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Abstract: An increasing number of Volunteered Geographic Information (VGI) and social media
platforms have been continuously growing in size, which have provided massive georeferenced data
in many forms including textual information, photographs, and geoinformation. These georeferenced
data have either been actively contributed (e.g., adding data to OpenStreetMap (OSM) or Mapillary)
or collected in a more passive fashion by enabling geolocation whilst using an online platform
(e.g., Twitter, Instagram, or Flickr). The benefit of scraping and streaming these data in stand-alone
applications is evident, however, it is difficult for many users to script and scrape the diverse types of
these data. On 14 June 2016, a pre-conference workshop at the AGILE 2016 conference in Helsinki,
Finland was held. The workshop was called “LINK-VGI: LINKing and analyzing VGI across different
platforms”. The workshop provided an opportunity for interested researchers to share ideas and
findings on cross-platform data contributions. One portion of the workshop was dedicated to a
hands-on session. In this session, the basics of spatial data access through selected Application
Programming Interfaces (APIs) and the extraction of summary statistics of the results were illustrated.
This paper presents the content of the hands-on session including the scripts and guidelines for
extracting VGI data. Researchers, planners, and interested end-users can benefit from this paper for
developing their own application for any region of the world.

Data Set: Available as supplementary files at https://github.com/jlevente/link-vgi/tree/master/
sample_datasets

Data Set License: Readers should onsult the documentation of each VGI platform for specific
license details.

Keywords: Volunteered Geographic Information; OpenStreetMap; Flickr; Instagram; Mapillary

1. Introduction

Since the emergence of Web 2.0 technologies, a massive amount of user-generated content (UGC)
have been interactively generated by the public, which has provided us with an alternative source of
information [1]. Even though the portion of explicitly geotagged UGC (where geographical coordinates
are attached to each piece of data [2]) is not seemingly high (ranging from 2% in Twitter to 25% in
Instagram [3,4]), this trend arguably generates a significant mass of data. This is highly important
and useful for geography and the GIScience domain, as every citizen can be counted as a volunteer
mapper or a “sensor”. These volunteers can collect, edit, and share geographical information of their
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surroundings [5]. Thanks to the wide availability of GPS-enabled devices (e.g., smart phones) and the
location-based services installed on them, as well as the professional infrastructure behind VGI projects,
the quality of the collected geoinformation and, therefore, the usefulness of the VGI could potentially
be comparable to, or even better than authoritative datasets. This was shown, for example, in the
case of OSM compared to map data from national agencies [6,7] and Mapillary images vs. Google
StreetView [8]. This is because they can be more detailed in terms of attributes, whilst potentially
being collected at a finer geographical scale and being more up-to-date [2,8,9]. Therefore, a new
era in gathering geospatial information has begun in GIScience in the form of VGI [10]. The VGI
topic has attracted a huge amount of attention in research across various disciplines ranging from
environmental management to social sciences and has, in general, the potential to revolutionize
science [11]. Recent trends also indicate that creators and users of VGI have started to utilize some
user-generated content to improve the quality or enrich another VGI source [12], which is a new
research area to explore.

Due to the high importance of access to these data for end-users, it is evident that there is a need
for sharing mechanisms and tools for collecting them with a minimal amount of effort invested by
users whilst maintaining higher certainty about data. Thus, this paper aims to openly present the
guidelines, tools, and scripts for collecting VGI across multiple platforms which were presented and
tested at the LINK-VGI workshop. Readers can use these tools and scripts for collecting VGI from
various platforms.

This paper addresses methods for accessing explicitly geotagged UGC. However, as mentioned
above, this is only a small fraction of user generated content. It is important to note that there
are other techniques that can be used to spatially locate UGC with spatially implicit information
(where geography is expressed as place names or toponyms) [13]. Studies show that analyzing the
textual information embedded in UGC can lead towards the extraction of more geographic data.
For example, a prototype system solely relying on the textual information of Tweets and Flickr photos
was able to geolocate social media contributions and then report forest fire locations without using
any explicit geographic information [14,15]. Recent big data research turned to natural language
processing that can potentially be even more useful for enriching location information. The use of
more sophisticated natural language processing methods is common in big data research. Applying
natural language processing tools to “geoparse” UGC is also an ongoing research direction and is
mainly applied to Twitter [16–18]. A recent study also predicts location and estimates errors of Flickr
and Twitter data [19].

The remainder of the paper is structured as follows: Section 2 presents a brief description of the
sample data provided at the workshop while Section 3 along with a series of Appendices provide
working examples of VGI extraction from various sources. Section 4 applies these examples on two
case studies with potential applications. All materials (including sample datasets and code examples)
along with working case studies can be found in a GitHub repository via the link provided in the
Supplementary Materials section.

2. Data Description

Sample datasets (extracted from Twitter, Instagram, Flickr, Foursquare, Wheelmap, and Mapillary)
are also provided along with this paper in a GitHub folder (https://github.com/jlevente/link-vgi/
tree/master/sample_datasets [20]). The geographic extent of these sample datasets cover Helsinki
in Finland and Heidelberg in Germany (Figure 1). Table 1 describes these datasets in greater detail.
These datasets serve as examples of VGI data that can be extracted from public APIs (Application
Programming Interfaces). In some cases, additional attributes could have been extracted from these
platforms according to each API documentation, though, for the case of the exercises in the workshop,
these additional attributes were not required. It is also important to note that these services often
change over time in terms of data access. Practically, it means that methods to scrape VGI data and
the data that can be extracted need to be revised from time to time. Potential applications based on
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these datasets would be accessibility analysis, tourism analysis, city planning, and land use/cover
monitoring, to name a few [21,22].
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Flickr photos.search
(https://www.flickr.com/services/api/

flickr.photos.search.html)
“photo_id”, “url”, “lat”, “lon” 1850 + 625 flickr_[city].csv
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(https://developer.foursquare.com/docs/
venues/search)/venues (https://developer.
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“photo_count”, “tags”, “lat”, “lon”
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“created_at”, “photo_url”, “user_id”,

”user_name”, ”venue_id”

Venues: 5141 + 1239;
Photos: 12783 + 2233

foursquare_venue_[city].csv

foursquare_venue_photos_[city].csv

Instagram**—/locations/search
locations/media/recent

(https://www.instagram.com/developer/
endpoints/locations/)

Locations: “id”, “name”, “lat”, “lng”
Photos: “id”, “username”, “user_id”,
“likes”, “tags”, “comment”, “text”,

“users_in_photo”, “filter”, “url”, “lat”,
“lon”, “photo_url”, “location_id”,

”created_at”

Locations: 819 + 286;
Photos: 38427 + 7577

instagram_locations_[city].csv

instagram_photos_[city].csv

Mapillary—/search/im
(https://a.mapillary.com/#get-searchim)

“user”, “key”, “lon”, “lat”, “url”,
“captured_at”, “ca” (camera angle) 21078 + 14052 mapillary_photos_[city].csv

Twitter—/search/tweets (https://dev.twitter.
com/rest/reference/get/search/tweets)

“username”, “tweet_id”, “text”,
“created_at”, “lat”, “lon” 129 + 41 tweets_[city].csv

Wheelmap—/nodes (http://wheelmap.org/
en/api/docs/resources/nodes)

“osm_id”, “name”, “lat”, “lon”,
“category”, “type”, “accessible” 2180 + 2436 wheelmap_[city].csv

* Helsinki + Heidelberg; ** Table joins can be defined on the “id”—“venue_id” (Foursquare) and “id”—“location_id”
(Instagram) properties.

3. Material and Methods

3.1. Software Requirements

Programmatically interacting with VGI data from public APIs requires a set of software
components to be set up. During the LINK-VGI workshop, we illustrated the process with Python 2.7+
and a set of additional packages (tweepy, pyshp, psycopg2, python-flickrapi, python-instagram), along with
R statistics and a few of its external libraries (ggplot2, ggmap, plyr, wordcloud). As for traditional GIS
environments, QGIS and PostgreSQL (+PostGIS) were used. Detailed installation instructions can be
found on the public GitHub repository of the workshop (https://github.com/jlevente/link-vgi/blob/
master/requirements.md). In the remainder of this section, we illustrate each step with a series of

https://www.flickr.com/services/api/flickr.photos.search.html
https://www.flickr.com/services/api/flickr.photos.search.html
https://developer.foursquare.com/docs/venues/search
https://developer.foursquare.com/docs/venues/search
https://developer.foursquare.com/docs/venues/venues
https://developer.foursquare.com/docs/venues/venues
https://www.instagram.com/developer/endpoints/locations/
https://www.instagram.com/developer/endpoints/locations/
https://a.mapillary.com/#get-searchim
https://dev.twitter.com/rest/reference/get/search/tweets
https://dev.twitter.com/rest/reference/get/search/tweets
http://wheelmap.org/en/api/docs/resources/nodes
http://wheelmap.org/en/api/docs/resources/nodes
https://github.com/jlevente/link-vgi/blob/master/requirements.md
https://github.com/jlevente/link-vgi/blob/master/requirements.md


Data 2016, 1, 15 4 of 22

Appendices. Appendices are code snippets written in Python (unless otherwise noted) with which one
can reproduce results and explore the potential of VGI data extraction.

3.2. Interacting with APIs

An API standardizes the ways of interaction between software components. In web environments,
it is a well-defined request-response system where servers respond to client application requests.
A common practice is having different endpoints for different sets of functionalities. For example,
http://api.twitter.com/1.1/users is responsible for operations related to users (e.g., recommending
friends to follow), whereas http://api.twitter.com/1.1/geo has methods related to the geospatial
domain (e.g., searching for Tweets in a given radius). APIs usually have different, well documented
methods (functions) implemented for different functionalities (e.g., querying data, inserting new data).
These documentations define accepted parameters for each method along with the expected output
(response). A response is usually a JSON or XML document that can be further processed. In addition,
many APIs make use of the type of HTTP request (POST, PUSH, GET, etc.) which can be set by
the requesting agent. This type is then used by the responding server to identify the type of action
being requested (i.e., using GET for requesting data, or PUSH to update information in the server’s
data structure).

A number of platforms require an API key (i.e., registering for the service) to be provided from the
developer’s side. This is to protect user’s privacy, monitor usage intensity, and, in general, to govern
the different levels of data access. A general guideline is that an application should only be able to
execute operations for which it is authorized. An example could be OpenStreetMap’s JOSM editor,
where users can access data (e.g., download via API) but are only able to upload changes once logged
in with their credentials (i.e., acquired permissions to perform uploads). Different APIs implemented
different authentication systems, some being completely open and public (Overpass API (http://wiki.
openstreetmap.org/wiki/Overpass_API)) and some requiring a registered application before any
interaction (Instagram API). Table 2 lists the process and parameters needed from each platform.

Table 2. Information on the Volunteered Geographic Information (VGI) services and the corresponding
Application Programming Interfaces (APIs).

Service Registration Address Instructions Parameters Needed

Wheelmap.org http://wheelmap.org/users/sign_in
(with an OSM profile)

Once logged in, navigate to your
“Edit profile page” authentication_token

Flickr Yahoo (register for Yahoo or use an existing
Yahoo account)

Create a new application (https:
//www.flickr.com/services/apps/create/) and
check “Sharing & Extending”/Your API keys”

api_key, api_secret

Mapillary http://www.mapillary.com/map/signup
Create a Mapillary profile

Once logged in, navigate to https://www.
mapillary.com/app/settings/developers and
hit Register an application.

client_id

Twitter Sign up for Twitter

Go to Twitter Apps
(https://apps.twitter.com/app/new) and hit
Create New App. Check your credentials
under “Keys and Access Tokens”

api_key, api_secret

As mentioned above, different levels of access require different levels of authentication.
For example, a registered basic Twitter application is not able to use the /geo endpoints, nor to
pull data from a private Twitter account. However, if a user explicitly authorizes this application to
make requests in his name (and, therefore, to reach these endpoints), data can be acquired. Different
platforms implement different authentication methods to govern data usage. When developing an
application for data mining, one should always consult the API documentation and the Terms of Service
(or Terms of Usage). An example of setting up credentials for authenticated requests with Twitter is
provided in Appendix A. The example allows the developer to acquire two additional parameters
(“access_token” and “token_secret”) in addition to the parameters associated with the application with
which authenticated requests can be made.

http://api.twitter.com/1.1/users
http://api.twitter.com/1.1/geo
http://wiki.openstreetmap.org/wiki/Overpass_API
http://wiki.openstreetmap.org/wiki/Overpass_API
http://wheelmap.org/users/sign_in
https://www.flickr.com/services/apps/create/
https://www.flickr.com/services/apps/create/
http://www.mapillary.com/map/signup
https://www.mapillary.com/app/settings/developers
https://www.mapillary.com/app/settings/developers
https://apps.twitter.com/app/new
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3.2.1. Making Requests in a Python Environment

Although APIs can be used from any environment that can handle HTTP requests, it is beneficial
to make use of existing API wrappers. These wrappers are usually developed based on the API
documentation (often by third-parties) for the purpose of tackling some technical challenges for
developers and making interactions easier (i.e., handling authentication process, implementing object
classes, etc.). Using API wrappers in Python is an easy way to start. Some examples are tweepy
(http://www.tweepy.org/) for Twitter and python-instagram (https://github.com/facebookarchive/
python-instagram).

In some cases, however, such as with Wheelmap, easy to use API wrappers are not readily
available. With some basic knowledge of HTTP communication, data can still be obtained relatively
easily. The bulk of the HTTP communication can be done through built-in packages (urllib2 in Python,
for example) specifically aimed at facilitating communication of data over HTTP connections in a
straightforward manner.

3.2.2. API Methods

API methods are the most important elements of data interaction. There are different functionalities
defined for every API, together with the list of properties we can use and the expected output of
the methods. When working with a platform, the API documentation is the starting point where
one can figure out what options are available and what methods suit best for the data collection.
The documentation for different platforms can be accessed on their website. Some services have more
thorough documentation than others. Appendix B illustrates the process of searching for Tweets within
an area using search/tweets method from Twitter’s REST API. The request contains a geocode parameter
that consists of a pair of latitude and longitude values and a radius value. This is also an example of
using an existing API wrapper from Section 3.2.1.

As mentioned earlier, not all APIs have a wrapper available to make communication easy.
One example of these is Wheelmap. In the case that a wrapper class is not available, data can
normally be obtained through connection with the API through direct HTTP requests. Appendix C
showcases the interactions without an API wrapper. Within Python, there is the urllib2 built-in package
that can perform such tasks. Using the urllib2 package, calls are made up of two components: a request
and a response. The request is sent by the client (the Python script) to the API and basically asks for
some specific action to be performed along with additional information such as search parameters,
authentication tokens, and requested response data type. This request can be an action such as getting
a list of features, creating a new feature, or any other process of the service that the API exposes. In this
case, the simplest approach of asking for some data is used. The response component is what the API
sends back to the client and contains the data obtained and/or response codes indicating whether the
operation was successful. Compared to the previous examples, one can note that there are additional
steps performed in this solution. Without available API wrappers, the programmer is responsible
for building direct URLs and handling pagination for the response dataset, amongst other methods
that may need to be implemented. Authentication for Wheelmap is done by providing the “api_key”
parameter in the requests.

3.3. Exporting Data from APIs

Since different APIs use different data structures that are often not relational and are not in a
tabular format, the next step in VGI data collection after acquiring the data from a service is usually
exporting the result set into a widely used data format. The general idea is to reshape the data structure
so it can be integrated into other systems. The process involves looping through result sets and adding
data to a result set of standard format. Outputs can be anything that can be created in programming
environments. If data falls in the geospatial domain, geospatial data formats can be used as well.

http://www.tweepy.org/
https://github.com/facebookarchive/python-instagram
https://github.com/facebookarchive/python-instagram
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3.3.1. Plain CSV

Plain CSV files are often used as an exchange format as they are easy to handle. A Python code
snippet to get tweets within a radius of a given point and write results to a CSV file is given in
Appendix D. In this example the Python core package csv is used to create a CSV file of geocoded
Tweets. Properties to export can be decided either when examining the result set or can also be
determined from the Result section of Twitter’s API documentation (https://dev.twitter.com/rest/
reference/get/search/tweets). For simplicity, this code snippet exports some basic information such
as username, tweet id, message of the post, timestamp of post, and a latitude-longitude coordinate
pair corresponding to the location. As fields can be missing in the response set, it is often useful to
implement some error handling solutions in the code (e.g., try—except statements in Python).

3.3.2. GeoJSON

GeoJSON is a common interchange format gaining popularity over the recent years. It is commonly
used in web environments to transport geospatial data but most Desktop GIS software can read and
write the format as well. Some API methods return GeoJSON directly meaning that there is no need for
conversion. However, often GeoJSON documents have to be built manually. The process of building a
GeoJSON file is illustrated in Appendix E. This Python function can be used to extend Appendix C
with the export functionality so that all Wheelmap nodes could be further processed in a desktop
GIS software.

3.3.3. Shapefile

Shapefiles are well known to all GIS professionals, therefore, it is useful to learn how to create
them in Python. Appendix F queries Mapillary photos in a given area and exports them as a shapefile.
The example uses the search/im (https://a.mapillary.com/#get-searchim) method from the Mapillary
API to access images nearby a specified location expressed by latitude and longitude coordinates.
Similar to the urrlib2 package seen in the Wheelmap example, another package called requests can be
used to handle HTTP requests in the absence of an available API wrapper. The process starts with
defining the request parameters and manually building the URL for the GET requests. The code
snippet could be easily extended to handle multiple result pages as well. This example also uses the
pyshp package for writing a shapefile.

3.3.4. PostGIS

PostgreSQL is the leading open source Relational Database Management System and can be
considered as a geographic data store with its PostGIS extension. In addition, it allows the execution
of many geospatial operations in a highly customizable manner. The database can be integrated in the
data collection process and then it can be used not just as a data store but as a powerful processing
framework or even for collaborative work. Appendixs G and H show the process of exporting locations
from OSM’s OverpassAPI identifying where drinking water can be obtained. The first step is creating
a database and then setting it up for the data. PostGIS is an extension that needs to be enabled for
the database. Similarly, hstore can be used to store key-value pairs. Since PostgreSQL uses a database
schema to describe data, the table structure needs to be defined first (Appendix G). Connecting to the
database and populating it with data then can be done within a Python environment (Appendix H).

3.4. Extracting Summary Statistics in an R Environment

In addition to accessing VGI platforms and standardizing formats, exploratory analysis provides
better understanding of the nature of these data. R statistics is a widely used statistical framework to
analyze VGI sources. In general, however, standardized outputs scraped from APIs can be processed
in any statistical software. The purpose of this step is to explore data, create charts, and apply
statistical tests.

https://dev.twitter.com/rest/reference/get/search/tweets
https://dev.twitter.com/rest/reference/get/search/tweets
https://a.mapillary.com/#get-searchim
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The following example uses data from the Instagram API. The harvested dataset contains
information of photos posted to Instagram since 1 January 2015 in downtown Helsinki. A sample
dataset of Instagram locations and Instagram photo metadata are provided in a GitHub folder
(https://github.com/jlevente/link-vgi/tree/master/sample_datasets). Please note that Instagram
API has changed its policy as of 1 June 2016 (http://developers.instagram.com/post/133424514006/
instagram-platform-update). All registered applications start with limited access to data and thus the
method presented above does not work with real data. However, API methods have not been changed
and in theory it is possible to obtain a higher level of access for Instagram.

This data allows us to extract insights about popular places in Helsinki by quantifying data
upload intensity and extracting basic measures. This ultimately leads towards an understanding of
how Instagram users post photos.

3.4.1. Data Access

The importance of this first step is to actually load the data into R. It can be done by connecting R
to PostgreSQL with the RPostgreSQL package. Importing many other formats, such as shapefiles or
even JSON documents, is also possible. This example uses the quickest way to get started, which is
reading CSV files (Appendix I).

The import of data results in three data frames for different datasets. The head() and summary()
functions can be called to examine if the data is correctly loaded. At this point, all the powerful
functionalities of R can be used, such as nrow(locations), which yields that the data frame contains
819 locations. To visualize the spatial distribution, a map can be drawn as an R plot with the ggmap
package that extends the functionality of ggplot2 with handy tools to manage spatial data, such as
loading background tiles [23]. Once all necessary packages are loaded, Appendix J can be used to
generate a map of locations (Figure 2).
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3.4.2. Data Exploration and Analysis

Since the data is already imported in an R workspace, further explorations are relatively easy.
For example, the total number of photos and summary measures by locations can be extracted with
simple commands. Distributions can also be visualized as simple histograms. Appendix K shows a
few examples of data explorations along with the extraction of 20 the most popular places in terms of
unique users (Figure 3).

https://github.com/jlevente/link-vgi/tree/master/sample_datasets
http://developers.instagram.com/post/133424514006/instagram-platform-update
http://developers.instagram.com/post/133424514006/instagram-platform-update
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When looking at popular places, for wheelchair users it is important to know if the place is
accessible to them or not. For example, it is not particularly useful to plan a trip to several cafes during
a vacation in a city if the person doing the trip cannot use the cafe itself.

Wheelmap is a service developed by Sozialhelden in Berlin that aims at allowing users to view
and edit whether a place is accessible to wheelchair users. The base data used are POI features from
OSM, with the accessibility information being stored against the POI in the OSM dataset. The possible
values for this accessibility are “yes”, “limited”, “no”, and “unknown”. They provide an API that can
be used to harvest the information contributed to the Wheelmap service.

It is possible to create a basic link between the Wheelmap and Foursquare datasets based on
the name given to the POI. Though this is by no means perfect as multiple places can have the same
name or the same place could have a different spelling between datasets. As a simple exercise for
understanding accessibility of popular places it can generate a powerful representation. Using the
datasets and QGIS, Figure 7 was produced for the central Helsinki area. In that figure, the size of the
circle represents popularity based on Foursquare check-ins (larger = more check-ins), and the color
represents the accessibility (red = not accessible, yellow = limited accessibility, green = accessible, and
grey = unknown).

Data 2016, 1, 15 10 of 23 

 

When looking at popular places, for wheelchair users it is important to know if the place is 
accessible to them or not. For example, it is not particularly useful to plan a trip to several cafes during 
a vacation in a city if the person doing the trip cannot use the cafe itself. 

Wheelmap is a service developed by Sozialhelden in Berlin that aims at allowing users to view 
and edit whether a place is accessible to wheelchair users. The base data used are POI features from 
OSM, with the accessibility information being stored against the POI in the OSM dataset. The possible 
values for this accessibility are “yes”, “limited”, “no”, and “unknown”. They provide an API that can 
be used to harvest the information contributed to the Wheelmap service. 

It is possible to create a basic link between the Wheelmap and Foursquare datasets based on the 
name given to the POI. Though this is by no means perfect as multiple places can have the same name 
or the same place could have a different spelling between datasets. As a simple exercise for 
understanding accessibility of popular places it can generate a powerful representation. Using the 
datasets and QGIS, Figure 7 was produced for the central Helsinki area. In that figure, the size of the 
circle represents popularity based on Foursquare check-ins (larger = more check-ins), and the color 
represents the accessibility (red = not accessible, yellow = limited accessibility, green = accessible, and 
grey = unknown). 

 
Figure 7. Accessibility of popular places in central Helsinki. 

In addition to being able to portray the accessibility of places, the two datasets can be compared 
to determine the amount of spatial difference between the same POIs in each dataset. As the same 
POI (say a particular cafe) is recorded in both datasets, but via different methods, there is often a 
discrepancy which makes linking by location difficult. By measuring the distance between two POIs 
with the same name, it is possible to get a limited understanding of how much difference is present. 
Figure 8 shows lines linking features with the same name. All lines greater than 200 m in length were 
removed from the data as it is likely that these mostly represent differences between places that have 
the same name multiple times (i.e., McDonald’s fast food restaurants). From performing basic 
statistics on these line features (not longer than 200 m) within QGIS, an average displacement 
between the POIs in the two datasets is found to be 39 m. 

Figure 7. Accessibility of popular places in central Helsinki.

In addition to being able to portray the accessibility of places, the two datasets can be compared
to determine the amount of spatial difference between the same POIs in each dataset. As the same
POI (say a particular cafe) is recorded in both datasets, but via different methods, there is often a
discrepancy which makes linking by location difficult. By measuring the distance between two POIs
with the same name, it is possible to get a limited understanding of how much difference is present.
Figure 8 shows lines linking features with the same name. All lines greater than 200 m in length were
removed from the data as it is likely that these mostly represent differences between places that have
the same name multiple times (i.e., McDonald’s fast food restaurants). From performing basic statistics
on these line features (not longer than 200 m) within QGIS, an average displacement between the POIs
in the two datasets is found to be 39 m.
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5. Discussion

With the evolution of user-generated content on the Internet, researchers often face problems with
data collection. The collection process contains unique solutions depending on the data source and
type of data, and there is no standard way to extract data for research purposes. This can be confusing,
especially without a background in programming. However, most VGI platforms provide public APIs,
which make it possible to extract potentially useful data for answering many research questions in a
relatively straightforward manner. In this paper, we provided an overview of methods used in API
interactions when working with VGI data from multiple platforms. Starting from the description
of APIs through standardizing output formats, the paper presents some easy and generic ways to
extract meaningful information from the dataset in a statistical environment. Our examples provide
Twitter, Instagram, Mapillary, Wheelmap, Flickr, and OSM data and aimed to encourage researchers to
integrate these solutions in their research methodology. We also provide an open repository consisting
of code and step-by-step case studies available on a GitHub page that can be further used for discussion
and collaboration. The materials are based on the LINK-VGI pre-conference workshop held in Helsinki,
Finland on June 14 during the AGILE conference. This paper serves as a starting point for researchers
exploring public APIs of user-generated content providers, allowing them to start their own data
collection campaigns. We also provided some sample datasets illustrating some possible outputs.

Although this paper focuses on the extraction and usage of VGI data, it does not address other
common concerns about VGI, such as data quality and credibility [25,26] as well as legal and liability
issues [27]. By nature, VGI datasets are not homogeneous and they are not representative of the whole
population. For these reasons, we strongly advise against using data acquired from VGI platforms
without further investigation and quality checks in research studies. Failure to address these concerns
can lead to different and unreliable results when performing data analysis.

Supplementary Materials: It is available online https://github.com/jlevente/link-vgi.

Author Contributions: Levente Juhász, Adam Rousell, and Jamal Jokar Arsanjani contributed to organizing the
LINK-VGI hands-on session as well as the writing of the paper. The materials for the paper were prepared by
Levente Juhász and Adam Rousell. All authors have read and approved the final manuscript.

https://github.com/jlevente/link-vgi
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Appendix A. Acquiring a User Access_Token and Token_Secret for Authenticated
Twitter Requests

import tweepy

consumer_token = “Your apps token”

consumer_secret = “Your apps secret”

def get_user_tokens(consumer_token, consumer_secret):

auth = tweepy.OAuthHandler(consumer_token, consumer_secret)

print “Navigate to the following web page and authorize your application”

print(auth.get_authorization_url())

pin = raw_input(“Enter the PIN acquired on Twitter website”).strip()

token = auth.get_access_token(verifier=pin)

access_token = token[0]

token_secret = token[1]

print “With the following tokens, your application should be able to make

requests on behalf of the specific user”

print “Access token: %s” % access_token

print “Token secret: %s” % token_secret

return access_token, token_secret

access_token, token_secret = get_user_tokens(consumer_token, consumer_secret)

Appendix B. Searching for Tweets within a Given Radius around a Center Point Using an
Existing API Wrapper

import tweepy

# Set your credentials as explained in the Authentication section

consumer_key = “Your consumer key”

consumer_secret = “Your consumer secret”

# Access tokens are needed only for operations that require authenticated requests

access_key = “Authorized access token acquired from a user”

access_secret = “Authorized access token secret”

# Set up your client

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_key, access_secret)

api = tweepy.API(auth)

# Get some tweets around a center point (see http://docs.tweepy.org/en/v3.5.0/api.

html#API.search )

tweets = api.search(geocode=‘37.781157,-122.398720,1km’)

# Print all tweets

for tweet in tweets:

print “%s said: %s at %s. Location: %s” % (tweet.user.screen_name,
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tweet.text, tweet.created_at, tweet.geo[‘coordinates’])

print “---”

Appendix C. Accessing Wheelmap API through Direct HTTP Requests in Python

import json

import urllib2

api_key = ‘xxx’

class WheelmapItem:

def __init__(self, name, osm_id, lat, lon, category, node_type, accessible):

self.name = name

self.osm_id = osm_id

self.lat = lat

self.lon = lon

self.category = category

self.node_type = node_type

self.accessible = accessible

def getName(self):

if not self.name:

return “

else:

return self.name.encode(‘utf-8’)

def getWheelmapNodes(ll_lat, ll_lon, ur_lat, ur_lon, page, accessible):

bbox = str(ll_lat) + ‘,’ + str(ll_lon) + ‘,’ + str(ur_lat) + ‘,’ + str(ur_lon)

url = ‘http://wheelmap.org/api/nodes?api_key=‘ + api_key + ‘&bbox=‘ + bbox +

‘&page=‘ + str(page)

if accessible != None:

url = url + ‘&wheelchair=‘ + accessible

headers = {‘User-Agent’:’Python’}

req = urllib2.Request(url, None, headers)

print (url)

resp = urllib2.urlopen(req).read().decode(‘utf-8’)

return json.loads(resp)

# When we get the first load of data we can read the meta info to see how many pages

there are in total

firstPage = getWheelmapNodes(8.638939,49.397075,8.727843,49.429415,1,None)

numPages = firstPage[‘meta’][‘num_pages’]

# so now we need to loop through each page and store the info

pagedData = []

pagedData.append(firstPage)

http://wheelmap.org/api/nodes?api_key=
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for i in range (2,numPages+1):

pagedData.append(getWheelmapNodes(8.638939,49.397075,8.727843,49.429415,i,None))

# now that we have the data we should go through and create a list of items

# for now we will store the name, location, category, node type, accessibility

and osm id

items = []

for i in range (0,len(pagedData)):

page = pagedData[i]

# go through each item

nodes = page[‘nodes’]

for node in nodes:

item = WheelmapItem(node[‘name’], node[‘id’], node[‘lat’], node[‘lon’],

node[‘category’][‘identifier’], node[‘node_type’][‘identifier’], node[‘wheelchair’])

items.append(item)

print(‘Total items read: ‘ + str(len(items)))

Appendix D. Writing Result Tweets as a CSV File

import tweepy

import csv

# Set your credentials as explained in the Authentication section

consumer_key = “Your consumer key”

consumer_secret = “Your consumer secret”

# Access tokens are needed only for operations that require authenticated requests

access_key = “Authorized access token acquired from a user”

access_secret = “Authorized access token secret”

# Set up your client

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_key, access_secret)

api = tweepy.API(auth)

# Get some tweets around a center point (see http://docs.tweepy.org/en/v3.5.0/api.

html#API.search )

tweets = api.search(geocode=‘60.1694461,24.9527073,1km’)

data = {

“username”: ““,

“tweet_id”: ““,

“text”: ““,

“created_at”: ““,

“lat”: ““,

“lon”: ““

}

# Init a CSV writer
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with open(“tweet_export.csv”, “wb”) as csvfile:

fieldnames = [“username”, “tweet_id”, “text”, “created_at”, “lat”, “lon”]

writer = csv.DictWriter(csvfile, delimiter=‘,’, quotechar=‘“‘,

quoting = csv.QUOTE_MINIMAL, fieldnames=fieldnames)

writer.writeheader()

# Loop through all tweets in the result set and write specific fields in the CSV

for tweet in tweets:

try:

data[“username”] = tweet.user.screen_name

data[“tweet_id”] = tweet.id

data[“text”] = tweet.text.encode(‘utf-8’)

data[“created_at”] = str(tweet.created_at)

data[“lon”] = tweet.geo[‘coordinates’][0]

data[“lat”] = tweet.geo[‘coordinates’][1]

writer.writerow(data)

except:

print ‘Error occured. Field does not exist.’

Appendix E. Function to Extend Appendix C with GeoJSON Export

# This method takes a list of WhelmapItems and writes them to a GeoJSON file

def exportWheelmapNodes(node_list, file_name):

# Init geojson object

geojson = {

“type”: “FeatureCollection”,

“features”: []

}

# Loop through the list and append each feature to the GeoJSON

for node in node_list:

# Populate feature skeleton

feature = {

“type”: “Feature”,

“geometry”: {

“type”: “Point”,

“coordinates”: [node.lon, node.lat]

},

“properties”: {

“name”: node.getName(),

“osm_id”: node.osm_id,

“category”: node.category,

“node_type”: node.node_type,

“accessible”: node.accessible

}

}

# Append WheelnodeItem to GeoJSON features list

geojson[“features”].append(feature)
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# Finally write the output geojson file

f = open(file_name, “w”)

f.write(json.dumps(geojson))

f.close()

# Use it as:

exportWheelmapNodes(items, “wheelmap_nodes.geojson”)

Appendix F. Writing Mapillary Image Dataset to a Shapefile

import requests

import json

import shapefile

from datetime import datetime

mapillary_api_url = “https://a.mapillary.com/v2/“

api_endpoint = “search/im”

client_id = “Your Mapillary Client ID”

request_params = {

“client_id”: client_id,

“min_lat”: 60.1693326154,

“max_lat”: 60.17107241,

“min_lon”: 24.9497365952,

“max_lon”: 24.9553370476,

“limit”: 100

}

# Make a GET requests

photos = requests.get(mapillary_api_url + api_endpoint + ‘?client_id=‘ + client_id +

‘&min_lat=60.1693326154&max_lat=60.17107241&min_lon=24.9497365952&max_lon=24.9553370476’)

photos = json.loads(photos.text)

# Init shapefile

writer = shapefile.Writer(shapefile.POINT)

writer.autoBalance = 1

writer.field(‘image_url’, ‘C’)

writer.field(‘captured_at’, ‘C’)

writer.field(‘username’, ‘C’)

writer.field(‘camera_angle’, ‘C’)

# Add each photo to shapefile

for photo in photos:

writer.point(photo[‘lon’], photo[‘lat’])

writer.record(image_url=‘http://mapillary.com/map/im/‘ + photo[‘key’],

username=photo[‘user’], camera_angle=str(photo[‘ca’]), captured_at=str(datetime.

fromtimestamp(photo[‘captured_at’]/1000)))

writer.save(‘my_mapillary_photos.shp’)

file = open(filename + ‘.prj’, ‘w’)

https://a.mapillary.com/v2/
http://mapillary.com/map/im/
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# Manually add projection file

file.write(‘GEOGCS[“GCS_WGS_1984”,DATUM[“D_WGS_1984”,SPHEROID[“WGS_1984”,6378137,298.

257223563]],PRIMEM[“Greenwich”,0],UNIT[“Degree”,0.017453292519943295]]’)

file.close()

Appendix G. Setting up a PostgreSQL Database before Inserting OSM Data from OverpassAPI
(SQL Statements)

-- Add PostGIS extension

CREATE EXTENSION postgis;

-- Add hstore extension to store tags as key-value pairs

CREATE EXTENSION hstore;

-- Init table

CREATE TABLE drinking_water (

id bigint,

user varchar,

user_id int,

created_at timestamp,

version int,

changeset int,

tags hstore

);

-- Add a POINT geometry column to the table

SELECT AddGeometryColumn(‘drinking_water’, ‘geom’, 4326, ‘POINT’, 2);

Appendix H. Populating a PostgreSQL Table with OSM Data from OverpassAPI

import psycopg2

import json

import requests

# This function calls OverpassAPI and asks for all nodes that contain

“amenity”->“drinking_water” tag

def query_nodes(bbox):

# OverpassAPI url

overpassAPI = ‘http://overpass-api.de/api/interpreter‘

postdata = “‘

[out:json][bbox:%s][timeout:120];

(

node[“amenity” = “drinking_water”]

);

out geom;

out meta;

>;

“‘

# Sending HTTP request toward OverpassAPI

data = requests.post(overpassAPI, postdata % (bbox))

# Parse response
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data = json.loads(data.text)

return data

# This function uploads the data to the PostgreSQL server

def upload_data(data):

with_no_geom = 0

sql = ‘INSERT INTO drinking_water (id, user, user_id, created_at, version,

changeset, tags, geom) VALUES (%s, %s, %s, %s, %s, %s,

ST_SetSRID(ST_MakePoint(%s, %s), 4326));’

# Define a connection

conn = psycopg2.connect(host = ‘localhost’, user = ‘postgres’, password=‘postgres’,

dbname = ‘osm_data’)

psycopg2.extras.register_hstore(conn)

# Initialize a cursor

cursor = conn.cursor()

# Loop through all OSM nodes

for node in data[‘elements’]:

# Call the INSERT INTO sql statement with data from the current node

cursor.execute(sql,(node[‘id’], node[‘user’], node[‘uid’], node[‘timestamp’],

node[‘version’], node[‘changeset’], node[‘lon’], node[‘lat’]))

# Finally commit all changes in the database

conn.commit()

# Lago Maggiore

bbox = ‘45.698507, 8.44299,46.198844,8.915405’

# Start with putting all nodes in the variable called drinking_water

drinking_water = query_nodes(bbox)

# Pass this variable containing all OSM nodes to the upload script that will insert

it to the PostgreSQL database

upload_data(drinking_water)

# Alternatively you can visualize your data in QGIS, or you can simply make a query toward the

# database to see if it worked

# -- Select 10 nodes

# SELECT id, user, created_at, tags from drinking_water limit 10

Appendix I. Reading Csv Files in a Statistical Environment (Rscript)

locations <-read.csv(‘locations.csv’, as.is=T, quote=“”“)

photos <-read.csv(‘photos.csv’, as.is=T, quote=“”“)

# No quoting in this file. Always check source first!

hashtags <-read.csv(‘hashtags.csv’, as.is=T, header=F)
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Appendix J. Visualizing Instagram Locations (Rscript)

library(‘ggplot2’)

library(‘plyr’)

library(‘wordcloud’)

library(‘ggmap’)

# Once the packages are loaded, continue with the creation of a map of locations.

# Set map center to the arithmetic mean of lat-long coordinates

center <- c(lon = mean(locations$lon), lat = mean(locations$lat))

# Init map background to OpenStreetMap tiles at zoom level 15

background <- get_map(location = center, source = ‘osm’, zoom = 15)

# Create a ggmap object

map <- ggmap(background, extent = ‘device’)

# Hint: typing map to the console (calling your object) will print out the

background map

# Populate map plot with points using the geom_point() function

map <- map + geom_point(data = locations, aes(x = lon, y = lat), color = ‘green’,

size = 2)

# Heatmap style visualization of density with countour lines

map <- map + stat_density2d(data=locations, aes(x = lon,y = lat, fill = ..level..,

alpha = ..level..), geom=‘polygon’, size = .3) +

scale_fill_gradient(low = ‘yellow’, high = ‘red’, guide = F) +

stat_density2d(data = locations, aes(x = lon, y = lat), bins = 5, color = ‘red’,

size = .3) +

scale_alpha(range = c(0, .2), guide = F)

# Finally, we can annotate our plot

map <- map + ggtitle(‘Instagram locations in Helsinki’) + geom_text(data =

locations[sample(1:nrow(locations),20),], aes(x = lon, y = lat, label = name),

size = 5, check_overlap=T)

# Type “map” to the console again to see your final map.

Appendix K. Simple Data Exploration (Rscript)

# Total number of photos

nrow(photos)

# Total number of unique users posting photos in these locations

length(unique(photos$username))

# Summarizing data by location

# Check out also count(), join() and merge() functions!
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locations[‘user_count’] <- NA

locations[‘photo_count’] <- NA

# sapply() summarizes users by applying the length() function for all location_ids

(i.e., what is the

# length of the list of users for a location?)

locations[‘user_count’] <- sapply(locations$id, function(x)

length(unique(photos[photos$location_id==x,]$username)))

# Again, we answer to the question “How many rows do we have after truncating our

photos data

# frame to the specific location?” with sapply()

locations[‘photo_count’] <- sapply(locations$id, function(x)

nrow(photos[photos$location_id==x,]))

# Draw histograms to see how popularity of places is distributed

# Histogram of user counts by location

hist(locations$user_count)

# Histogram of uploaded photos for each location

hist(locations$photo_count)

# Extract top 20 places with most users

plot_data <- locations[order(-locations$user_count),][1:20,]

plot_data <- transform(plot_data[,c(‘name’,’user_count’)],

name = reorder(name, order(user_count, decreasing=T)))

# Create a bar plot of user counts for the 20 most visited locations

ggplot(plot_data, aes(x = name, y = user_count)) + geom_bar(stat = ‘identity’) +

theme_bw() + theme(axis.text.x = element_text(angle = 90),

axis.title.x = element_blank()) + ylab(‘User counts’)

Appendix L. Exploring Instagram Photo Upload Intensity over the Days of Week (Rscript)

# Extract the Day of Week from the timestamp

days <- format(as.Date(photos$created_at), format = ‘%A’)

# Calculate frequencies using the count() function from the plyr package

freq_table <- count(days)

ggplot(freq_table, aes(x = x, y = freq)) + geom_bar(stat = ‘identity’) +

theme_bw() + xlab(‘Day of week’) + ylab(‘Photos uploaded’)

Appendix M. Generating a Wordcloud of Instagram Hashtags (Rscript)

# Let’s count the occurances of each hashtag with the count() function

hashtag_freq <- count(hashtags)

# We can also rename the columns

names(hashtag_freq) <- c(“hashtag”,”freq”)
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# Finally, let’s generate a wordcloud.

wordcloud(words = hashtag_freq$hashtag, freq = sqrt(hashtag_freq$freq),

min.freq = 1, max.words=200, rot.per = 0.25,colors = brewer.pal(8,”Dark2”))

# Hint: type ?wordcloud in the console if you’re using RStudio to see what additional

parameters you can use to control the appearance of your wordcloud.

Appendix N. Fitting a Linear Regression on Instagram “likes” and Number of Tagged
Users (Rscript)

# Let’s drop those photos with 0 tagged users and 0 likes

subset <- photos[photos$tagged_users > 0 & photos$likes > 0,]

# Since we’re about to build a linear regression model, let’s do a dummy

normality check

hist(subset$likes)

# Log transform like counts since they’re not normally distributed

likes <- log10(subset$likes)

tagged_users <- subset$tagged_users

# Build simple linear regression

reg <- lm(likes ~ tagged_users)

plot(tagged_users, likes)

abline(reg, col = ‘red’)

# Check the summary to see if the relationship is statistically significant

summary(reg)
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