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Abstract: Purpose: Breath-hold T2-weighted half-Fourier acquisition single-shot turbo
spin echo (HASTE) magnetic resonance imaging (MRI) of the upper abdomen with a slice
thickness below 5 mm suffers from high image noise and blurring. The purpose of this
prospective study was to improve image quality and accelerate imaging acquisition by
using single-breath-hold T2-weighted HASTE with deep learning (DL) reconstruction
(DL-HASTE) with a 3 mm slice thickness. Method: MRI of the upper abdomen with DL-
HASTE was performed in 35 participants (5 healthy volunteers and 30 patients) at 3 Tesla.
In a subgroup of five healthy participants, signal-to-noise ratio (SNR) analysis was used
after DL reconstruction to identify the smallest possible layer thickness (1, 2, 3, 4, 5 mm).
DL-HASTE was acquired with a 3 mm slice thickness (DL-HASTE-3 mm) in 30 patients
and compared with 5 mm DL-HASTE (DL-HASTE-5 mm) and with standard HASTE
(standard-HASTE-5 mm). Image quality and motion artifacts were assessed quantitatively
using Laplacian variance and semi-quantitatively by two radiologists using five-point
Likert scales. Results: In the five healthy participants, DL-HASTE-3 mm was identified as
the optimal slice (SNR 23.227 + 3.901). Both DL-HASTE-3 mm and DL-HASTE-5 mm were
assigned significantly higher overall image quality scores than standard-HASTE-5 mm
(Laplacian variance, both p < 0.001; Likert scale, p < 0.001). Compared with DL-HASTE-5
mm (1.10 x 107> £ 6.93 x 107°), DL-HASTE-3 mm (1.56 x 1075 4 8.69 x 10~°) provided
a significantly higher SNR Laplacian variance (p < 0.001) and sharpness sub-scores for the
intestinal tract, adrenal glands, and small anatomic structures (bile ducts, pancreatic ducts,
and vessels; p < 0.05). Lesion detectability was rated excellent for both DL-HASTE-3 mm
and DL-HASTE-5 mm (both: 5 [IQR4-5]) and was assigned higher scores than standard-
HASTE-5 mm (4 [IQR4-5]; p < 0.001). DL-HASTE reduced the acquisition time by 63-69%
compared with standard-HASTE-5 mm (p < 0.001). Conclusions: DL-HASTE is a robust
abdominal MRI technique that improves image quality while at the same time reducing
acquisition time compared with the routine clinical HASTE sequence. Using ultra-thin
DL-HASTE-3 mm results in an even greater improvement with a similar SNR.
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1. Introduction

Magnetic resonance imaging (MRI) of the abdomen provides high soft tissue contrast
but at the expense of long examination times and susceptibility to motion artifacts. Over
the last few decades, various techniques have been developed to improve the image quality
of T2-weighted (T2w) MR sequences by reducing respiratory or motion artifacts while
at the same time reducing the examination time. These techniques include half-Fourier
acquisition single-shot turbo spin echo (HASTE) sequencing [1], respiratory-triggered
acquisition [2,3], and parallel imaging [4], which have all become part of clinical routine.

As a single-shot sequence, HASTE is the most motion-robust T2w sequence in ab-
dominal imaging and can be acquired during breath-holds [5,6]. It is recommended that
an abdominal imaging protocol should include an axial HASTE sequence with a slice
thickness of at most 4-5 mm [7]. However, even with 4-5 mm thick slices, small anatomic
or pathologic structures may not be detected, or the course of small structures may not
be followed continuously. Acquisition of breath-hold HASTE of the upper abdomen with
thinner slices is inhibited by an insufficient signal-to-noise ratio (SNR), which decreases
with a greater slice thickness. Therefore, breath-hold thin-slice HASTE is currently only
performed for magnetic resonance cholangiopancreatography (MRCP) with heavy T2w
and limited anatomic coverage [8].

Algorithms with trainable components, referred to as deep learning (DL), provide
a potential solution for performing thin-slice breath-hold HASTE with larger anatomic
coverage. DL allows for image reconstruction with a high image quality from undersampled
and noisy k-space data. DL is very versatile and can be used to shorten image acquisition
and to improve image quality [9-14]. Previous studies have shown that 4-5 mm HASTE of
the upper abdomen is feasible with DL-based reconstruction, allowing for single-breath-
hold acquisition with a high image quality [15-18]. For example, Liu et al. [19] recently
showed that DL-HASTE enables a 4 mm slice with clinical acceptable image quality for
detecting pancreatic lesions, and Gassenmaier et al. [20] reported that 3 mm slice turbo spin
echo (TSE) T2w sequencing of the prostate provided superior image quality compared to
conventional T2-weighted imaging sequencing without increasing the acquisition time. For
upper abdominal imaging, Tajima et al. demonstrated the feasibility of 3 mm DL-based T2w
imaging at 1.5 T MRI by using several breath-holds [21]. We hypothesize that the HASTE
image quality can be improved by using DL-based reconstruction (3 mm and 5 mm voxel
slice thickness) without any loss of the SNR due to a concurrently reduced acquisition time.

The purpose of this study was to identify the lowest layer thickness after DL re-
construction when reaching an SNR plateau for the best-possible image sharpness and
to improve the sharpness of abdominal imaging with a special focus on small anatomic
structures in a larger dataset.

2. Materials and Methods

This prospective study complied with the Declaration of Helsinki and was approved by
the internal review board of Charité—Universitdtsmedizin Berlin, Germany (EA1/344/21).
All participants gave written informed consent. Siemens Healthcare (in Erlangen, Bavaria,
Germany) provided financial and technical support for the conduction of thing study. The
authors had sole control of the data and information submitted for publication.

2.1. Study Population

Thirty patients and five healthy volunteers were investigated. We initially enrolled
31 consecutive patients who underwent clinical indicated upper abdominal MRI between
March and October 2022. All patients gave informed consent to participate in this study.
One patient was excluded from the analysis because of severe ascites and artifacts related
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to overall strong magnetic field inhomogeneities. The final analysis was conducted in
30 patients (mean age, 64.8 +/— 14.37 years; range 24-83 years; 15 females; suspected liver
lesions, n = 8; pancreatic lesions, n = 12; kidney lesions, n = 10). In addition, five healthy
participants without any history of abdominal disease were enrolled in an independent
subgroup for MRI with HASTE acquisition at five different slice thicknesses.

2.2. MRI System and Acquisition Parameters

All examinations were performed on the same clinical 3 Tesla MRI system (MAG-
NETOM Vida; Siemens Healthcare, Erlangen, Bavaria, Germany) with subjects in the
supine position using an 18-channel body/spine array coil. The imaging parameters are
summarized in Table 1.

Table 1. Acquisition parameters of the three upper-abdomen T2w sequences.

Parameters Standard-HASTE-5 mm DL-HASTE-5mm DL-HASTE-3 mm
Orientation Axial Axial Axial

TA, min:s 0:45 0:19* 0:23*
TE/TR, ms 95/1100 96/535 * 97/500 *
FA, degrees 160 130-90-110-130 130-90-110-130
iPAT 2 3 3
Matrix size 384 x 253 384 x 253 384 x 253
Motior} . 3

g‘reeztg_r;?ofglme With 10 s intervals 1 1

iﬁ;e thickness, 5 5 3

Slice 35 35 45

FOV ¢, mm? 308 x 379 308 x 379 308 x 379

HASTE, half-Fourier acquisition single-shot turbo spin echo; DL, deep learning; FA, flip angle; TA, time of
acquisition; TE/TR, echo time/repetition time; iPAT, integrated parallel acquisition techniques; FOV, field of view.
* TR was individually adjusted to specific absorption rate (SAR) limits, which resulted in variable TA. ¢ FOV in
this table is the default value, which was individually adjusted clinically.

2.3. HASTE with DL Reconstruction

The HASTE sequence with deep learning (DL)-based reconstruction used in our study
is a research tool consisting of a modified pulse sequence and reconstruction algorithm, as
previously described in [13,15,16,22]. The sequence acquires k-space data using a regular
sampling scheme, as known from parallel imaging, with separate acquisition of calibra-
tion data for generating coil sensitivity maps. To reduce crosstalk in acquisitions with
a short repetition time (TR), the slice increment between consecutively acquired lines is
increased to four. Furthermore, variable flip-angle evolution is supported for refocusing
pulses in the echo train. The DL reconstruction is based on a variational network that
receives undersampled k-space data as well as precalculated coil sensitivity maps as inputs
and which generates the final images in an iterative process that alternates between a
parallel imaging-based data consistency update and hierarchical neural network-based
image enhancement. Training was performed offline in a supervised manner using about
10,000 slices acquired in the volunteers who gave written informed consent to this use of
their imaging data in accordance with local IRB guidelines. The obtained network param-
eters were then exported and provided by Siemens Healthineers (in Erlangen, Bavaria,
Germany) for prospective use in the reconstruction pipeline of the scanner.
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2.4. Analysis of Signal-to-Noise Ratio (SNR)

For SNR analysis, five DL-HASTE sequences with slice thicknesses of 1, 2, 3, 4, and
5 mm were consecutively acquired in five healthy participants. The SNR at different
resolutions was calculated as the mean divided by the standard deviation in a manually
drawn homogeneous region of interest (ROI) within the spleen. The best tradeoff between
the SNR and resolution was determined visually using an approximation of a plateau on
the graph. The voxel slice thickness with the lowest SNR on the plateau was considered
the best.

2.5. Quantitative Analysis of MR Image Quality

For the quantification of image sharpness, 30 patient images were registered onto
the standard HASTE sequence using rigid registration with the elastix toolbox [23] and
normalized to a range between 0 and 1. Laplacian variance was used as the sharpness
metric [24,25].

2.6. Qualitative Assessment of MR Image Quality

Image data of 30 patients were presented in random order to two blinded radiologists
(with 4 and 2 years of clinical experience in abdominal MRI) who performed the image
analysis independently. Each observer simultaneously evaluated and compared three
sequences per patient (standard-HASTE-5 mm, DL-HASTE-5 mm, DL-HASTE-3 mm). The
two readers evaluated the following criteria: overall image quality; delineation of abdomi-
nal organs (liver: liver hilum plane, spleen: splenic hilum plane, kidney: renal hilum plane,
and the entire pancreas); detailed anatomic structures (intestinal walls, common hepatic
duct, cystic duct, common bile duct, main pancreatic duct, adrenals, renal parenchyma,
renal sinus); conspicuity of major abdominal vessels (abdominal aorta, portal vein, celiac
trunk, splenic vessels, renal vessels, and superior mesenteric artery [SMA]); and presence
of breathing-related motion artifacts. For each of these features, a 5-point Likert score was
assigned according to the definitions compiled in Table 2.

2.7. Lesion Detection

The same two readers independently reported the number of liver lesions, maximum
lesion diameter, and lesion characteristics (solid, simple cyst, septated cyst). Only lesions
measuring at least 5 mm in diameter were included. In addition, lesion detectability was
evaluated using the same 5-point Likert scale (Table 2). Reading scores were considered
sufficient when reaching a score of four or higher [15,18].

2.8. Statistical Analysis

Non-parametric variables are presented as medians and interquartile ranges (IQR) of
the mean scores of two observers. We applied the paired Wilcoxon signed-rank test to com-
pare image quality between DL-based reconstruction and routine clinical reconstruction.
The Wilcoxon signed-rank test for continuous variables was used to compare acquisition
times and liver lesion sizes for each sequence after a non-normal data distribution was
confirmed by the Shapiro-Wilk test. For each sequence, we evaluated consistency in reader
scores on all assessed parameters using intraclass correlation coefficient (ICC) analysis,
where <0.4 = poor agreement; 0.4-0.59 = fair agreement; 0.6-0.74 = good agreement; and
0.75-1 = excellent agreement [18]. p-values less than 0.05 were considered to indicate
a statistically significant difference. All statistical analyses were performed using SPSS
version 29 (IBM Corp, Armonk, NY, USA).
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Table 2. Scoring criteria for qualitative image assessment.

Delineation of

Sharpness of

Conspicuity of renal

Score Overall I.mage Abdominal Organ  Hepatic, Bile, and Paren.chyma, Renal Conspicuity of Refsplrato.ry Lesion Detection
Quality . . Sinus, and Vessels Motion Artifact
Margins Pancreatic Ducts
Adrenal Glands
Clearly visible
Sharp anc! clear Clearly delineated  Clearly depicted and Sharp anc'l clear . with sharp
5. Excellent Excellent margin without . . . . margin No artifacts .
. in all sections delineated bilaterally . . margins and
blurring without blurring .
Inner structure
Clearly delineated Clear marein with
Clear margin with in most sections,  Clearly depicted with cat hatg Visible but minor Clearly visible
4. Good Good . . . . only . . . .
mild blurring with only focal only focal blurring . artifacts with mild blurring
g focal blurring
blurring
. . Moderate artifacts .
Moderate but Moderate blurring Moderate Moderately depicted . Moderate blurring
. . . S Moderate blurring but but -
3. Moderate sufficient for but sufficient for =~ delineation in most but - . . . but sufficient for
. . . . . - . . sufficient for diagnosis sufficient for . .
diagnosis diagnosis of sections sufficient for diagnosis . ; diagnosis
diagnosis
. . Poor and
. Extreme blurring . Lo Extreme blurring and ..
Poor and seriously Poor delineationin ~ Apparent but unclear . compromising L
2. Poor : . that affects : . . compromising . . Hardly visible
affects diagnosis ) : all sections and affects diagnosis . . . diagnostic
diagnosis diagnostic evaluation .
evaluation
1. Unreadable Unreadable Unreadable Invisible in all Unreadable Unreadable Unreadable Unreadable

sections
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3. Results
3.1. Signal-to-Noise Ratio (SNR) Analysis

An SNR plateau was observed for DL-HASTE with voxel slice thicknesses of 3-5 mm
(SNR, DL-HASTE 1 mm, 12.749 + 7.639; 2 mm, 17.714 £ 2.182; 3 mm, 23.227 4- 3.901; 4 mm,
26.314 + 5.144; 5 mm, 25.664 + 6.343). A voxel slice thickness of 3 mm was considered
optimal for the ratio between the highest SNR on the plateau and the slice thickness, see
Figure 1.

35+

30

251

20

T

SNR

15}

10

0 C L 1 1 1 1
1 2 3 4 5
Voxel size (mm)

Figure 1. Analysis of best tradeoff between signal-to-noise ratio (SNR) and resolution. Visually, a
relative plateau is recognizable between 3 and 5 mm voxel slice thicknesses. Therefore, a voxel slice
thickness of 3 mm was considered as the best ratio of the lowest SNR on the plateau.

3.2. Interobserver Agreement

Interobserver agreement between the two readers for all assessed parameters was
good-to-excellent for standard-HASTE-5 mm and DL-HASTE (standard-HASTE-5 mm:
0.76; range 0.73-0.80; DL-HASTE-5 mm: 0.77; range 0.73-0.80; DL-HASTE-3 mm: 0.85;
range 0.83-0.88). In the following section, the mean image quality scores of the two
observers are reported.

3.3. Quantitative Assessment of Overall Image Quality

Representative examples of standard-HASTE-5 mm, DL-HASTE-5 mm, and DL-
HASTE-3 mm are presented in Figure 2. The sharpness was higher in DL-HASTE-3 mm
(1.56 x 107° 4 8.69 x 10~°) compared to DL-HASTE-5 mm (1.10 x 107° £ 6.93 x 107,
p =6.80 x 1071%) and standard-HASTE-5 mm (5.59 x 107¢ +4.12 x 1076, p = 1.23 x 107).
Comparison of the standard and deep-learning-based reconstructions at the same slice
thickness revealed a higher sharpness for DL-HASTE-5 mm than standard-HASTE-5 mm
(p = 3.88 x 1077), see Figure 3.
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Standard HASTE-5 mm DL HASTE-5 mm DL HASTE-3 mm

Figure 2. Image quality of clinical standard-HASTE-5 mm (A), DL-HASTE-5 mm (B), and DL-HASTE-
3 mm (C). Image quality scores were higher for DL-HASTE ((B,C), excellent image quality) compared
with standard-HASTE-5 mm ((A), good image quality).

x107°

4t +

ot
»
T

w
+

Sharpness (Laplacian Variance)

25
2 I
+
15} ¥
1+
05
0 [ 1 1 L
HASTE DL 3 mm DL &5 mm
Figure 3. Quantitative analysis revealed higher sharpness for DL-HASTE-3 mm

(1.56 x 107 4 8.69 x 107°) compared with DL-HASTE-5 mm (1.10 x 107° + 6.93 x 107,
% p < 0.001) and standard-HASTE-5 mm (5.59 x 107% + 4.12 x 107°, p < 0.001). Sharpness of
DL-HASTE-5 mm was again higher than that of standard-HASTE-5 mm (p < 0.001).

3.4. Semi-Quantitative Assessment of Image Quality

The overall image quality was rated superior in DL-HASTE-5 mm (5 [IQR, 4-5])
and DL-HASTE-3 mm (5 [IQR, 4-5]) compared with clinical standard-HASTE-5 mm (4
[IQR, 4-4], p < 0.001); no significant difference was found between DL-HASTE-5 mm and
DL-HASTE-3 mm (p = 0.66). Furthermore, the score for motion artifacts was also better
for DL-HASTE, with a median of 5 (IQR, 4-5) versus 4 (IQR, 4-5) for standard-HASTE
(p < 0.005), but it did not differ between DL-HASTE-5 mm and DL-HASTE-3 mm (p = 0.64),
see Table 3.
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Table 3. Image quality scores and p-value of DL sequences (DL-HASTE-5 mm, DL-HASTE-3 mm) compared with standard sequence (standard-HASTE-5 mm).

Standard-HASTE-5 mm

DL-HASTE-5 mm

DL-HASTE-3 mm

Standard-HASTE-5 mm  Standard-HASTE-5 mm

vs.
DL-HASTE-5 mm

Vvs.
DL-HASTE-3 mm

DL-HAST-5 mm
VS.
DL-HASTE-3 mm

Overall image quality 4 (4-4) 5 (4-5) 5 (4-5) <0.001 * <0.001 * 0.527
Delineation of abdominal
organ margins
gver.aﬂ sharpness 4 (4-4) 5 (5-5) 5 (5-5) <0.001 * <0.001 * <0.001 *
pecific sharpness
Liver 4 (4-5) 5 (5-5) 5 (5-5) <0.001 * <0.001 * 0.083
Spleen 4 (4-5) 5 (5-5) 5 (5-5) <0.001 * 0.001 * 0.179
Kidney 4 (4-4) 5 (5-5) 5 (5-5) <0.001 * <0.001 * 0.046 *
Pancreas 4 (4-4) 5 (4-5) 5 (5-5) <0.001 * <0.001 * 0.005 *
Intestinal wall 4 (4-4) 5 (4-5) 5 (5-5) <0.001 * <0.001 * <0.001 *
Sharpness of the ducts
Common hepatic duct 4 (4-4) 4 (4-5) 5 (5-5) <0.001 * <0.001 * <0.001 *
Cystic duct 3(34) 4 (4-4) 5 (4-5) <0.001 * <0.001 * <0.001 *
Common bile duct 4 (4-5) 5 (5-5) 5 (5-5) <0.001 * <0.001 * 0.003 *
Main pancreatic duct 4 (3-4) 5 (4-5) 5 (4-5) <0.001 * <0.001 * 0.003 *
Renal and adrenal
conspicuity
Adrenals 4 (3-4) 4 (4-5) 5 (4-5) <0.001 * <0.001 * <0.001 *
Renal parenchyma 4 (4-4) 5 (5-5) 5 (5-5) <0.001 * <0.001 * 0.180
Renal sinus 4 (4-4) 5 (5-5) 5 (5-5) <0.001 * <0.001 * 1.000
Vessel conspicuity
Abdominal aorta 4 (4-4) 5 (5-5) 5 (5-5) <0.001 * <0.001 * 0.157
Portal vein 4 (3-4) 5 (4-5) 5 (5-5) <0.001 * <0.001 * <0.001 *
Celiac trunk 3(34) 4 (4-5) 5 (4-5) <0.001 * <0.001 * <0.001 *
Splenic vessel 3(34) 4 (4-5) 5 (4-5) <0.001 * <0.001 * <0.001 *
Renal vessel 4 (3-4) 4 (4-5) 5 (5-5) <0.001 * <0.001 * <0.001 *
SMA 4 (3-4) 5 (5-5) 5 (5-5) <0.001 * <0.001 * <0.001 *
Lesion detection 4 (3-4) 5 (4-5) 5 (5-5) <0.001 * <0.001 * 0.025 *
Respiratory motion artifacts 4 (4-5) 5 (4-5) 5 (4-5) 0.006 * 0.054 0.637

HASTE, half-Fourier acquisition single-shot turbo spin echo; DL, deep learning; SMA, superior mesenteric artery. * = statistically significant difference.
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Adrenal Gland Bowel

Kidney

Cystic Duct

MPD

Celiac Trunc

Standard
HASTE-5 mm

Standard
HASTE-5 mm

The detailed image quality of all anatomic regions was rated higher for DL-HASTE-
5 mm and DL-HASTE-3 mm compared with standard-HASTE-5 mm (p < 0.003), see
Figures 4 and 5). DL-HASTE-3 mm was superior to DL-HASTE-5 mm in terms of over-
all sharpness, delineation of intestinal walls and adrenal glands, and visibility of small
anatomic structures like the common hepatic duct, cystic duct, common bile duct, and
main pancreatic duct, sharpness of the portal vein, SMA, celiac trunk, and splenic and renal
vessels (all p < 0.001). No differences in edge acuity were observed for the liver, spleen, and
abdominal aorta (p > 0.08). Detailed results are provided in Table 3.

Standard
HASTE-5 mm

DL-HASTE-5 mm DL-HASTE-3 mm DL-HASTE-5 mm DL-HASTE-3 mm

Pancreas

Liver

Spleen

Figure 4. Sharpness of abdominal organ margins was compared between standard-HASTE-
5 mm (A1,B1,C1,D1,E1,F1), DL-HASTE-5 mm (A2,B2,C2,D2,E2F2), and DL-HASTE-3 mm
(A3,B3,C3,D3,E3,F3). Note the improved sharpness of the bowel and adrenal gland on DL-HASTE-
3 mm compared with DL-HASTE-5 mm (A3 vs. A2, B3 vs. B2). DL-HASTE occasionally showed tiny
zebra-striped artifacts that did not interfere with the diagnostic image quality (B2,D2,D3).

Standard
HASTE-5 mm

D1

DL-HASTE-5 mm DL-HASTE-3 mm DL-HASTE-5 mm DL-HASTE-3 mm

A2

Portal Vein

Spleen Hilus

Figure 5. Conspicuity of small abdominal anatomic structures such as cystic duct ((A), arrows), main
pancreatic duct ((B), arrows), celiac trunk ((C), arrows), portal vein ((D), arrows), and splenic hilum
vessels ((E), arrows). DL-HASTE-3 mm (A1,B1,C1,D1,E1) achieved higher image quality rating scores
than DL-HASTE-5 mm (A2,B2,C2,D2,E2) and clinical standard-HASTE-5 mm (A3,B3,C3,D3,E3).
MPD = main pancreatic duct.



Curr. Oncol. 2025, 32, 30

10 of 16

DL-HASTE infrequently showed tiny zebra-striped artifacts that did not interfere with
the diagnostic image quality, see Figure 4(B2,D2,D3).

3.5. Lesion Detection

Standard HASTE with a 5 mm slice thickness detected a total of 62 lesions (simple
cysts, 43%,; septated cysts, 5%; and solid masses, 52%) in 26 of the 30 study patients. In three
of these patients, multiple lesions (1 > 10) were detected. In these patients, only the largest
lesion was included in the further analysis. Quantitative reading showed no significant
differences concerning the number and maximum diameter (Dmax) of the detected lesions
between the three sequences (standard-HASTE-5 mm, # = 62, Dax = 21.1 £ 18.1 mm, ICC:
0.995; DL-HASTE-5 mm: # = 62, Dpmax = 21.6 & 18.4 mm, ICC: 0.997; DL-HASTE-3 mm:
n =62, Dmax = 21.4 + 18.1 mm, ICC: 0.99; standard-HASTE-5 mm vs. DL-HASTE-5 mm:
p = 0.30; standard-HASTE-5 mm vs. DL-HASTE-3 mm: p = 0.08; DL-HASTE-5 mm vs. DL-
HASTE-3 mm: p = 0.56). Lesion detectability was rated equally good for both DL-HASTE-5
mm and DL-HASTE-3 mm (5, IQR 4-5 vs. 5, IQR 4-5; p = 0.63) with significantly higher
scores than those assigned to standard-HASTE-5 mm (4, IQR 4-5; p < 0.001). Examples
of solid and cystic liver lesions are presented in Figures 6 and 7. Further details are
summarized in Table 3.

Standard HASTE-5 mm DL-HASTE-5 mm DL-HASTE-3 mm

Figure 6. Delineation of solid liver lesion on clinical standard-HASTE-5 mm (A), DL-HASTE-5 mm
(B), and DL-HASTE-3 mm (C). Lesion delineation was rated higher for DL-HASTE ((B,C), excellent
image quality) compared with HASTE ((A), good image quality).

Standard HASTE-5 mm DL-HASTE-5 mm DL-HASTE-3 mm

Figure 7. Delineation of cystic liver lesion on clinical standard-HASTE-5 mm (A), DL-HASTE-5 mm
(B), and DL-HASTE-3 mm (C). Lesion delineation was rated higher for DL-HASTE ((B,C), excellent
image quality) compared with HASTE ((A), good image quality).
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3.6. Acquisition Time

The mean acquisition time was 65 sec (three breath-holds) for clinical standard-HASTE-
5mm, 20 £ 2 s (range: 18-24 s; single breath-hold) for DL-HASTE-5 mm, and 24 4 2 s (range:
22-26 s; single breath-hold) for DL-HASTE-3 mm. The acquisition times for DL-HASTE-5
mm and 3 mm were significantly shorter than for standard-HASTE-5 mm (p < 0.001). The
acquisition time for DL-HASTE-3 mm was four seconds longer than for DL-HASTE-5 mm
(range 3-5 s; p < 0.001) due to the higher number of slices acquired (45 vs. 35).

4. Discussion

In this perspective study, we assessed the feasibility of abdominal MRI with a deep-
learning-reconstructed HASTE sequence (DL-HASTE) acquired with 3 and 5 mm slice
thickness. By employing an in-line reconstruction technique instead of an off-line DL
postprocessing reconstructed algorithm, we found that DL-HASTE provided robust and
high-quality imaging within the routine clinical workflow. Quantitative and semiquantita-
tive analyses demonstrated an improved image quality for DL-HASTE (p < 0.001) and a
shorter acquisition time (DL-HASTE-3 mm, —63%; DL-HASTE-5 mm, —69%) compared
with the routine clinical HASTE sequence. The image quality was further improved by
reducing the slice thickness from 5 to 3 mm (p < 0.001), which did not compromise the SNR.

The technical feasibility of MRI sequences with DL reconstruction has already been
demonstrated in several earlier studies [16-18,21,26]. Herrmann et al. were the first to
describe the use of DL for HASTE imaging of the upper abdomen during a single breath-
hold [15]. In their study and subsequent investigations, DL-HASTE with a 5 mm slice
thickness and fat saturation (FS) provided better image quality than standard multi-breath-
hold HASTE with FS. Our results confirm these findings for DL-HASTE-5 mm. In our
study, we used a similar DL vendor reconstruction algorithm as Herrmann et al., which was
trained offline with approximately 10,000 HASTE slices [15] acquired with 4-5 mm slice
thicknesses. An important observation of our study is that the denoising algorithm also
worked very well for HASTE with a 3 mm slice thickness. Thus, our results, for the first time,
demonstrate the feasibility of 3 mm DL-HASTE at 3 Tesla. This is further support for the
hypothesis that deep-learning-based reconstruction architectures with a physics-based data
consistency generalize rather well across different applications and field strengths, likely
because the neural-network-based image enhancement focuses on local correlations and
denoising rather than the image content, as relevant for other deep learning applications.
These DL algorithms do not need to be trained on identical MR sequences to work well in
the clinical setting, a fact that may be related to the fidelity of k-space data in the employed
network architecture. We chose a 3 mm slice thickness to achieve a reasonable anatomic
coverage within a single breath-hold of less than 25 s. In our study, DL-HASTE-3 mm
was acquired with 45 slices, resulting in 13.5 cm of coverage with a mean breath-hold
time of 24 s. In a few patients, the breath-hold time was longer than 25 s because the
TR had to be increased due to specific absorption rate (SAR) limitations. However, the
longer breath-hold time rarely resulted in substantial motion artifacts due to the rapid
single-shot acquisition scheme. Overall, DL-HASTE-3 mm achieved adequate anatomic
coverage within a reasonable breath-hold time. Nevertheless, the anatomic coverage of DL-
HASTE-3 mm was smaller than that of DL-HASTE-5 mm (17.5 cm). Therefore, for clinical
practice, we see the value of DL-HASTE-3 mm as an additive sequence for the detailed
assessment of small structures. Alternatively, DL-HASTE-3 mm could be performed as
a multiple-breath acquisition for greater coverage. Finally, the introduction of new DL
algorithms significantly reduced the examination time, mainly based on the reduction in
the TA and the reconstruction time of 2-3 min after acquisition. This yields promising
potential for MR workflow optimization.
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To the best of our knowledge, one previous study has explored the feasibility of 3 mm
T2w imaging of the upper abdomen with DL reconstruction [27]. The study was performed
at 1.5 Tesla by Tajima et al. using multi-breath-hold fast advanced spin echo (FASE) and
free-breathing fast spin echo (FSE). In accordance with our results, DL reconstruction
improved the image quality of both FASE and free-breathing FSE of the upper abdomen.
However, they did not compare their 3 mm sequences with standard 4-5 mm sequences.
Hence, it is unclear whether their DL algorithm improved the image quality compared
with the clinical standard. This is especially relevant, as their DL algorithm was only
trained on knee and head MR sequences. Tajima et al. performed DL-FASE during multiple
breath-holds with an acquisition time of 30 & 4 sec for 40-80 slices. In contrast, we
acquired 3 mm DL-HASTE during a single breath-hold to avoid composing artifacts in
patients with a variable breathing depth. In accordance with our results, Tajima et al. see
the benefit of 3 mm imaging, especially for the assessment of smaller structures like the
pancreas and adrenal glands. A further study from Liu et al. [19] demonstrated that 4 mm
single-breath-hold DL-HASTE demonstrated promising capabilities, providing significantly
superior image quality and quantitative SNR for pancreatic lesions compared to standard
T2-weighted sequences. In our study, the quantitative analysis using Laplacian variance as
a sharpness metric provided a continuous scale and overcame the subjective selection bias
associated with semi-quantitative analysis such as the Likert scale. Due to the quantitative
analysis, our results showed that smaller anatomic structures showed better sharpness
with a 3 mm compared to a 5 mm slice thickness, including the common hepatic and cystic
duct, adrenals, portal vein, celiac trunk, splenic vessels, SMA, and intestinal wall. However,
coarser structures, such as the edges of the kidneys, spleen, liver, and pancreas, or larger
vessels, like the abdominal aorta, did not show a significantly improved image sharpness
when ultra-thin 3 mm slices were acquired compared with a 5 mm slice thickness, resulting
in a similar overall image quality for the two slice thicknesses in the semiquantitative
analysis. Moreover, the evaluation of focal liver lesions showed no significant differences
between the two slice thicknesses either. However, a DL-based 3 mm T2w sequence could
be very helpful in the evaluation of complex cystic lesions in the pancreas and kidney
due to the improved visualization of cystic septation and wall thickness, which often pose
a challenge in everyday clinical practice [14,28,29]. Furthermore, a detailed pancreatic
and bile duct analysis could provide a dedicated evaluation of small structures, such as
side branches or neoplasms [30]. However, the primary focus of our study was to test
the feasibility of DL-HASTE-3 mm and its impact on the delineation of small anatomic
structures. Despite the many advantages of using DL algorithmes, it is important to note
that new non-physical artifacts are associated with them. In the current version, DL-HASTE
occasionally showed tiny zebra-striped artifacts that did not interfere with the diagnostic
image quality. They originated from interpolation, which was applied as a last step to the
DL image and could be overcome by using a different interpolation algorithm in future
versions of the DL-HASTE sequence. Further artifacts, such as banding artifacts related to
Cartesian DL reconstruction or instabilities during the imaging reconstruction, which can
potentially mask small pathologies, were reported [31,32].

This work is limited to the investigation of deep-learning-based improvements in
image quality; there is already work on the complete or partial evaluation of image data
using radiomics-based deep learning networks for image analysis. For example, the studies
by Salvaggio G. et al. and Cairone L. et al. showed the radiomics-based analyzability of
prostate lesions [33,34]. It would be interesting to investigate DL sequences in combination
with these methods. Radiomics-based methods could possibly achieve better results in
image interpretation based on a deep-learning-based enhanced image quality.
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Despite our encouraging results, our study has some limitations. First, a relatively
small number of participants from a single center were investigated. Second, in this
initial study, we focused on overall anatomic details and quantitative analysis. Third, no
reproducibility metrics were assessed in this study. Furthermore, there might be potential
bias in the qualitative assessment related to familiarity with DL-HASTE images. However,
considering the high image quality for the visualization of small structures, such as the
cystic duct, we expect a particular benefit from DL-HASTE-3 mm for imaging cystic
pathologies in future studies.

5. Conclusions

Single-breath-hold DL-HASTE with an ultra-thin 3 mm slice thickness is highly feasible
for abdominal imaging and provides high-quality images while at the same time reducing
the acquisition time by 63%. Ultra-thin 3 mm DL-HASTE imaging showed potential
clinical advantages, particularly for the detailed evaluation of small anatomic structures,
particularly ducts, vessels, and cysts. Future studies with larger numbers of cases are
needed to detect the smallest pathological changes, such as complex cysts or pancreatic
duct neoplasms.
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DL Deep learning
Dimax Maximum diameter
FA Flip angle

FS Fat saturation

FOV Field of view
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HASTE Half-Fourier acquisition single-shot turbo spin echo
I0A Interobserver agreement

iPAT Integrated parallel acquisition techniques

MRCP  Magnetic resonance cholangiopancreatography
NPV Negative predictive value

PACS Picture archiving and communication system

RTA Respiratory triggered acquisition

SNR Signal-to-noise ratio

SMA Superior mesenteric artery

SPSS Statistical Package for the Social Sciences (software)
T Tesla

TA Time of acquisition

TE Echo time

TR Repetition time

Tlw T1-weighted
T2w T2-weighted

References

1.

10.

11.

12.

13.

14.

Semelka, R.C.; Kelekis, N.L.; Thomasson, D.; Brown, M.A.; Laub, G.A. HASTE MR imaging: Description of technique and
preliminary results in the abdomen. . Magn. Reson. Imaging 1996, 6, 698-699. [CrossRef] [PubMed]

Lewis, C.E.; Prato, ES.; Drost, D.J.; Nicholson, R.L. Comparison of respiratory triggering and gating techniques for the removal of
respiratory artifacts in MR imaging. Radiology 1986, 160, 803-810. [CrossRef] [PubMed]

Nanko, S.; Oshima, H.; Watanabe, T.; Sasaki, S.; Hara, M.; Shibamoto, Y. Usefulness of the application of the BLADE technique to
reduce motion artifacts on navigation-triggered prospective acquisition correction (PACE) T2-weighted MRI (T2WI) of the liver. .
Magn. Reson. Imaging 2009, 30, 321-326. [CrossRef] [PubMed]

Griswold, M.A ; Jakob, PM.; Heidemann, R.M.; Nittka, M.; Jellus, V.; Wang, J.; Kiefer, B.; Haase, A. Generalized autocalibrating
partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 2002, 47, 1202-1210. [CrossRef] [PubMed]

Lee, M.G.; Jeong, Y.K,; Kim, ].C.; Kang, EM.; Kim, PN.; Auh, YH.; Chien, D.; Laub, G. Fast T2-weighted liver MR imaging:
Comparison among breath-hold turbo-spin-echo, HASTE, and inversion recovery (IR) HASTE sequences. Abdom. Imaging 2000,
25,93-99. [CrossRef] [PubMed]

Nakayama, Y.; Yamashita, Y.; Matsuno, Y.; Tang, Y.; Namimoto, T.; Kadota, M.; Mitsuzaki, K.; Abe, Y.; Katahira, K.; Arakawa, A;
et al. Fast breath-hold T2-weighted MRI of the kidney by means of half-Fourier single-shot turbo spin echo: Comparison with
high resolution turbo spin echo sequence. . Comput. Assist. Tomogr. 2001, 25, 55-60. [CrossRef] [PubMed]

Hill, D.V;; Tirkes, T. Advanced MR Imaging of the Pancreas. Magn. Reson. Imaging Clin. N. Am. 2020, 28, 353-367. [CrossRef]
[PubMed] [PubMed Central]

Griffin, N.; Charles-Edwards, G.; Grant, L.A. Magnetic resonance cholangiopancreatography: The ABC of MRCP. Insights Imaging
2012, 3, 11-21. [CrossRef] [PubMed] [PubMed Central]

Chen, F; Taviani, V.; Malkiel, I.; Cheng, J.Y.; Tamir, ].I.; Shaikh, J.; Chang, S.T.; Hardy, C.J.; Pauly, ].M.; Vasanawala, S.S. Variable-
Density Single-Shot Fast Spin-Echo MRI with Deep Learning Reconstruction by Using Variational Networks. Radiology 2018, 289,
366-373. [CrossRef] [PubMed] [PubMed Central]

Wang, X.; Ma, ].; Bhosale, P,; Ibarra Rovira, ].J.; Qayyum, A.; Sun, J.; Bayram, E.; Szklaruk, J. Novel deep learning-based noise
reduction technique for prostate magnetic resonance imaging. Abdom. Radiol. 2021, 46, 3378-3386. [CrossRef] [PubMed] [PubMed
Central]

Kim, M,; Kim, H.S.; Kim, H.J.; Park, J.E.; Park, S.Y,; Kim, Y.H.; Kim, S.J.; Lee, J.; Lebel, M.R. Thin-Slice Pituitary MRI with Deep
Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology 2021, 298, 114-122. [CrossRef]
[PubMed]

Lee, D.H.; Park, ].E.; Nam, Y.K,; Lee, J.; Kim, S.; Kim, Y.H.; Kim, H.S. Deep learning-based thin-section MRI reconstruction
improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Sci. Rep. 2021, 11, 21302. [CrossRef]
[PubMed] [PubMed Central]

Tanabe, M.; Higashi, M.; Yonezawa, T.; Yamaguchi, T,; lida, E.; Furukawa, M.; Okada, M.; Shinoda, K.; Ito, K. Feasibility of
high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising
technique. Magn. Reson. Imaging 2021, 80, 121-126. [CrossRef] [PubMed]

Morana, G.; Ciet, P.; Venturini, S. Cystic pancreatic lesions: MR imaging findings and management. Insights Imaging 2021, 12, 115.
[CrossRef] [PubMed] [PubMed Central]


https://doi.org/10.1002/jmri.1880060420
https://www.ncbi.nlm.nih.gov/pubmed/8835965
https://doi.org/10.1148/radiology.160.3.3737921
https://www.ncbi.nlm.nih.gov/pubmed/3737921
https://doi.org/10.1002/jmri.21855
https://www.ncbi.nlm.nih.gov/pubmed/19629991
https://doi.org/10.1002/mrm.10171
https://www.ncbi.nlm.nih.gov/pubmed/12111967
https://doi.org/10.1007/s002619910019
https://www.ncbi.nlm.nih.gov/pubmed/10652931
https://doi.org/10.1097/00004728-200101000-00010
https://www.ncbi.nlm.nih.gov/pubmed/11176294
https://doi.org/10.1016/j.mric.2020.03.003
https://www.ncbi.nlm.nih.gov/pubmed/32624154
https://pmc.ncbi.nlm.nih.gov/articles/PMC8007215
https://doi.org/10.1007/s13244-011-0129-9
https://www.ncbi.nlm.nih.gov/pubmed/22695995
https://pmc.ncbi.nlm.nih.gov/articles/PMC3292642
https://doi.org/10.1148/radiol.2018180445
https://www.ncbi.nlm.nih.gov/pubmed/30040039
https://pmc.ncbi.nlm.nih.gov/articles/PMC6209075
https://doi.org/10.1007/s00261-021-02964-6
https://www.ncbi.nlm.nih.gov/pubmed/33580348
https://pmc.ncbi.nlm.nih.gov/articles/PMC8215028
https://pmc.ncbi.nlm.nih.gov/articles/PMC8215028
https://doi.org/10.1148/radiol.2020200723
https://www.ncbi.nlm.nih.gov/pubmed/33141001
https://doi.org/10.1038/s41598-021-00558-2
https://www.ncbi.nlm.nih.gov/pubmed/34716372
https://pmc.ncbi.nlm.nih.gov/articles/PMC8556421
https://doi.org/10.1016/j.mri.2021.05.001
https://www.ncbi.nlm.nih.gov/pubmed/33971240
https://doi.org/10.1186/s13244-021-01060-z
https://www.ncbi.nlm.nih.gov/pubmed/34374885
https://pmc.ncbi.nlm.nih.gov/articles/PMC8355307

Curr. Oncol. 2025, 32, 30 15 of 16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Herrmann, J.; Gassenmaier, S.; Nickel, D.; Arberet, S.; Afat, S.; Lingg, A.; Kiindel, M.; Othman, A.E. Diagnostic Confidence and
Feasibility of a Deep Learning Accelerated HASTE Sequence of the Abdomen in a Single Breath-Hold. Investig. Radiol. 2021, 56,
313-319. [CrossRef] [PubMed]

Herrmann, J.; Wessling, D.; Nickel, D.; Arberet, S.; Almansour, H.; Afat, C.; Afat, S.; Gassenmaier, S.; Othman, A .E. Comprehensive
Clinical Evaluation of a Deep Learning-Accelerated, Single-Breath-Hold Abdominal HASTE at 1.5 T and 3 T. Acad. Radiol. 2023,
30, 93-102. [CrossRef] [PubMed]

Mulé, S.; Kharrat, R.; Zerbib, P.; Massire, A.; Nickel, M.D.; Ambarki, K.; Reizine, E.; Baranes, L.; Zegai, B.; Pigneur, F; et al. Fast
T2-weighted liver MRI: Image quality and solid focal lesions conspicuity using a deep learning accelerated single breath-hold
HASTE fat-suppressed sequence. Diagn. Interv. Imaging. 2022, 103, 479-485. [CrossRef] [PubMed]

Shanbhogue, K.; Tong, A.; Smereka, P; Nickel, D.; Arberet, S.; Anthopolos, R.; Chandarana, H. Accelerated single-shot T2-
weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: Qualitative and quantitative
comparison of image quality with conventional T2-weighted FS sequence. Eur. Radiol. 2021, 31, 8447-8457. [CrossRef] [PubMed]
Liu, K; Li, Q.; Wang, X.; Fu, C.; Sun, H.; Chen, C.; Zeng, M. Feasibility of deep learning-reconstructed thin-slice single-breath-hold
HASTE for detecting pancreatic lesions: A comparison with two conventional T2-weighted imaging sequences. Res. Diagn. Interv.
Imaging 2024, 9, 100038. [CrossRef] [PubMed] [PubMed Central]

Gassenmaier, S.; Warm, V.; Nickel, D.; Weiland, E.; Herrmann, J.; Almansour, H.; Wessling, D.; Afat, S. Thin-Slice Prostate MRI
Enabled by Deep Learning Image Reconstruction. Cancers 2023, 15, 578. [CrossRef] [PubMed] [PubMed Central]

Tajima, T.; Akai, H.; Yasaka, K.; Kunimatsu, A.; Akahane, M.; Yoshioka, N.; Abe, O.; Ohtomo, K.; Kiryu, S. Clinical feasibility of
an abdominal thin-slice breath-hold single-shot fast spin echo sequence processed using a deep learning-based noise-reduction
approach. Magn. Reson. Imaging 2022, 90, 76-83. [CrossRef] [PubMed]

Herrmann, J.; Nickel, D.; Mugler, J.P., 3rd; Arberet, S.; Gassenmaier, S.; Afat, S.; Nikolaou, K.; Othman, A.E. Development and
Evaluation of Deep Learning-Accelerated Single-Breath-Hold Abdominal HASTE at 3 T Using Variable Refocusing Flip Angles.
Investig. Radiol. 2021, 56, 645-652. [CrossRef] [PubMed]

Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P. elastix: A toolbox for intensity-based medical image registration.
IEEE Trans. Med. Imaging 2010, 29, 196-205. [CrossRef] [PubMed]

Pech-Pacheco, J.L.; Cristobal, G.; Chamorro-Martinez, J.; Fernandez-Valdivia, J. Diatom autofocusing in brightfield microscopy: A
comparative study. In Proceedings of the 15th International Conference on Pattern Recognition. ICPR-2000, Barcelona, Spain, 3-7
September 2000; Volume 3, pp. 314-317. [CrossRef]

Shahryari, M.; Meyer, T.; Warmuth, C.; Herthum, H.; Bertalan, G.; Tzschdtzsch, H.; Stencel, L.; Lukas, S.; Lilaj, L.; Braun, J.; et al.
Reduction of breathing artifacts in multifrequency magnetic resonance elastography of the abdomen. Magn. Reson. Med. 2021, 85,
1962-1973. [CrossRef] [PubMed]

Sheng, R.F,; Zheng, L.Y,; Jin, K.P,; Sun, W,; Liao, S.; Zeng, M.S.; Dai, Y.M. Single-breath-hold T2WI liver MRI with deep learning-
based reconstruction: A clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRIL. Magn. Reson.
Imaging 2021, 81, 75-81. [CrossRef] [PubMed]

Silverman, S.G.; Pedrosa, L.; Ellis, J.H.; Hindman, N.M.; Schieda, N.; Smith, A.D.; Remer, E.M.; Shinagare, A.B.; Curci, N.E,;
Raman, S.S.; et al. Bosniak Classification of Cystic Renal Masses, Version 2019: An Update Proposal and Needs Assessment.
Radiology. 2019, 292, 475-488. [CrossRef] [PubMed] [PubMed Central]

Graumann, O.; Osther, S.S.; Karstoft, J.; Herlyck, A.; Osther, P.J. Bosniak classification system: Inter-observer and intra-observer
agreement among experienced uroradiologists. Acta Radiol. 2015, 56, 374-383. [CrossRef] [PubMed]

Yenice, M.G.; Sam, E.; Arikan, Y.; Turkay, R.; Atar, EA.; Sahin, S.; Inci, E.; Tugcu, V.; Tasci, A.I. Comparison of computed
tomography and magnetic resonance imaging in the assessment of complex renal cysts by using the Bosniak classification. Actas
Urol. Esp. 2020, 44, 207-214. (In English) [CrossRef] [PubMed]

Kim, J.W,; Park, B.N.; Nickel, D.; Paek, M.Y.; Lee, C.H. Clinical feasibility of deep learning-accelerated single-shot turbo spin echo
sequence with enhanced denoising for pancreas MRI at 3 Tesla. Eur. ]. Radiol. 2024, 181, 111737. [CrossRef] [PubMed]
Almansour, H.; Herrmann, J.; Gassenmaier, S.; Afat, S.; Jacoby, J.; Koerzdoerfer, G.; Nickel, D.; Mostapha, M.; Nadar, M.; Othman,
A.E. Deep learning reconstruction for accelerated spine MRI: Prospective analysis of interchangeability. Radiology 2023, 306,
€212922. [CrossRef]

Antun, V.; Renna, F.; Poon, C.; Adcock, B.; Hansen, A.C. On instabilities of deep learning in image reconstruction and the potential
costs of, A.L. Proc. Natl. Acad. Sci. USA 2020, 117, 30088-30095. [CrossRef] [PubMed]


https://doi.org/10.1097/RLI.0000000000000743
https://www.ncbi.nlm.nih.gov/pubmed/33208596
https://doi.org/10.1016/j.acra.2022.03.018
https://www.ncbi.nlm.nih.gov/pubmed/35469719
https://doi.org/10.1016/j.diii.2022.05.001
https://www.ncbi.nlm.nih.gov/pubmed/35597761
https://doi.org/10.1007/s00330-021-08008-3
https://www.ncbi.nlm.nih.gov/pubmed/33961086
https://doi.org/10.1016/j.redii.2023.100038
https://www.ncbi.nlm.nih.gov/pubmed/39076579
https://pmc.ncbi.nlm.nih.gov/articles/PMC11265199
https://doi.org/10.3390/cancers15030578
https://www.ncbi.nlm.nih.gov/pubmed/36765539
https://pmc.ncbi.nlm.nih.gov/articles/PMC9913660
https://doi.org/10.1016/j.mri.2022.04.005
https://www.ncbi.nlm.nih.gov/pubmed/35504409
https://doi.org/10.1097/RLI.0000000000000785
https://www.ncbi.nlm.nih.gov/pubmed/33965966
https://doi.org/10.1109/TMI.2009.2035616
https://www.ncbi.nlm.nih.gov/pubmed/19923044
https://doi.org/10.1109/ICPR.2000.903548
https://doi.org/10.1002/mrm.28558
https://www.ncbi.nlm.nih.gov/pubmed/33104294
https://doi.org/10.1016/j.mri.2021.06.014
https://www.ncbi.nlm.nih.gov/pubmed/34147594
https://doi.org/10.1148/radiol.2019182646
https://www.ncbi.nlm.nih.gov/pubmed/31210616
https://pmc.ncbi.nlm.nih.gov/articles/PMC6677285
https://doi.org/10.1177/0284185114529562
https://www.ncbi.nlm.nih.gov/pubmed/24682404
https://doi.org/10.1016/j.acuro.2019.11.007
https://www.ncbi.nlm.nih.gov/pubmed/32147351
https://doi.org/10.1016/j.ejrad.2024.111737
https://www.ncbi.nlm.nih.gov/pubmed/39305750
https://doi.org/10.1148/radiol.212922
https://doi.org/10.1073/pnas.1907377117
https://www.ncbi.nlm.nih.gov/pubmed/32393633

Curr. Oncol. 2025, 32, 30 16 of 16

33. Salvaggio, G.; Comelli, A.; Portoghese, M.; Cutaia, G.; Cannella, R.; Vernuccio, F,; Stefano, A.; Dispensa, N.; La Tona, G.; Salvaggio,
L.; et al. Deep Learning Network for Segmentation of the Prostate Gland With Median Lobe Enlargement in T2-weighted MR
Images: Comparison With Manual Segmentation Method. Curr. Probl. Diagn. Radiol. 2022, 51, 328-333. [CrossRef] [PubMed]

34. Cairone, L.; Benfante, V,; Bignardi, S.; Marinozzi, F; Yezzi, A.; Tuttolomondo, A.; Salvaggio, G.; Bini, F; Comelli, A. Robustness
of Radiomics Features to Varying Segmentation Algorithms in Magnetic Resonance Images. In Image Analysis and Processing.
ICIAP 2022 Workshops. ICIAP 2022; Lecture Notes in Computer Science; Mazzeo, P.L., Frontoni, E., Sclaroff, S., Distante, C., Eds.;
Springer: Cham, Switzerland, 2022; Volume 13373. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1067/j.cpradiol.2021.06.006
https://www.ncbi.nlm.nih.gov/pubmed/34315623
https://doi.org/10.1007/978-3-031-13321-3_41

	Introduction 
	Materials and Methods 
	Study Population 
	MRI System and Acquisition Parameters 
	HASTE with DL Reconstruction 
	Analysis of Signal-to-Noise Ratio (SNR) 
	Quantitative Analysis of MR Image Quality 
	Qualitative Assessment of MR Image Quality 
	Lesion Detection 
	Statistical Analysis 

	Results 
	Signal-to-Noise Ratio (SNR) Analysis 
	Interobserver Agreement 
	Quantitative Assessment of Overall Image Quality 
	Semi-Quantitative Assessment of Image Quality 
	Lesion Detection 
	Acquisition Time 

	Discussion 
	Conclusions 
	References

