissue surfaces. Wang R et al. [48] employed a statistical appearance model
to differentiate the organ from the background in their region-based 3D tracking algorithm.
Their validation results demonstrated that the application of learning techniques can improve
the stability of tissue tracking in terms of deformations and illumination changes. On the
other hand, augmented reality enhances surgeons’ intraoperative vision by superimposing
preoperative images semi-transparently onto the area of interest [49]. Wang J et al. [50] em-
ployed a projector to display the AR overlay for oral and maxillofacial surgery. They utilized
a 3D contour matching technique to calculate the transformation between the virtual image
and real teeth. Pratt P et al. utilized the Hololens, a head-mounted AR device, to project a 3D
vascular model onto patients’ lower limbs [51]. Given the challenge of projecting overlays
onto markerless deformable organs, Zhang X et al. [52] introduced an automatic registration
framework for AR navigation, employing iterative closest point and RANSAC algorithms for
3D deformable tissue reconstruction. In conclusion, developing computer-assisted guidance
based on visual observations necessitates enhancing localization and mapping performance
in challenging conditions such as textureless surfaces, variable illumination, and restricted
fields of view. Another significant challenge is the deformation of organs/tissues during
surgery, creating a dynamic and uncertain environment despite thorough preoperative plan-
ning. While AI technologies have made strides in detection, segmentation, tracking, and
classification, further research is needed to extend these capabilities to more complex 3D
applications. Moreover, in surgery, AI algorithms must efficiently assist surgeons in real-time,
particularly in the development of Augmented Reality or Virtual Reality systems where
frequent interactions occur between surgeons and autonomous guidance systems, or during
remote surgery involving MTBs in disparate locations. Besides visual data, future AI technolo-
gies must integrate multimodal data from diverse sensors to achieve more precise perception
of complex environments. Additionally, the increasing utilization of micro- and nano-robotics
in surgery will introduce new challenges in guidance.

3. Medical Oncologist’s Perspective

The integration of AI in oncology, particularly from the viewpoint of medical on-
cologists, is revolutionizing cancer care. AI applications encompass molecular profiling,
treatment selection, predictive modeling for drug response, and clinical trial design. In
molecular profiling, AI algorithms analyze multi-OMICs data to enhance molecular charac-
terization, tumor grading, and clinical decision-making [53]. Radiogenomics, an emerging
paradigm, combines imaging-derived parameters with genomic data to provide insights
into tumor biology [54]. Radiomics, leveraging quantitative features from medical images,
aids in predicting treatment response and patient outcomes [55,56]. Moreover, AI-driven
platforms optimize clinical trial protocols and enhance patient recruitment by matching
individuals with suitable trials based on their molecular profiles [57,58]. Despite challenges,
AI holds immense promise in transforming oncology, laying the foundation for more
personalized and effective cancer treatments. The different applications of AI in medical
oncology are summarized in Table 2 and Figure 2.

Table 2. AI Applications in Molecular Profiling, Predictive Modeling, and Clinical Trial Integration.

Category Details

AI in Molecular
Profiling and
Treatment Selection

AI algorithms analyze multi-OMICs data for molecular characterization, tumor grading, and clinical
decision-making. Radiogenomics integrates imaging-derived parameters with genomic data. Radiomics
extracts quantitative features from medical images to predict treatment response and patient outcomes.
AI platforms optimize clinical trial protocols and patient recruitment. Examples include radiomic
features predicting RAS mutation status in colorectal cancer, and radiogenomics identifying EGFR
expression in lung cancer.
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Table 2. Cont.

Category Details

Predictive Modeling
for Drug Response and
Personalized Therapy

AI predicts tumor response to treatments, aiding personalized therapy. Radiomic signatures can predict
response to treatments like FOLFIRI and detect EGFR-resistant tumors. In NSCLC, AI evaluates
treatment efficacy and predicts outcomes, aiding in immunotherapy selection. Radiomic features from
MRI can predict recurrence-free survival in breast cancer patients undergoing chemotherapy. AI can
identify immune phenotypes in NSCLC, predicting response to immune checkpoint inhibitors.

Integrating AI in
Clinical Trial Design
and Patient Recruitment

AI improves clinical trial design and patient recruitment. Natural language processing (NLP) software
analyzes large datasets to optimize trial protocols. AI predicts progression-free survival and overall
survival in clinical trials, potentially replacing control arms with virtual arms. AI enhances patient
recruitment by matching patients with suitable trials based on molecular profiles. AI platforms, like
Watson for Clinical Trial Matching, have increased patient accrual in trials. Challenges include data
standardization, reproducibility, and regulatory frameworks for health data.

Curr. Oncol. 2024, 31, FOR PEER REVIEW  8 
 

 

Table 2. AI Applications in Molecular Profiling, Predictive Modeling, and Clinical Trial Integration. 

Category Details 

AI in Molecular 

Profiling and 

Treatment Selection 

AI algorithms analyze multi-OMICs data for molecular characterization, tumor grading, and 

clinical decision-making. Radiogenomics integrates imaging-derived parameters with genomic 

data. Radiomics extracts quantitative features from medical images to predict treatment 

response and patient outcomes. AI platforms optimize clinical trial protocols and patient 

recruitment. Examples include radiomic features predicting RAS mutation status in colorectal 

cancer, and radiogenomics identifying EGFR expression in lung cancer. 

Predictive Modeling 

for Drug Response 

and Personalized 

Therapy 

AI predicts tumor response to treatments, aiding personalized therapy. Radiomic signatures 

can predict response to treatments like FOLFIRI and detect EGFR-resistant tumors. In NSCLC, 

AI evaluates treatment efficacy and predicts outcomes, aiding in immunotherapy selection. 

Radiomic features from MRI can predict recurrence-free survival in breast cancer patients 

undergoing chemotherapy. AI can identify immune phenotypes in NSCLC, predicting 

response to immune checkpoint inhibitors. 

Integrating AI in 

Clinical Trial Design 

and Patient 

Recruitment 

AI improves clinical trial design and patient recruitment. Natural language processing (NLP) 

software analyzes large datasets to optimize trial protocols. AI predicts progression-free 

survival and overall survival in clinical trials, potentially replacing control arms with virtual 

arms. AI enhances patient recruitment by matching patients with suitable trials based on 

molecular profiles. AI platforms, like Watson for Clinical Trial Matching, have increased 

patient accrual in trials. Challenges include data standardization, reproducibility, and 

regulatory frameworks for health data. 

 

Figure 2. Integration of AI in Precision Oncology. AI algorithms analyze tumor images to extract 

quantitative features, forming a radiomics signature. This signature, combined with transcriptomics 

data, identifies mutational status and informs targeted therapies. This feedback loop enhances pre-

cision medicine by continuously improving data-characterization algorithms and treatment strate-

gies. 

  

Figure 2. Integration of AI in Precision Oncology. AI algorithms analyze tumor images to extract quan-
titative features, forming a radiomics signature. This signature, combined with transcriptomics data,
identifies mutational status and informs targeted therapies. This feedback loop enhances precision
medicine by continuously improving data-characterization algorithms and treatment strategies.

3.1. AI Applications in Molecular Profiling and Treatment Selection

In Oncology, AI algorithms could be applied in imaging and pathology unraveling
the molecular mechanisms via integrative analysis of multi-OMICs data and could signifi-
cantly improve the prediction accuracy for molecular characterization, grading of tumors,
clinical decision-making, and prognosis. In the last decade, the new idea that diagnostic
images contain more data than human eyes can see has emerged, and the extraction and
analysis of radiomic features may allow obtaining biological data in a non-invasive way.
Radiogenomics is a relatively new paradigm, used for the integration of imaging-derived
parameters and genomic data of the tumor. The prognostic and predictive value of ra-
diomics in colorectal cancer had been well studied, with several studies demonstrating
the possibility to correlate radiomic features to RAS status, improving patient selection for
cancer therapy and predicting response to treatment.
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Indeed, mutations in RAS were strongly associated with worse overall survival and
these genetic alterations are a predictive biomarker of resistance to anti-EGFR therapy in
metastatic colorectal cancer (mCRC). Texture parameters derived by MRI from liver metas-
tases of colon cancer patients could allow stratifying the patients according to RAS mutation
status [53]. Similar results have been demonstrated in primary colon cancers, showing that
the CT based-radiomics signature was significantly associated with KRAS/NRAS/BRAF
mutations and this approach may be useful for analysis of tumor genotype [54]. The
assessment of the molecular profile is crucial step to guide treatment decisions in patients
affected by advanced lung cancer. Current data supporting that radiogenomic approach
can identify epidermal growth factor receptor (EGFR) expression [59] or be utilized to help
to differentiate between adenocarcinoma and squamous cell carcinoma of the lung [60]
predicting diagnosis, prognosis, and optimal therapy. The relationship between radiomic
data and gene expression has also provided great insight in the prostate cancer (PCa) risk
stratification holding a promising future in the growing era of personalized medicine.
PCa with poor prognosis seems to have genomic alterations [61], such as due to PTEN
loss. Retrospective analyzes investigating the associations between the MRI imaging fea-
tures and the PTEN expression of PCa showed a correlation between Gleason score and
PTEN expression [62]. Using the cell cycle progression score and MRI data, radiogenomics
analysis is able to predict Gleason scores in the tumor suggesting that the management
of the early stages PCa could benefit, by performing MRI-targeted biopsy coupled with
molecular profile [63]. In an analysis including clinical, imaging, and genomic datasets for
PCa patients, four biomarkers were highly correlated with aggressiveness on radiomics
features, proposing a model that could improve the prediction accuracy for disease stage
and the characterization of PCa aggressiveness [64]. Promising results have revealed that
radiomic signatures can be a non-invasive tool to distinguish molecular subtypes among
triple negative breast cancer (TNBC) [65]. Furthermore, these findings describe the prognos-
tic role of radiomic features capturing peritumoral heterogeneity and allow the prediction
of recurrence-free survival and overall survival.

Among wide spectrum of AI–based applications, digital pathology is emerging as
novel analytical strategies for realizing new information derived from standard histology
to guide treatment selection and biomarker development. With the advent of digital
histology, DL can be used to pinpoint more minute details identifying a great amount of
information from traditional histology to discover pathogenic mutations, gene expression
patterns, clinical biomarkers and survival outcomes [66]. In this context, a recent study
introduces a novel approach for identifying patients with PCa with higher risk for early
recurrence after prostatectomy; an AI-powered platform extracted visual and subvisual
morphologic features able to identify driver regions predictive of recurrence of PCa after
prostatectomy [67].

3.2. Predictive Modeling for Drug Response and Personalized Therapy

Radiomics involving a large number of quantitative features from medical images
could represent a promise to assess the response of tumors to various treatments, helping
clinicians understand how well a patient is responding to therapy or to contribute to the
development of personalized treatment. In their evaluation of the potential role of radiomic
signatures to predict response to irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) alone
or in conjunction with an anti-EGFR agent, Dercle L et al. found that in the group receiving
cetuximab, radiomic signatures outperformed current biomarkers (KRAS status) for the
detection of treatment sensitivity [55]. The development of a signature based on routinely
acquired CT scans to guide the clinical decision to continue EGFR targeted therapies could
be an innovative tool to be widely incorporated into clinical practice at minimal cost to
detect EGFR-resistant tumors. Regarding to liver metastases in mCRC patients, a retro-
spective analysis of TRIBE2 trial showed that radiomic features evaluated at pre-surgery
CT scan were associated with higher risk of relapse or death after surgery in the subgroup
of patients undergoing liver metastases resection with radical intent [68]. Based on these
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published findings, the radiomics-approach might ideally be objective measures of tumor
aggressiveness and biology impacting in the clinical decision-making process helping clini-
cians to identify patients who may benefit from surgery or other locoregional techniques.
Recent studies have shown radiomics of NSCLC can help to evaluate treatment efficacy and
predict treatment-related outcomes [69]. Available data showed that the change in radiomic
measures between baseline and post-treatment CT images affected the sensitivity to im-
mune checkpoint inhibitors (ICIs) in advanced NSCLC patients [70]. Personalized decision
making for patients with advanced NSCLC may benefit from the integration of radiomic
features for selecting candidates who will have the greatest benefit from immunotherapy
while avoiding others of adverse side effects. Using only MRI exams acquired at the
pre-treatment baseline, radiomics was predictive of recurrence-free survival for breast
cancer patients undergoing neoadjuvant chemotherapy [56]. The combination of clinical,
histological, and genetic data with quantitative radiomics characteristics may make it easier
for physicians to develop patient-tailored treatment in the era of personalized medicine.

Regarding digital pathology and prediction, a proof-of-concept study investigated a
potential predictive role of a tumor microenvironment driven by AI in advanced NSCLC
patients receiving ICIs. In this analysis, AI was able to distinguish between three immune
phenotypes (inflammatory, immunological-excluded, and immune-desert) associated with
survival and response to ICI in two different cohorts with advanced NSCLC patients
suggesting its potential predictive role [71].

3.3. Integrating AI in Clinical Trial Design and Patient Recruitment

Oncology is currently the widest field of application of AI in medical research, with
50% of published papers devoted to the use of AI between 2017 and 2021 matching cancer-
related fields [72]. As per May 2021, 71 AI-based devices received official clearance by
the U.S. Food and Drug Administration (FDA) for clinical use, mostly addressing tumor
radiology (55%) and pathology (20%). Although breast cancer represents the largest area of
application (31%), followed by lung (8%), prostate (8%) and colorectal cancers (7%), the
largest amount of AI-based devices (34%) has been designed for a wide spectrum of solid
organ malignancies, spreading hope for an agnostic-based approach of AI resources that
may address the vastly unmet need of care for rare malignancies [73]. More than 80% of
the currently AI-based approved devices cover the field of cancer diagnostics. However,
because most AI technologies with a potential clinical impact have been developed on the
basis of radiology and pathology imaging, emerging tools may foster AI application to
conduct clinical trials, including design, and recruitment [73,74].

Indeed, clinical trial optimization is a crucial issue in medical research. According
to Wong C et al., the success rate of drug-development programs is only 12%, suggesting
that there is significant room for improvement for the administration of clinical trials [57].
Reasons for failure are the lack of efficacy or safety of the experimental drug, slow accrual,
and participant drop-out. AI can support researchers in each phase of drug development.
As an example, natural language processing (NLP) software (i.e., Trials.ai) can collect and
analyze written words of publicly available data, including peer-reviewed journals, drug
labels, and clinical trial datasets (https://www.trials.ai/). Because the computational speed
of AI largely outweighs that of human researchers, while collecting data from a greater
source, AI has the potential to improve the accuracy of protocol design by optimizing
thresholds of outcome measures (i.e., study endpoints) and cohort sample sizes, which are
currently established based on the researchers’ scientific background, the estimated sensi-
tivity of specificity of the study, and its pragmatic financial sustainability [75]. AI has also
proved accurate at predicting Progression-Free Survival (PFS) and Overall Survival (OS)
in 939 patients enrolled in randomized clinical trials with metastatic or locally advanced
colorectal adenocarcinoma, pancreatic adenocarcinoma, melanoma and lung cancer and
molecular, transcriptomic, and proteomic data available enrolled in randomized clinical
trials [76]. These data suggest that AI software may reshape clinical trial design replacing
a control/placebo arm with a virtual arm consisting of synthetic data, alleviating cohort

https://www.trials.ai/
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dimensions, study duration, costs and logistics in recruiting sites, while minimizing the
risk of exposing patients to an ineffective and toxic drug following the standard random-
allocation procedure [72]. Causal AI can even simulate in silico trials, where both control
and efficacy arms are grounded synthetic data [77], and assess the likelihood of success
in phase transitions [78], with obvious advantages for pharmaceutical industries to tailor
their research efforts in human research. Patient recruitment is another potential field of
application of AI, underlined by the low accrual rate (3–5%) of cancer patients in clinical
trials, as compared to roughly 20% who may actually be eligible [79]. The main reasons for
poor recruitment are protocol complexity, lack of awareness of the trial, emotional fear of
participation, and lack of interest to participate. The growing amount of -omics data have
further tangled this experimental scenario, with inclusion and exclusion criteria matching
specific genomic, transcriptomic, proteomic or metabolomic profiles but AI technology can
overcome such overwhelming complexity [72]. Indeed, a pivotal study conducted in the
Mayo Clinic showed that the NPL software Watson for Clinical Trial Matching (CTM) cog-
nitive system increased the accrual of breast cancer patients for systemic therapy trials from
3.5 to 6.3 patients/months over 18 months following the software implementation [58,78].

Taken together, these data suggest that AI has a striking potential to transform research
in Oncology, but several unsolved challenges still remain. Indeed, large-scale AI validation
for research purpose is still limited by not standardized reporting of clinical information,
which dampens the integration of differential sources of data, the uneven spread of -omics
data, tackling their reproducibility and building of an accurate omics-based AI software,
and the lack of a proper regulatory framework for protected health-data repositories [72].

While AI offers significant advancements in oncology, its integration into clinical prac-
tice presents several challenges that must be thoughtfully addressed. The implementation
of AI demands that medical oncologists acquire new skills, particularly in interpreting and
critically assessing AI-derived data. Ongoing education and close collaboration with AI
experts are crucial to ensure that AI technologies are effectively applied in patient care.
Additionally, it is important to consider the ethical dimensions of AI-driven decisions,
especially in cases where there may be substantial risks or where AI recommendations
differ from traditional clinical judgments.

Moreover, disparities in the availability of AI technology pose a considerable obstacle.
The access to advanced AI tools can vary widely between different healthcare institutions
and regions, potentially leading to unequal standards of care. It is vital to ensure that
AI applications are made accessible and useful across all healthcare environments to
promote fair and widespread adoption. Overall, while AI holds remarkable potential to
revolutionize cancer treatment, its successful integration into oncology will depend on a
balanced approach that includes technological innovation, strong clinical expertise, ethical
reflection, and a commitment to ongoing education and interprofessional collaboration.

4. Radiation Oncologist Perspectives

The application of AI in radiation oncology has become increasingly prominent, of-
fering transformative potential across various facets of radiation oncology (RO). In this
discourse, we will describe three pivotal aspects where AI intersects with RO, elucidating
its profound implications and promising advancements. Firstly, we will delve into the
utilization of AI in contouring, treatment planning, optimization, and adaptive workflow,
demonstrating how AI contributes to decision support systems, data mining, and advanced
imaging analysis. This will streamline treatment workflows and enhance clinical outcomes.
Secondly, we will explore the application of AI in patient selection, outcome prediction,
and side effect anticipation, highlighting its role in adaptive radiation therapy and real-
time decision support. This showcases AI’s ability to aid MTBs in personalized patient
management by swiftly analyzing complex medical data. Lastly, we will address uncertain-
ties and limitations inherent in AI for radiation oncology, emphasizing the importance of
standardized protocols, extensive clinical trials, and regulatory measures to harness the
full potential of AI while ensuring patient safety and efficacy in oncological radiotherapy.



Curr. Oncol. 2024, 31 4995

Through this exploration, we aim to illuminate the transformative power of AI in revolu-
tionizing radiation oncology practice, ultimately benefiting cancer patients worldwide. The
different applications of AI in radiation oncology are summarized in Figure 3 and Table 3.
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Figure 3. AI-Enhanced Workflow for Multidisciplinary Tumor Board (MTB) in Radiotherapy. The
workflow includes patient consultation, physician assessment, image acquisition, image segmentation
and contouring, treatment planning, dose calculation and optimization, quality assurance and plan
verification, and precision treatment delivery. Each stage is augmented by AI to improve accuracy,
efficiency, and patient outcomes.

Table 3. AI Applications in Radiotherapy Workflow and Outcome Prediction.

Category Details

AI-enhanced
Radiotherapy Workflow

AI, particularly deep learning, enhances contouring, treatment planning, optimization, and adaptive
workflows. AI-based tools like the Radiation Planning Assistant (RPA) automate key components of
radiotherapy planning, improving efficiency and accessibility, especially in low- and middle-income
countries (LMICs). AI can automate repetitive tasks, optimize time, and improve clinical outcomes
through predictive models and decision support systems (DSS). AI aids in all steps of radiotherapy,
from patient consultation to treatment delivery, reducing clinical workload and improving
quality assurance.

Prediction of Radiotherapy
Outcomes and Toxicity

AI and machine learning (ML) predict radiotherapy outcomes and toxicity by analyzing complex
medical data. Radiomics extract quantitative features from medical images, improving
decision-making in precision medicine. AI models enhance prediction of side effects, integrating
radiomic features, genetic factors, and imaging analyses. AI can predict treatment outcomes and
toxicity, contributing to more personalized and accurate radiotherapy. Challenges include
interpretability, validation, and standardization of AI models.

Addressing Uncertainties
and Limitations in AI for
Radiation Oncology

AI in radiation oncology faces challenges like lack of standardized protocols, small datasets, and
need for regular model updates. Extensive clinical trials and standardized protocols are essential for
effective integration of AI in clinical settings. Human intervention remains crucial to ensure quality
and safety. Despite potential, AI’s full realization requires addressing uncertainties and constraints,
ensuring patient safety, and efficacy in oncological radiotherapy.
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4.1. AI-Enhanced Radiotherapy Workflow (Contouring, Treatment Planning, Adaptive and
Advanced Imaging Analysis)

In the last ten years, AI has played a significant role in addressing medical challenges,
including cancer. DL, a subset of AI, stands out for its ability to automatically extract
features and process vast amounts of complex data efficiently. With the help of extensive
medical data and advanced computational tools, AI, particularly DL, has been utilized
in various areas of oncology research to improve cancer diagnosis and treatment. These
applications span from early cancer detection, diagnosis, classification, and grading, to
molecular profiling of tumors, forecasting patient outcomes and treatment responses, cus-
tomized treatment plans, streamlining radiotherapy processes, innovation in anti-cancer
drug discovery, and conducting clinical trials [80]. AI is pivotal in developing DSS, and its
application in healthcare is growing rapidly [77]. In this context, ARCHERY is a prospec-
tive, non-randomized study aimed at evaluating the quality and economic implications
of AI-based automated radiotherapy treatment planning for cervical, head and neck, and
prostate cancers. These cancers are prevalent in LMICs and rely on radiotherapy as the
primary curative treatment modality. By 2030, it is projected that the number of new cancer
cases globally will increase to 21 million; 3 million annually, with approximately 70% of
these cases occurring in LMICs. Radiotherapy (RT) plays a crucial role in the management
and cure of several common cancers in these regions, such as cervical, prostate, and head
and neck cancers, with 50% of these patients requiring RT at some stage of their disease.
However, access to RT is limited, with only 10% of patients in low-income countries and
40% in middle-income countries having access to this treatment. Resource constraints have
led to long waiting times for treatment, resulting in cancer progression, increased morbidity,
and poorer survival outcomes. The pre-treatment RT workflow can typically take up to
four weeks in high-income countries and up to twelve weeks in LMICs due to patient
demand and workforce shortages. The WHO has set a target for RT to be available to 80%
of the global population by 2025, acknowledging the primary obstacle to achieving this goal
is a critical shortage of the specialized workforce necessary to deliver RT. The increasing
demand for RT necessitates a scalable solution to address these challenges. In this regard, a
recent WHO report underscored the potential of digital technologies, such as AI, to advance
universal health coverage and achieve Sustainable Development Goals, including ensuring
equitable access to and affordability of treatments. The Radiation Planning Assistant (RPA)
is an AI-based software designed to automate two crucial components of the RT planning
pathway: (1) contouring anatomical areas at risk of tumor spread (CTVs) and those at risk
of radiation damage (OARs), and (2) defining the position, size, and shape of the radiation
beams targeting the organs. The AI-based contouring models included in the RPA were
developed by the University of Texas MD Anderson Cancer Centre, which also created
the user interfaces, AI-based planning for conformal RT treatments, integrated quality
assurance tools, and the training and testing of the knowledge-based planning component
of the automated planning software, a function of the Eclipse treatment planning system
(Varian Medical Systems). To our knowledge, the RPA is the only application ready for
clinical use in head and neck, cervical, and prostate cancers that can both contour CTVs
and OARs and generate an optimized treatment plan [78]. AI in RO significantly impacts
clinical decision support, data mining, and advanced image analysis, automating repetitive
tasks, optimizing time, and modelling patient and clinician behavior in varied contexts. The
implementation of AI and automation in RO and IRT can effectively facilitate all steps of the
treatment workflow, including patient consultation, target volume delineation, treatment
planning, and treatment delivery. AI can enhance clinical outcomes through predictive
models and DSS optimization, reducing time-consuming repetitive tasks, lowering health-
care costs, and improving treatment quality assurance and patient support in IRT. RT is
utilized in 45–55% of newly diagnosed cancers and even in advanced disease. However,
RT demands high standards of training and quality assurance due to its technologically
complex and advanced nature. The adoption of AI methods can significantly improve
treatment quality and overall effectiveness [77]. In radiation oncology, the AI revolution has
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also provided automated support for various parts of the clinical radiotherapy workflow:
target and tissue segmentation, treatment planning, radiotherapy delivery, and treatment
response assessment. Radiotherapy treatment planning, especially inverse treatment plan-
ning, is a labor-intensive process that can take hours or even days to complete. Future
treatment planning using a robust AI agent can be efficient and effective with minimal
human intervention [79]. AI offers the opportunity to automate radiotherapy (RT) plan-
ning, minimizing variability in patient treatment. DL techniques can be used to automate
contouring and generate RT plans using clustering analysis or Pareto-guided navigation
after chemotherapy and image-guided radiotherapy. AI can automate contouring of target
volumes and organs at risk (OAR) across different imaging modalities and tumor locations,
as well as help adapt RT plans during treatment. Image quality can be improved through
AI-based denoising techniques for low-dose CT images, optimizing signal-to-noise ratios
while maintaining low patient doses. AI technologies have also shown promise in reduc-
ing acquisition times for MRI scans and reducing radiation doses for CT and PET scans.
AI models can compensate for data imbalances during training by generating synthetic
data that follows real-world data distributions. These technologies have the potential to
improve toxicity prediction, automate RT planning and optimization, select patients for
clinical trials, and reduce clinical workload in radiation oncology. Education and training
resources are critical for radiation oncology staff to understand data sourcing, curation,
ethics, and interpretation of AI technologies. Patient involvement in the development and
implementation of AI technologies is essential to ensure transparency and trust in these
tools. Standardized reporting and evaluation of AI technologies is necessary for clinical
integration and widespread adoption. Despite challenges such as lack of generalizability
and limited validation studies, AI holds promise for transforming radiotherapy practice.
Through standardized reporting, integration with existing healthcare systems, and collabo-
ration between providers, AI technologies can improve the accuracy, efficiency, and quality
of radiotherapy treatment [80].

4.2. Artificial Intelligence in Prediction of Radiotherapy Outcomes and Toxicity

AI and ML are being integrated into radiation oncology to improve the prediction
of radiation therapy outcomes and toxicity. AI has the potential to transform radiation
oncology by improving the accuracy, efficiency, and quality of radiation therapy through
its ability to recognize complex patterns in medical data [81]. Radiomics is a rapidly devel-
oping area of research in this field. It involves extracting quantitative metrics, known as
radiomics features, from medical images. These features include information on tissue and
lesion characteristics, such as heterogeneity and shape. They can be used independently
or with demographic, histological, genomic, or proteomic data to answer specific clinical
questions [82]. Integrating this data can provide a deeper understanding of cancer charac-
teristics. Radiomics aims to improve decision-making in precision medicine by studying
the correlations between these characteristics and patient prognosis [83,84]. Radiomics can
provide useful information about the effectiveness of a treatment by analyzing changes in
predefined features extracted from diagnostic images over time [85]. ML-based models
have shown high accuracy in predicting radiotherapy-induced side effects. However, their
clinical implementation is hindered by challenges such as low interpretability [85,86]. For
instance, artificial intelligence can extract radiomic features from 3D dose maps, which
have been proven to enhance the prediction of acute and late lung toxicities in lung cancer
radiotherapy, as opposed to traditional models based on clinical factors and dose volume
histograms [87]. Genetically-based risk models are being developed to predict radiotherapy
toxicity. These models incorporate single nucleotide polymorphisms and could improve
personalized treatment planning [88]. In summary, AI and ML are valuable tools in radi-
ation oncology. They can predict treatment outcomes and toxicity by analyzing complex
medical data. These technologies contribute to more accurate and personalized radiother-
apy. Predictive models can be improved by integrating radiomic features, genetic factors,
and AI-based imaging analyzes into them. This improvement promises to enhance clinical
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decision-making and patient care. However, to enable broader clinical adoption, we must
address challenges such as interpretability, validation, and standardization.

4.3. Addressing Uncertainties and Limitations in AI for Radiation Oncology

AI plans to transform different fields, including radiation oncology [89]. Despite the
numerous articles published in recent years, there are no standardized protocols available
to evaluate the efficacy of the developed tools. This hinders the clinical assessment of the
proposed AI methods [90]. Proposed as a way to improve the quality, uniformity, and ef-
fectiveness of multiple stages in delivering radiation, AI shows potential for tasks including
self-segmentation and automated treatment planning. Nevertheless, worries have arisen about
the possible loss of domain expertise between doctors and physicists because of greater au-
tomation. Proficiency heavily depends on practical experience; however, automation impedes
opportunities to acquire first-hand experience in creating treatment plans or segmentations
within the clinical workflow. Models must adjust over time due to the ever-changing nature
of clinical workflows, fractionation patterns, and medical devices. Regular updates with new
information are necessary to show changes in medical practices, highlighting the importance
of having particular knowledge to produce this updated data [91]. Thanks to its automated
procedures, TPS has efficiently decreased the time needed for plan generation. Nevertheless,
despite the boosted efficiency and consistency, TPS’s current techniques have not impacted the
quality of the plans. Research has shown that plans created by machines are compliant with
clinical standards. Nevertheless, some results emphasize the importance of human intervention
or modification in the ATP process to ensure a sufficient level of quality and safety. A major lim-
itation in using DL for oncological radiotherapy is the small number of available datasets [92].
This issue occurs because radiotherapy often involves only small datasets. As a result, choosing
the appropriate algorithm for a particular situation can lead to changes of up to 32% in the
expected results. To address these limitations, it is vital to conduct extensive clinical trials to
assess the effectiveness of AI in the field of oncological radiotherapy. Additionally, it is essential
to establish norms and principles for the smooth integration of AI technology in clinical settings.
The realization of AI advantages and the assurance of safeguarding patients can solely be
accomplished through a sturdy basis of scientific proof and apt regulatory measures.

In synopsis, despite the encouraging prospects AI offers for improving oncological
radiotherapy, it is crucial to confront current uncertainties and constraints. Merely by doing
so can we obtain the full potential of this technology and endow cancer patients with safe
and effective treatments.

5. MTBs Perspective

Integrating AI into the MTB can greatly enhance the efficiency and effectiveness of
cancer care. AI systems can analyze large datasets, including genomic information, imag-
ing results, and clinical records, to identify patterns and correlations that may not be
immediately apparent to human clinicians. This capability allows AI to provide valuable
insights into tumor characteristics, potential treatment responses, and patient prognoses.
Cancer treatment options are becoming more varied, and guidelines are changing rapidly.
As a result, medical personnel must have access to comprehensive medical information,
necessitating considerable time spent updating their knowledge alongside providing direct
patient care. For instance, oncologists work an average of 56.7 h per week, spending approx-
imately 4.6 h updating and maintaining their knowledge in the field. As cancer treatment
methods become more diverse and complex, it is crucial to have objective evidence and
opinions from medical professionals in various fields to determine the most appropriate
treatments for individual patients. Since the 1980s, MDTs have been used to improve the
quality of care for cancer patients. These teams, consisting of medical professionals from
different specialties, collaborate to define treatment plans for each patient. MDTs improve
patient outcomes and reduce the workload of medical staff but often lack timely medical
updates. To address this challenge, CDSS have been developed [6]. A CDSS is an AI-based
application designed to reduce the time medical staff spend evaluating evidence-based
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practices. This approach involves using multifactorial decision support systems (DSSs)
and continuously learning AI platforms that integrate all available data—clinical, imaging,
biologic, genetic, and cost-related—to produce validated predictive models [7]. Moreover,
AI can streamline administrative and logistical aspects of the MTB. For instance, AI-driven
tools can automate the collection and organization of patient data, ensuring all relevant
information is readily available for board members. This reduces the time spent on manual
data entry and allows clinicians to focus on critical case discussions. IBM has developed
software designed to analyze the meaning and context of both structured and unstructured
data in clinical notes and reports, efficiently assimilating key patient information written in
plain English. By integrating attributes from the patient’s file with clinical expertise from
Memorial Sloan Kettering, along with external research and data, Watson for Oncology
identifies and ranks potential treatment plans and options. This software, formerly known
as AI CDSS Watson for Oncology (WFO), has been tested in several contexts within the
MTBs [93–95] and is now equipped with advanced generative AI capabilities powered by
foundation models and traditional ML in a comprehensive studio spanning the AI lifecycle.
Generally, decisions made by WFO showed a high concordance rate with MTBs, and ap-
plying WFO is likely to facilitate a multidisciplinary team approach, also saving time for
easier cases. Several similar approaches have been developed, using other self-developed
smart virtual assistants capable of understanding different free-text reports to facilitate and
standardize the language and interpretation of MTB discussions [95–99]. Other approaches
have used ChatGPT, an AI chatbot that employs natural language processing to create
human-like conversational dialogue, in the context of MTBs. However, the current version
cannot provide specific recommendations, emphasizing the need for dedicated AI software
for this purpose [100–102]. Finally, Kasprzak J et al. trained a ML model on clinical data to
determine whether molecular profiling should be performed for a patient discussed within
an MTB, optimizing the time of this decision which can significantly impact outcomes [103].

In summary, the inclusion of AI in the MTB can enhance diagnostic precision, person-
alize treatment plans, predict patient outcomes, and streamline administrative tasks. By
integrating AI, the MTB can provide more comprehensive, timely, and effective cancer care,
ultimately improving patient outcomes and advancing the field of oncology. The different
applications of AI in MTB are summarized in Table 4.

Table 4. AI Integration in Multidisciplinary Tumor Boards (MTBs).

Category Details

Enhancing Efficiency
and Effectiveness

AI can analyze large datasets, including genomic, imaging, and clinical records, to identify patterns
and correlations, providing valuable insights into tumor characteristics, treatment responses, and
patient prognoses. This capability allows for more informed decision-making in cancer care.

Multidisciplinary
Teams (MDTs)

MDTs, comprising medical professionals from various specialties, collaborate to define treatment
plans for patients. AI-driven Clinical Decision Support Systems (CDSS) can reduce the time spent
evaluating evidence-based practices, integrating clinical, imaging, biological, genetic, and
cost-related data to produce predictive models.

Streamlining
Administrative Tasks

AI can automate the collection and organization of patient data, reducing manual data entry and
allowing clinicians to focus on critical case discussions. This improves the efficiency of the
Multidisciplinary Tumor Board (MTB).

AI Tools in MTB

IBM’s Watson for Oncology, now equipped with advanced generative AI capabilities, has shown
high concordance with MTB decisions and facilitates a multidisciplinary approach, saving time for
simpler cases. Other AI tools and chatbots like ChatGPT are being explored to standardize
language and interpretation of MTB discussions.

Optimizing Decision-Making AI models, such as those developed by Kasprzak et al., can optimize decisions like whether
molecular profiling should be performed, impacting patient outcomes.

Overall Impact of AI
Integrating AI in MTB can enhance diagnostic precision, personalize treatment plans, predict
patient outcomes, and streamline administrative tasks, leading to more comprehensive, timely, and
effective cancer care, and ultimately improving patient outcomes and advancing oncology.
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6. Discussion

AI is emerging as a powerful resource to improve the analysis and management of
medical conditions, including cancer. AI has many applications, including medical imaging
and pathology. Integrating AI into clinical workflows can improve diagnostic accuracy and
personalize treatments [104]. This study revealed some key points, such as:

• AI-based tools are already influencing surgical planning and predicting complications,
recurrences, and therapeutic responses in medical imaging. This is advancing towards
personalized medicine;

• AI’s ability to analyze big data can help discover new biomarkers and improve can-
cer screening, diagnosis, treatment, and prognosis. This can lead to better clinical
outcomes [105];

• The use of deep learning-based AI in cancer pathology can enhance diagnostic accuracy,
reduce the workload of pathologists, and support high-level decisions. Despite the
challenges of algorithm validation and interpretation, this technology has the potential
to revolutionize cancer diagnosis [106].

In addition to imaging and medical pathology, AI has also found application in other
areas of healthcare, such as genomics and drug discovery. By exploiting AI algorithms,
researchers and doctors can analyze large amounts of genomic data to identify genetic markers
associated with certain diseases, including cancer. This information can be used to develop
targeted therapies and personalized treatment plans for patients. Furthermore, CDSS powered
by artificial intelligence can help healthcare professionals make more informed decisions
by providing evidence-based recommendations and warnings. These systems can analyze
patient data, medical literature and clinical guidelines to offer real-time guidance on diagnosis,
treatment options and medication management. By integrating artificial intelligence into
clinical workflows, healthcare professionals can improve the accuracy and efficiency of their
decision-making processes, ultimately leading to improved patient outcomes. Indeed, the
introduction of digital cancer board solutions has significantly reduced case discussion time,
standardized the case presentation process and potentially increased efficiency in therapeutic
decision-making. Collaboration between doctors and artificial intelligence for decision-making
aims to achieve team performance that exceeds the performance of either humans or artificial
intelligence alone. The advice of an AI assistant can help users make decisions, but factors
such as the experience of the user base and the complementary fine-tuning of humans and AI
have a significant impact on the overall performance of the team [6]. AI systems need to be
trained to focus on the needs of medical staff to optimize team performance. Research suggests
that integrating AI in a way that complements human expertise, building mutual trust, and
optimizing AI algorithms for teamwork rather than individual accuracy can accelerate decision-
making in multidisciplinary teams. It is crucial to understand team dynamics and effectively
manage human-AI interactions to take full advantage of AI in team decision-making.

However, the integration of AI into oncology varies significantly across medical spe-
cialties, each facing distinct challenges and opportunities. For surgeons, AI holds promise
in enhancing decision-making and providing intraoperative guidance. They are partic-
ularly interested in AI applications that improve the precision and safety of procedures,
such as real-time anatomical recognition and decision support systems. However, concerns
remain about the reliability of AI in complex, high-stakes environments where human
judgment is crucial [15]. Medical oncologists view AI as a powerful tool for molecular
profiling and personalized treatment planning. The ability of AI to analyze large datasets,
such as genomic information, and predict treatment responses is a significant advantage.
However, integrating AI into routine practice poses challenges, particularly in interpreting
AI-generated data and ensuring that AI tools are user-friendly and seamlessly incorporated
into existing workflows [72]. Radiation oncologists increasingly adopt AI for treatment
planning and optimization. AI’s ability to enhance contouring accuracy and predict treat-
ment outcomes is highly valued in this specialty. However, concerns about data quality, the
need for continuous model updates, and the potential reduction in hands-on experience for
developing expertise in treatment planning are significant barriers to adoption [84].
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The integration of AI into clinical practice across these specialties is not without its
challenges. A key issue is the need for specialized training to ensure effective use of
AI tools, especially in surgery, where errors can have immediate, life-threatening con-
sequences [49,107]. In medical oncology, the challenge lies in interpreting complex AI-
generated data and ensuring that AI simplifies, rather than complicates, decision-making.
For radiation oncologists, maintaining the quality and consistency of AI tools amid rapid
technological advancements is a primary concern. Despite these challenges, AI offers
substantial opportunities. It has the potential to enhance the precision of cancer treatment,
improve patient outcomes, and streamline clinical workflows. Surgeons can benefit from
real-time decision support during complex procedures, potentially reducing complications.
Medical oncologists can employ AI to identify the most effective treatments based on a pa-
tient’s molecular profile, paving the way for more personalized care. Radiation oncologists
can optimize treatment plans to ensure patients receive the most accurate and effective
radiation doses. Overall, AI also shows promise in enhancing the collaborative nature of
MTBs [95,98,99]. By providing comprehensive data analysis and predictive modeling, AI
can facilitate more informed decision-making across disciplines, improving the efficiency
and effectiveness of MTBs and leading to better patient outcomes. However, it is crucial
that AI tools complement, rather than replace, the expertise of human clinicians. The
successful integration of AI into MTBs will depend on fostering mutual trust between AI
systems and healthcare professionals, ensuring that AI enhances, rather than undermines,
interdisciplinary collaboration.

Recently, Grunhut J referred to AI as the “elephant in the MTB room”, as these
technologies are transforming the landscape of oncology and introducing new ethical
complexities [108]. AI technologies raise significant ethical concerns, particularly regarding
the potential to perpetuate biases found in their training data [109–111]. For instance,
Sap M et al. [112] demonstrated that algorithmic systems, especially in content recommen-
dation, can inadvertently reinforce stereotypes, leading to reduced diversity of accessible
information and the creation of echo chambers [113]. Addressing these biases requires
proactive measures such as continuous monitoring, regular audits, and transparency in the
development and deployment processes [114,115]. Interdisciplinary collaboration among
AI developers, policymakers, and ethicists is essential to ensure that AI systems are equi-
table and unbiased [116]. Establishing guidelines and regulations that focus on fairness,
accountability, and transparency is critical to the responsible development and use of
AI [117,118]. Despite the early stage of AI regulation [119], there is a growing call for tai-
lored regulations to address the unique ethical challenges posed by AI [120,121]. Therefore,
robust legal and ethical frameworks are necessary to guide responsible AI practices. Addi-
tionally, privacy and confidentiality are also crucial when handling sensitive medical data
within AI systems, which must comply with existing or forthcoming privacy regulations.
Ensuring secure management of patient information involves robust encryption, access
control mechanisms, and data anonymization techniques, especially when integrating data
from various sources. Standardized interfaces and protocols are recommended to ensure
secure data transmission [122]. Compliance with GDPR and ISO 27001 standards [123]
is essential to align with industry best practices [124]. As data-sharing models evolve,
some datasets may become publicly available, while others may be restricted to consortia
or healthcare systems, potentially with access fees. The field of cybersecurity continues
to advance, addressing challenges such as stabilizing image reconstruction neural net-
works [125]. Incorporating robust security measures and adhering to relevant regulations
can lead to a secure AI platform capable of integrating and analyzing medical data from
diverse sources.

7. Conclusions

The integration of AI in MTBs holds significant promise for enhancing cancer care. AI
technologies, including machine learning and deep learning, offer the potential to improve
diagnostic accuracy, personalize treatment plans, and predict patient outcomes more
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effectively. These advancements facilitate more informed decision-making, optimizing the
efficiency and effectiveness of cancer treatment. Despite these benefits, the implementation
of AI in oncology is not without challenges. The variability in anatomical structures, the
need for standardized protocols, the small size of training datasets, and the necessity for
regular model updates present significant hurdles. Human intervention remains essential
to ensure quality and safety in AI applications, particularly in clinical settings. Overall, AI’s
integration into MTBs can lead to more comprehensive, timely, and effective cancer care.
By enhancing the capabilities of MTBs, AI can improve patient outcomes and advance the
field of oncology. Continued research and development, alongside rigorous validation and
standardization efforts, are crucial to fully realizing the potential of AI in cancer treatment.
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