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Abstract: Purpose: To evaluate the diagnostic value of ultrasound radiomics in distinguish-
ing between benign and malignant breast nodules in women who have undergone silicone
breast augmentation. Methods: A retrospective study was conducted of 99 breast nodules
detected by ultrasound in 93 women who had undergone silicone breast augmentation.
The ultrasound data were collected between 1 January 2006 and 1 September 2023. The
nodules were allocated into a training set (n = 69) and a validation set (n = 30). Regions of
interest (ROIs) were manually delineated using 3D Slicer software, and radiomic features
were extracted and selected using Python programming. Eight machine learning algo-
rithms were applied to build predictive models, and their performance was assessed using
sensitivity, specificity, area under the ROC curve (AUC), accuracy, Brier score, and log loss.
Model performance was further evaluated using ROC curves and calibration curves, while
clinical utility was assessed via decision curve analysis (DCA). Results: The random forest
model exhibited superior performance in differentiating benign from malignant nodules in
the validation set, achieving sensitivity of 0.765, specificity of 0.838, and an AUC of 0.787
(95% CI: 0.561–0.960). The model’s accuracy, Brier score, and log loss were 0.796, 0.197, and
0.599, respectively. DCA suggested potential clinical utility of the model. Conclusion: Ul-
trasound radiomics demonstrates promising diagnostic accuracy in differentiating benign
from malignant breast nodules in women with silicone breast prostheses. This approach
has the potential to serve as an additional diagnostic tool for patients following silicone
breast augmentation.

Keywords: ultrasound radiomics; breast nodule; benign and malignant; silicone breast
augmentation; machine learning

1. Introduction
Breast augmentation surgery has been widely embraced by individuals seeking aes-

thetic enhancements since its inception. Advances in technology have led to the evolution
of breast prosthesis materials, from early options like autologous fat and paraffin to the
now widely used silicone-based compounds [1]. Despite ongoing concerns regarding the
safety of silicone prostheses—particularly in genetically susceptible populations, where
they may trigger chronic inflammatory responses or even lead to breast implant-associated
anaplastic large cell lymphoma (BIA-ALCL) [2]—there is currently no conclusive evidence
demonstrating harm to human health. International guidelines have been established to
standardize the follow-up management of breast augmentation surgeries [3,4].
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Ultrasound is a common imaging modality used for monitoring patients post-surgery;
however, the presence of silicone prostheses can compromise image quality and reduce
diagnostic accuracy. Recent advancements in radiomics—a technique that extracts and
analyzes numerous quantitative features from medical images—have shown promise in
improving the accuracy of distinguishing between benign and malignant breast nodules [5].
Previous studies have demonstrated the significant potential of radiomics in predicting
the classification of breast tumors [6]; however, limited research has focused on radiomic
features of breast nodules in the context of silicone breast prostheses.

Given these considerations, this study aimed to evaluate the potential of ultrasound
radiomic features in distinguishing benign from malignant breast nodules in women who
have undergone silicone breast augmentation. By establishing predictive models, this
research seeks to provide safer and more efficient medical services for this specific patient
group, thereby contributing to the advancement of precision medicine.

2. Materials and Methods
2.1. Data Source

All data were collected from the ultrasound examination database of the Department
of Ultrasound Medicine at West China Hospital, Sichuan University. Considering the
specificity of the study subjects and the potential of a small sample, we set the data col-
lection period from 1 January 2006 to 1 September 2023 to include all cases of women
who underwent breast augmentation for cosmetic purposes. We recorded the ultrasound
examination information for the target population along with corresponding pathological
follow-up findings. Additionally, clinically relevant information about the target group
was collected through the hospital management information system (HIS). The information
collected included basic information (name, ID, sex, age), ultrasound details (examination
date, examination number, ultrasound report description, ultrasound diagnosis results),
and clinically relevant information (history of breast augmentation, medical history, patho-
logical results). All data were systematically curated into an Excel table. For patients with
multiple nodules, the following prioritization strategy was employed. Firstly, nodules were
categorized as benign or malignant based on the pathological results. Secondly, bilateral
nodules in the same patient were registered separately for the left and right sides. Finally,
for multiple nodules on the same side, only the largest nodule was registered.

2.2. Study Subjects

All study subjects were either outpatients or inpatients treated at West China Hospital,
Sichuan University. The inclusion criteria were (1) presence of breast prostheses clearly
mentioned in the ultrasound examination records, and (2) ultrasound examination records
with corresponding pathological follow-up results.

In evaluating the initially collected ultrasound records, we established exclusion crite-
ria based on the assessment of pathological, clinical, and ultrasound information for each
record. Specifically, we excluded ultrasound records with pathological follow-up results
that did not match our study objective, clinical information that introduced confounding
variables, or substandard ultrasound images. The exclusions included: (1) pathological
follow-up results limited to tissue within or outside the capsule of breast implants, without
diagnostic information on the breast nodules detected by ultrasound; (2) pathological
follow-up records with inconsistent or unclear locations compared to the nodule sites
identified by ultrasound; (3) patients with a history of breast cancer, radiotherapy, or
chemotherapy; (4) records with incomplete clinical information; (5) ultrasound images
where lesions were obscured by measurement icons; (6) ultrasound images showing lesions
too large to be fully visualized; (7) ultrasound records lacking two-dimensional or color



Curr. Oncol. 2025, 32, 29 3 of 15

Doppler ultrasound images; (8) duplicate examination records from the same patients
(multiple examinations for the same patient).

2.3. Outcome Measures

In this study, the outcome measures of the predictive model were based on the
pathological diagnostic results of breast nodules, categorized as benign or malignant.
Pathological diagnoses were reached according to internationally accepted WHO histo-
logical standards. Tissue samples, obtained via needle biopsy or surgical resection, were
reviewed and confirmed by specialist pathologists experienced in breast pathology. The
pathological results for all final included cases were obtained within six months after the
ultrasound examination.

2.4. Acquisition of Ultrasound Pictures, Preprocessing, and ROI Delineation

The diagnostic breast ultrasound equipment used in this study included devices
manufactured by Philips, GE, Hitachi, Mindray, and Siemens, with probe frequencies
ranging from 4 to 15 MHz and color Doppler image scales ranging from ±2.5 to 10 cm/s. All
ultrasound images were acquired by physicians with over three years of experience in breast
ultrasound examinations, and the images and reports were reviewed by senior physicians.

Due to the retrospective nature of the analysis, the ultrasound images were down-
loaded from the hospital’s PACS system in JPG format. During the ultrasound image pre-
processing phase, we effectively reduced the risk of bias through the anonymization of case
numbers and collaborative work between two junior physicians. Specifically, one physician
was responsible for assigning each case a random and unique number. Each unique num-
ber was used to label different ultrasound image files, ensuring accurate correspondence
between the unique numbers, ultrasound images, and clinicopathological information. The
same physician annotated the pathology results on the ultrasonographic images that had
been delineated with regions of interest (ROIs) for subsequent computer recognition.

Another junior physician delineated the ROIs for all lesions without prior knowledge
of the nodules’ pathological results. ROI delineation was performed using 3D Slicer soft-
ware (version 5.6.1). All ultrasound images were standardized. During the delineation
process, the physician used tools such as zooming, dragging, drawing, and tracing to pre-
cisely outline the margins of the lesions. For lesions with unclear margins, the delineations
were reviewed and corrected by a senior physician. Figure 1 illustrates the ROI segmenta-
tion for benign and malignant breast nodules in ultrasound images. The completed ROI
masks were saved in nii.gz format, and the standardized ultrasound images were saved
in nii format, preparing them for subsequent ultrasound feature extraction in the Python
language environment.
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Figure 1. (a,b) From a 45-year-old patient (fibroadenoma): (a) grayscale image and (b) ROI of a be-
nign breast nodule. (c,d) From a 59-year-old patient (invasive ductal carcinoma): (c) grayscale image 
and (d) ROI of a malignant breast nodule. 
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tures: first-order statistics, shape, gray-level co-occurrence matrix (GLCM), gray-level run-
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ference matrix (NGTDM), and gray-level dependence matrix (GLDM) [7]. 
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features were calculated, and a correlation threshold of 0.95 was set. By identifying and 
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relation analysis method was used to assess the degree of association between each feature 
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Figure 1. (a,b) From a 45-year-old patient (fibroadenoma): (a) grayscale image and (b) ROI of a
benign breast nodule. (c,d) From a 59-year-old patient (invasive ductal carcinoma): (c) grayscale
image and (d) ROI of a malignant breast nodule.

2.5. Dataset Construction

To ensure the independence and effectiveness of model training and validation, we
utilized the random number generation function in SPSS software to assign a unique
random number between 0 and 1 to each case. Subsequently, the dataset was divided into
a training set and a validation set in a 7:3 ratio. Specifically, the top 70% of cases with the
highest random numbers were allocated to the training set, totaling 69 cases, while the
remaining 30% of cases were allocated to the validation set, totaling 30 cases.

2.6. Feature Extraction

We performed feature extraction on all ultrasound images in both the training set
and the validation set. Ultrasound imaging omics features were extracted using the Sim-
pleITK (version 2.3.1) and Radiomics (version 3.0.1) toolkits in the Python programming
language. Three different filters were used to preprocess these images: Wavelet, Loga-
rithm, and SquareRoot. Features were extracted from both the original and preprocessed
images, resulting in seven categories of features: first-order statistics, shape, gray-level
co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size-zone
matrix (GLSZM), neighborhood gray-tone difference matrix (NGTDM), and gray-level
dependence matrix (GLDM) [7].

2.7. Feature Screening

We used only the data from the training set to screen out the most predictively valuable
features. Initially, non-numeric types of features and constant features were removed, as
they did not contribute substantially to model training. Next, the correlations between
features were calculated, and a correlation threshold of 0.95 was set. By identifying and
removing highly correlated features, we reduced the redundancy of the data, thereby
enhancing the efficiency and accuracy of model training. Subsequently, the Spearman
correlation analysis method was used to assess the degree of association between each
feature and the target variable (benign or malignant). Based on the preset correlation
threshold (absolute value > 0.45), we selected features that showed relatively significant
correlations with the target variable. Finally, using the LASSO algorithm with 5-fold
cross-validation, we selected the optimal features with importance greater than 0.05.

2.8. Model Establishment and Evaluation

For the binary classification problem, we utilized eight widely recognized machine
learning algorithms to build models: random forest, logistic regression, decision tree,
gradient boosting, naïve Bayes, support vector machine (SVM), k-nearest neighbor (KNN),
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and multilayer perceptron (MLP). Each model was trained using the processed training set,
while an independent validation set was used to evaluate model performance, ensuring an
unbiased assessment.

For each model, we used sensitivity, specificity, and AUC to evaluate its diagnostic
efficacy. Additionally, accuracy, Brier score, and log loss score were used to assess the
predictive efficacy of the model. ROC curves for the eight models were plotted for both the
training set and the validation set to compare their diagnostic efficacy. When comparing
the predictive efficacy of the eight models, accuracy focused on the overall correctness of
the model’s classification, the Brier score focused on the accuracy of the model’s predicted
probabilities, and the log loss score focused on the quality of the model’s predicted proba-
bilities, particularly penalizing cases where the predicted probability of the actual outcome
was extremely inaccurate. The best model was determined by comparing the AUC values
of the eight models in the validation set. Finally, a calibration curve for the best-performing
model was plotted to assess its stability, and decision curve analysis (DCA) was performed
to evaluate its clinical utility.

2.9. Statistical Analysis

Clinical baseline statistics were conducted for the final included cases, including pa-
tient age, nodule pathological type, method of breast augmentation, and duration since
augmentation. Comparisons were made regarding the distribution of lesions in terms of
breast laterality, quadrant, and maximum diameter between the training set and the valida-
tion set. Statistical analysis was performed using SPSS version 23.0 software (IBM Corp.,
Armonk, NY, USA). The Shapiro–Wilk test was used to determine whether continuous
variables conformed to a normal distribution. For continuous variables, comparisons were
made using the independent-sample t-test or the Mann–Whitney U test, depending on the
distribution. Categorical variables were compared using the chi-squared test or Fisher’s
exact test, as appropriate. A p-value < 0.05 was considered statistically significant, with a
confidence interval set at 95%.

Feature extraction and screening, model training, and validation were conducted using
Python 3.9 (Python Software Foundation). Sensitivity, specificity, AUC, accuracy, Brier score,
and log loss score were calculated using the scikit-learn and numpy libraries. The ROC
curves, calibration curves, and DCA curves were generated using the matplotlib library.

3. Results
3.1. Clinical and Pathological Information

We initially included 521 ultrasound records. After applying strict exclusion criteria,
we ensured that the final cohort consisted exclusively of adult women who had undergone
breast augmentation for cosmetic purposes, with all nodules having matched pathological
follow-up results and clear ultrasound images. Ultimately, we included a total of 99 nodules
from the ultrasound images of 93 patients. The entire dataset construction process is
illustrated in Figure 2.

The detailed results of the pathological types of the 99 breast nodules are presented in
Table 1. A total of 93 patients were included in our study. Among them, 87 patients had a
single lesion in one breast, 4 patients had a single lesion in both breasts, and 2 patients had
two lesions in one breast. The age range of the patients was broad, with the youngest being
23 years old and the oldest being 75 years old, and the median age was 46 years. Regarding
surgical methods, statistical results showed that 26 patients underwent augmentation with
liquid silicone injections, while 67 patients had augmentation using silicone gel implants.
The duration since augmentation ranged from as short as 2 months to over 20 years, with
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the data presented in Table 2 in intervals of 5 years. Notably, 13 patients did not provide
the exact duration of their breast augmentation at the time of consultation.

Figure 2. Process of constructing the final dataset, including the inclusion and exclusion criteria
applied to select adult women who had undergone breast augmentation for cosmetic purposes.

Table 1. Statistics for 99 breast nodules by malignant and benign pathological types.

Pathological Type Number of Lesions

Malignant

Invasive ductal carcinoma 44
Ductal carcinoma in situ 3

Mucinous carcinoma 2
Invasive lobular carcinoma 1

Benign

Adenosis 16
Fibroadenoma 10

Granuloma 7
Fibrocystic 6

Blue gel-like material 5
Inflammation 4

Phyllodes tumor, benign 1
Total 99
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Table 2. Service years after breast augmentation.

Years Since Surgery Cases, n

≤5 14
6–10 18
11–15 20
16–20 18
>20 10

Information Missing 13
Total 93

Comparisons were made between the training set and the validation set for the
distribution of pathological types (benign, malignant), side of the lesion, quadrant of
the lesion, and the maximum diameter of the lesion. The statistical methods and results
are shown in Table 3. The results indicate no statistically significant differences in the
distributions mentioned above between the two sets. Notably, the distribution of the
maximum diameter of the lesions did not conform to a normal distribution (p < 0.001).

Table 3. Distribution comparison of pathology type, lesion location, and maximum diameter between
training and validation sets.

Statistical Test Training Set (69) Validation Set (30) p Value

Malignant (M) or Benign (B), n Chi-square test (M) 32 (B) 37 (M) 18 (B) 12 0.213 (2-sided)
Left (L) or Right (R), n Chi-square test (L) 36 (R) 33 (L) 17 (R) 13 0.827 (2-sided)

Quadrant, n Fisher’s exact test c.a.
3

l.i.
9

l.o.
15

u.i.
19

u.o.
23

c.a.
2

l.i.
2

l.o.
5

u.i.
6

u.o.
15 0.554 (2-sided)

Maximum diameter,
median ± SD, mm Mann-Whitney U test 18.77 ± 10.73 16.8 ± 10.08 0.393

Abbreviations: c.a., central area; l.i., lower inner; l.o., lower outer; u.i., upper inner; u.o., upper outer.

3.2. Feature Extraction and Selection

From each ROI in the training set, we extracted 1374 ultrasound imaging omics features.
Initially, we excluded 42 features that were constant or lacked statistical significance.
Next, we excluded 575 features with correlations higher than 0.95 to reduce redundancy.
Further, using Spearman correlation analysis, we identified 36 features with relatively high
correlations (greater than 0.45) with the target variable (benign/malignant). Finally, through
LASSO selection, we identified nine optimal features. The feature selection and parameter-
tuning process of the LASSO algorithm are shown in Figure 3a,b, and a horizontal bar chart
displaying the importance of these optimal features is shown in Figure 3c.
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3.3. Model Evaluation

The specific values of diagnostic and predictive performance metrics for the eight
models in both the training and validation sets are provided in Table 4, and the ROC curves
are displayed in Figure 4.

In the training set data, the random forest, decision tree, and gradient boosting algo-
rithms achieved the highest AUC values, sensitivity, specificity, and accuracy. Multilayer
perceptron, logistic regression, support vector machine, and k-nearest neighbor also per-
formed relatively well, with AUC values of 0.998, 0.977, 0.959, and 0.947, respectively. In
contrast, the naïve Bayes algorithm yielded the lowest AUC value of 0.843.

In the validation set data, the three models with the highest AUC values were: random
forest (0.787), k-nearest neighbor (0.717), and logistic regression (0.701). Decision tree
performed best in terms of sensitivity (0.778), followed by k-nearest neighbors and random
forest (both at 0.765). In terms of specificity, support vector machine and gradient boosting
performed best (both at 0.846), followed by random forest (0.838). Regarding predictive
performance metrics, random forest achieved the highest accuracy (0.796). All eight models
had low Brier scores, indicating little difference between the predicted probabilities and the
observed outcomes. However, it is noteworthy that decision tree and multilayer perceptron
exhibited higher log loss scores, reaching 10.074 and 9.833, respectively, suggesting larger
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discrepancies in the predicted probabilities for individual cases. The best-performing
model in terms of Brier score and log loss score was random forest, with values of 0.197
and 0.599, respectively.

Table 4. Performance metrics for eight models distinguishing between benign and malignant breast
nodules in the training set (TS) and validation set (VS).

Model Group Sensitivity Specificity AUC (95%CI) Accuracy Brier Score Log Loss Score

Random Forest
TS 1.000 1.000 1.000

(1.000–1.000) 1.000 0.017 0.104

VS 0.765 0.838 0.787
(0.561–0.960) 0.796 0.197 0.599

Logistic Regression
TS 0.909 0.972 0.977

(0.947–0.998) 0.942 0.058 0.208

VS 0.529 0.692 0.701
(0.448–0.886) 0.600 0.260 0.830

Decision Tree
TS 1.000 1.000 1.000

(1.000–1.000) 1.000 0.000 0.000

VS 0.778 0.618 0.698
(0.533–0.871) 0.708 0.292 10.074

Gradient Boosting
TS 1.000 1.000 1.000

(1.000–1.000) 1.000 0.000 0.000

VS 0.418 0.846 0.692
(0.456–0.900) 0.604 0.355 3.965

Naïve Bayes
TS 0.697 0.806 0.843

(0.754–0.931) 0.754 0.222 0.693

VS 0.412 0.769 0.692
(0.472–0.919) 0.567 0.248 0.713

Support Vector Machine
(SVM)

TS 0.909 0.944 0.959
(0.904–0.998) 0.928 0.080 0.391

VS 0.529 0.846 0.638
(0.429–0.823) 0.667 0.268 0.948

K-Nearest Neighbor
(KNN)

TS 0.849 0.861 0.947
(0.902–0.983) 0.855 0.089 0.247

VS 0.765 0.615 0.717
(0.493–0.889) 0.700 0.252 5.998

Multilayer Perceptron
(MLP)

TS 0.992 0.997 0.998
(0.993–0.999) 0.995 0.004 0.017

VS 0.581 0.732 0.665
(0.448–0.840) 0.647 0.348 9.833
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In the context of predicting the benign or malignant status of breast nodules in the
presence of silicone breast prostheses, the random forest model we established achieved
the highest AUC value in the validation set. The calibration curve (Figure 5) shows that the
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predicted probabilities of this model align closely with the actual outcomes. Finally, the
DCA curves for the random forest model in both the training and validation sets (Figure 6)
indicate its potential clinical utility.
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4. Discussion
The rise of breast augmentation can be traced back to the 1960s, with experts in

aesthetic plastic surgery consistently focusing on the safety, comfort, and durability of
breast prostheses, conducting extensive research on their manufacturing processes [8–10].
As early as the late 20th century, medical experts raised concerns about the safety of breast
prostheses, primarily focusing on issues such as the potential for silicone gel to trigger
autoimmune diseases, lymphoma, and breast cancer, which have garnered significant
attention over decades of clinical research and investigation [11–13]. In recent years,
multiple studies have indicated that silicone gel may alter the body’s microenvironment in
genetically susceptible individuals, leading to rejection reactions and chronic inflammatory
responses [14–16]. Additionally, the rupture and infection of breast prostheses may further
exacerbate these adverse conditions. Consequently, individual variability and potential
risks associated with silicone breast augmentation have led clinicians to place greater
emphasis on post-augmentation breast screening. Ultrasound examination, favored for its
lack of radiation, convenience, and low cost, is one of the most commonly used screening
methods in clinical practice, making it the most acceptable choice for the majority of
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women who have undergone breast augmentation in China. As a comprehensive tertiary
hospital holding a significant position within the healthcare system of southwest China,
our institution ensures that cases selected from our patient pool are highly representative.

During the case collection phase, we implemented strict inclusion and exclusion cri-
teria to focus on women who had undergone breast augmentation for cosmetic reasons.
Patients with a history of mastectomy and reconstructive surgery or those who had under-
gone radiotherapy or chemotherapy for breast cancer were excluded, as these factors can
alter tissue response patterns in the breast, potentially influencing the high-throughput
features observed in ultrasound images. However, this rigorous selection process might
lead to an underrepresentation of clinical diversity in real-world applications. Furthermore,
we recognize that the sample size of 99 nodules is relatively modest, potentially limiting
the external validity and generalizability of our study results to broader populations. To
mitigate these limitations, we recommend that future studies consider including a more
diverse patient population, employ multicenter and prospective designs, and apply strati-
fied analysis or other statistical methods to control for confounding variables. These steps
would enhance both the sample size and the diversity of participants. In addition, we plan
to actively pursue collaborations with other medical institutions in subsequent research
efforts, allowing us to validate our models using external datasets and investigate how
different types and materials of implants affect ultrasound imaging characteristics.

Our study utilized a retrospective design, which enabled the rapid leveraging of
substantial existing clinical and imaging data to provide initial evidence for the application
of ultrasound radiomics. However, this approach also introduced certain limitations. Retro-
spective designs can introduce selection bias because patient inclusion and data collection
are based on available records rather than predefined criteria. To mitigate this bias, we
implemented several measures, including strictly enforcing inclusion and exclusion criteria,
randomly assigning cases to training and validation sets, and anonymizing data to mini-
mize the influence of identifying information. Despite these measures, they cannot entirely
eliminate all potential biases. Future research should consider adopting a prospective
validation design to address the limitations of retrospective studies. Prospective studies can
ensure greater sample representativeness and consistency through clearly defined inclusion
and exclusion criteria and standardized data collection protocols, more accurately reflecting
real-world clinical scenarios. Moreover, prospective studies are better equipped to capture
long-term follow-up data from patients, thus further validating the stability and predictive
accuracy of our models.

The nine optimal feature categories we identified included gray-level co-occurrence
matrix (GLCM) features, gray-level size-zone matrix (GLSZM) features, shape features,
and first-order features. Seven of these feature types were obtained after processing with
the wavelet transform filter. Wavelet transforms capture details across different frequencies
and directions, a method widely used in image analysis, especially for non-stationary
signals, to effectively extract local features and edge information [17]. GLCM features focus
on texture patterns, revealing microscopic changes in tissue structure by analyzing the
spatial relationships of pixel gray levels in the image. This method has been proven to
have good diagnostic performance in various medical image analyses [18]. GLSZM also
focuses on texture features, but emphasizes the distribution of region sizes and gray levels,
providing quantitative information about tumor heterogeneity. Research indicates that
tumor heterogeneity is closely related to its biological behavior and prognosis [19]. Shape
features provide information about the geometric characteristics of nodules, parameters
often used to assess the invasiveness and growth patterns of tumors. Studies have shown
that irregular shapes are associated with an increased risk of malignancy [20]. Additionally,
among the first-order features derived after wavelet transform processing, kurtosis, energy,
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minimum, and maximum are statistical descriptors of the distribution of image gray
levels, providing important clues about tissue structure and lesion characteristics for the
model [21]. The combination of all these features provides a more nuanced and quantitative
analysis than visual inspection alone, aiding in the differentiation between benign and
malignant breast nodules.

In our study, the random forest model outperformed other classifiers, such as logistic
regression, SVM, and KNN, achieving the highest AUC of 0.79. This superiority can be
attributed to several factors. Firstly, random forest’s ensemble learning approach effectively
reduces variance and prevents overfitting, which is particularly important in our study’s
small-sample setting. Secondly, its ability to model non-linear relationships and handle
redundant features allows it to fully exploit the data’s characteristics. In contrast, other
models like logistic regression assume linearity, while SVM and MLP require extensive
hyperparameter tuning to perform well with limited data. Additionally, random forest
leverages bootstrap sampling, maximizing data utilization within the training set and
providing robust performance in the validation phase.

Previous studies [22,23] have already confirmed the application value of ultrasound
radiomics in diagnosing the benignity and malignancy of breast nodules, but our study is
the first to conduct an in-depth exploration specifically for women who had undergone
breast augmentation. We found that even in the presence of silicone breast prostheses,
ultrasound radiomics can still provide reliable diagnostic information. The AUC value of
the constructed random forest model reached 0.787, which is close to the AUC value (0.820)
obtained by Romeo V et al. using the random forest algorithm to differentiate between
benign and malignant breast lesions [24].

Compared to traditional ultrasound, mammography, and breast MRI, ultrasound
radiomics retains key advantages such as being non-radiative, cost-effective, and capable
of real-time imaging. Additionally, it enhances diagnostic accuracy and objectivity by
integrating advanced image analysis algorithms for the quantitative evaluation of breast
nodule features. Traditional ultrasound diagnoses can be subjective and variable, as they
heavily rely on the operator’s experience and skills. Mammography excels at detecting
microcalcifications, but has lower sensitivity in dense breast tissue and exposes patients to
radiation. Breast MRI, while highly detailed, is not ideal for screening due to its high cost
and lengthy examination times.

This study reveals the potential application value of ultrasound radiomics in diagnos-
ing breast nodules in women who have undergone breast augmentation. This finding is of
great significance for precision medicine because ultrasound radiomics can assist clinicians
in more accurately determining the nature of breast nodules, guiding more precise treat-
ment strategies for women who have had breast augmentation. It helps avoid unnecessary
invasive examinations or surgeries and promptly identifies malignant tumors to ensure
early intervention [25,26].

To further enhance the application of ultrasound radiomics in diagnosing breast nod-
ules after augmentation mammoplasty, we focused on three critical aspects: time efficiency,
cost-effectiveness, and training requirements. Ultrasound radiomics can process images
within minutes using modern computing resources and automated software, ensuring
rapid diagnosis without disrupting healthcare providers’ daily workflows. By leveraging
open-source tools, the initial investment costs are minimized, and ongoing research is
expected to improve diagnostic accuracy, potentially reducing the need for unnecessary
invasive procedures and leading to significant cost savings. Furthermore, a concise and
comprehensive training program, complemented by online learning platforms, enables
healthcare professionals to quickly acquire the necessary skills. Given that most radiolo-
gists are already familiar with ultrasound imaging techniques, this familiarity simplifies
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the training process and reduces its complexity. By addressing these key areas, we aim
to enhance the practicality and accessibility of ultrasound radiomics in clinical settings,
thereby improving patient care and diagnostic outcomes.

Regarding future research directions, several avenues can be considered to further
advance the field:

1. Conduct multi-center, prospective studies to increase the sample size and diversity,
thereby enhancing the generalizability of the research findings;

2. Explore deep learning studies combining multimodal ultrasound images with clinical
information and other imaging modalities (such as MRI and CT) to construct more
comprehensive diagnostic models;

3. Investigate the temporal trends of ultrasound radiomics features to assess their role in
monitoring complications associated with breast prostheses;

4. Gain a deeper understanding of the relationship between ultrasound radiomics fea-
tures and the type and material of breast prostheses to guide prosthesis selection and
long-term management.

5. Conclusions
Our study provides preliminary evidence for the application of ultrasound radiomics

in diagnosing breast nodules post-augmentation, highlighting the potential of this tech-
nology to improve clinical decision-making. However, to achieve widespread clinical
application, several challenges need to be overcome, and its efficacy and practicality must
be further validated through additional high-quality research.
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