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Abstract: Data for Stark full widths at half maximum for 46 Co II multiplets were calculated using
a modified semiempirical method. In order to show the applicability and usefulness of this set of
data for research into white dwarf and A type star atmospheres, the obtained results were used to
investigate the significance of the Stark broadening mechanism for Co II lines in the atmospheres of
these objects. We examined the influence of surface gravity (log g), effective temperature and the
wavelength of the spectral line on the importance of the inclusion of Stark broadening contribution
in the profiles of the considered Co II spectral lines, for plasma conditions in atmospheric layers
corresponding to different optical depths.
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1. Introduction

The importance of Co II spectral lines, weak or strong (weak lines of Co II could help in the better
adjustment of cobalt abundance measured on the basis of existing strong Co I lines), for the cobalt
abundance determination in the spectra of A to F type stars, has been discussed elsewhere [1]. For
this reason, Stark full widths at half maximum for 46 Co II multiplets have been calculated [2,3] to be
helpful for astrophysical purposes. Calculation for all 46 multiplets were done using the modified
semiempirical method (MSE) [4]. Stark broadening of spectral lines is the dominant broadening
mechanism in the cases of high-temperature and dense plasma which can be found in hot star
atmospheres. It is noticed that disregarding the Stark broadening effect in the process of spectral line
synthesis can produce a worse fit of synthetic with observed spectral lines (see, for example, [5]), or
can cause errors in abundance determination, especially for A-type stars ([6], for example).

In this paper, the applicability and usefulness of an electron-impact broadening dataset for Co II
lines for investigations of white dwarf and A-type star atmospheres is analyzed. Stark broadening of
the lines in the spectra of hot and dense celestial objects such as white dwarfs (WD), because of specific
conditions of high electron density and high temperature in their atmospheres, usually dominates
on Doppler broadening. Consequently, particular attention has been payed to hydrogen-rich (DA)
and helium-rich (DB) types of WD, trying to figure out if a change in the physical conditions in their
atmospheres, such as effective temperature or surface gravity, affects the relationship between thermal
Doppler and electron-impact broadening for particular spectral lines.
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2. Dataset and Methods of Research

Stark broadening theory has its application both in laboratory research as well as in astrophysical
plasma [4,7–12]. For example, from the astrophysical point of view, Stark broadening data are
always of interest when the Stark broadening contribution to the considered line profile is not
negligible, such as in the cases of the interpretation, synthesis and analysis of stellar spectral lines,
the determination of chemical abundances of elements from equivalent widths of absorption lines,
the calculation of radiative transfer through stellar atmospheres and subphotospheric layers, opacity
calculations, radiative acceleration considerations, nucleosynthesis research and other astrophysical
topics. In the investigation of laboratory plasma, Stark broadening theory can help, for example, in
plasma diagnostics, for the determination of the density and temperature of the plasma.

The importance of cobalt is equally present in technology as in astrophysical research. Cobalt
is, for example, used in the preparation of magnetic and wear-resistant alloys. Lithium cobalt oxide
as a cobalt compound is widely used in lithium ion battery cathodes. Cobalt-60 is a commercially
important radioisotope, used as a radioactive tracer and as a source of high energy gamma rays.

From the perspective of astrophysical science, cobalt is important in the spectral analysis of
so-called chemically peculiar (CP) stars. The main characteristic of these stars is anomalous strong or
weak absorption lines in their spectra in comparison with the solar spectrum [13], so the investigations
of those spectra are of particular interest for the modelling of CP star atmospheres as well as in the
research of stellar evolution. The special part of these investigations is line shape modelling for
comparison with actual measured spectra where lines of transition metal ions, such as singly ionized
cobalt, are observed.

Thus, spectral lines of singly charged cobalt ion (Co II), for example, have been observed in Hg-Mn
stars [14]. The persistence of large cobalt deficiency in the atmospheres of those objects, with metalicity
of the order of −2 dex is noticed [15]. It is also very interesting to investigate another subgroup of CP
stars, so-called cobalt stars (Co-stars), where an anomalous excess of cobalt abundance is observed in
their spectra. Cobalt stars are mostly Ap-type, sometimes Bp-type, often having strong magnetic fields
(5 kG or more). Examples of Co-stars are the Bp star HR 1094 [16], the Ap stars HD 200311 [17], HD
203932 [18] and possibly HD 208217 [19] and HR 4059.

Stellar iron, nickel and cobalt are also products of nuclear burning in a supernova event. Their
strong absorption lines can be found in supernovae of types Ia and II [20] as a result of explosive
nucleosynthesis. The stable form of cobalt is produced in supernovae through the so-called r-process,
which occurs in their core-collapse and is responsible for the creation of approximately half of the
neutron-rich atomic nuclei heavier than iron. The process entails a succession of rapid neutron
captures (hence the name r-process) by heavy seed nuclei, typically 56Fe or other more neutron-rich
heavy isotopes.

The first spectrum analysis of Co II was by Meggers [21], who measured the spectrum between
2150 and 5000 Å, and found eight multiplets and identified 14 lines of Co II in the solar spectrum. The
analysis was extended by Findlay [22], Hagar [23], Velasco and Adames [24] and by Iglesias [25,26].
Iglesias commented that among the second spectra of the iron group elements, one of the most
incompletely known spectra was that of Co II. The critical compilations of energy levels of Co II
from more recent times which are also used in our calculations are from Sugar and Corliss [27] and
Pickering et al. [28]. Pickering recorded high-resolution spectra of singly ionized cobalt by Fourier
transform spectrometry in the region 1420–33,333 Å with cobalt-neon and cobalt-argon hollow cathode
lamp as a source [28,29] and, therefore, it further contributed to the completion of the knowledge of
these complex spectra.

The observed levels in Co II belong to two configuration systems. The “normal” system consists
of 3d7(ML)nl subconfigurations, which are built on the parent terms (ML) in Co III, and transitions
involving these levels dominate the emission spectrum of Co II. The subconfigurations 3d6(ML)4snl in
the “doubly excited” system are built on the (ML) grandparent terms in Co IV, and they were not part of
our interests. The Stark widths analyzed and used here [2,3] were calculated for multiplets created from



Data 2020, 5, 74 3 of 9

a normal system of configurations, 3d7(ML)nl, which is well known for nl = 4 s and 4p, and according
to observations those transitions are expected to be in pure LS coupling [28]. The predicted accuracy of
the MSE method is around ±50 percent, but even in the cases of emitters with complex spectra, for
example Xe II and Kr II, this method often gives better agreement with experiments, with relative error
less than ±30 percent [30,31]. Of course, the used model also has some error bars, but our qualitative
conclusions are confirmed with calculations using three different papers with model atmospheres for
DA and DB white dwarfs and for A type stars. A high precision can not be achieved since we used the
published models and included Stark broadening of spectral lines a posteriori. However, the presence
of Stark broadening influence electron density and temperature and, consequently, on parameters of
the model of atmosphere and for the best precision the Stark broadening data should be introduced a
priori, during the calculation of model atmosphere.

For the purpose of this work, we chose four lines from the list of 46 Co II spectral lines for which
Stark widths have already been calculated and published elsewhere [2,3], and we investigated if
atmospheric layers with possible domination of Stark broadening over the thermal Doppler broadening
for each of these four lines exist (Figures 1–6) To show this, different models of atmosphere of A-type
star and DA and DB WD were used. Stark and Doppler broadening were presented as a function
of optical depth or temperature of atmospheric layers. For investigation of this dependence, which
is shown in Figure 3a,b, the Kurucz model of A spectral type of a star was used with the logarithm
of surface gravity log g = 4.5 and effective temperature Teff = 10,000 K [32]. In the case of DA and
DB dwarfs, the results of similar investigations are presented in Figures 1 and 2, using the model
atmospheres from Wickramasinghe [33]. For the presentation of this dependence according to different
Teff or log g for DB stars, appropriate model atmospheres from Koester were used [34].
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Figure 1. (a) Stark and Doppler broadening for spectral lines λ2533.2, λ2709, λ9519 and λ9969 as a
function of optical depth in the atmosphere of a hydrogen-rich (DA) white dwarf. Model atmosphere
with Teff = 15,000 K and log g = 8 is taken from [33]. (b) Same as Fig1a, but as a function of atmospheric
layer temperature instead of optical depth.
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temperature in Figure 1b. The same comparisons but for DB white dwarf atmosphere model with 
the same parameters are shown in Figure 2a,b. In Figure 3a,b, we can see the behaviors in the 

Figure 2. (a) Same as in Figure 1a, but for the model atmosphere of a helium-rich (DB) white dwarf [33],
with same model parameters, Teff = 15,000 K and log g = 8. (b) Same as Figure 2a, but as a function of
atmospheric layer temperature instead of optical depth.
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Figure 4. Comparison of Stark and Doppler broadening influence on Co II line λ9969 in the atmosphere
of DA and DB white dwarfs, respectively, as a function of optical depth. Calculations have been
performed for model atmospheres of DA and DB white dwarfs [33] with the same model parameters as
in previous figures, Teff = 15,000 K and log g = 8.
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3. Results and Discussion

In Figures 1–3, the comparisons of Stark widths and Doppler widths of λ2533.2, λ2709, λ9519 and
λ9969 Co II spectral lines as a function of the optical depth in the white dwarf and A-star atmospheres
are presented, to show in which layers of stellar atmosphere Doppler broadening caused by thermal
motion of particles is dominated by Stark broadening caused by impacts of Co II ions with electrons.

In astrophysics, optical depth is a measure of the extinction coefficient or absorptivity, integrated
from zero towards deeper layers up to a specific depth in stellar atmosphere. So, it is local characteristic
as with electron temperature and it increases from zero towards deeper layers. Because it varies with
wavelength, it is usually given for a standard wavelength of 5150 Å or as the Rosseland mean optical
depth averaged over frequencies. Since we use published models of stellar atmospheres, we use optical
depth as provided by authors of the models.

The first two lines, λ2533.2 and λ2709, from multiplets (4P)4s 3P–(4P)4p 3Do and (4F)4p 3Go–(4F)5s
3F, respectively, are in the ultraviolet part of the spectrum, while the last two lines considered by
us, λ9519 and λ9969, from multiplets (4F)5s 5F–(4F)5p 5Go and (4F)5s 3F–(4F)5p 5Fo, respectively,
are in the infrared part of the spectrum. In Figure 1a,b, this analysis is done for DA WD model
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atmospheres [33] with parameters Teff = 15,000 K and log g = 8. Stark and Doppler broadening as a
function of optical depth τ in the atmosphere at 5150 Å are shown in Figure 1a, and as a function of
layer temperature in Figure 1b. The same comparisons but for DB white dwarf atmosphere model
with the same parameters are shown in Figure 2a,b. In Figure 3a,b, we can see the behaviors in
the function of logarithm of Rosseland optical depth and temperature in the stellar atmospheres for
an A-type model atmosphere [32] with parameters log g = 4.5 and Teff = 10,000 K. Stark width in
comparison with Doppler width increases as wavelength increases, because if a wavelength is larger
than the corresponding atomic energy levels are closer and because of that, the perturbation of the
emitter/absorber is larger and the emitted spectral line is broader. We notice also that Stark widths are
proportional to λ2, while Doppler widths are proportional to λ [3]. For the last line, λ9959, the point
where Stark width reaches Doppler width is deeper in the atmosphere than for the previous line, λ9519,
because the Stark width values for this line are smaller since the corresponding atomic energy levels
are further away than in the previous case and the perturbation is smaller.

We can see that for the hydrogen-rich (DA) type of WD, Stark broadening starts to be more
significant than the Doppler broadening already in the atmospheric layers with relatively smaller
optical depth, for spectral lines λ9519 and λ9969 near to τ ≈ 0.5. Electron-impact broadening for the
line λ2709 becomes more significant for layers after τ ≈ 10, while for line λ2533.2 Doppler broadening is
dominant for all considered values of optical depth. For the helium-rich (DB) type of WD, domination
of Stark broadening for all four lines over the Doppler broadening starts before optical depth τ ≈ 1,
where most of spectral lines are formed, so we can expect that electron-impact broadening for all three
lines should be more important than thermal broadening in DB dwarf spectra. Difference between the
importance of Stark broadening in comparison with Doppler broadening between DA and DB type of
WD is in favor of DB type, because a helium-rich (DB) dwarf can generate more free electrons than the
hydrogen-rich (DA) dwarf with the same density, causing higher perturber density [3]. This advantage
in the domination of Stark width over Doppler width in the DB type in comparison with the DA type
is also obvious from Figure 4, where these widths are presented as a function of optical depth.

From the same analysis for an A-type stellar atmosphere, we can see that for the spectral lines
λ9519 and λ9969, Stark broadening also becomes the most significant broadening mechanism, but after
reaching the deeper layers of the atmosphere, around optical depth of τ ≈ 50 and τ ≈ 70 respectively,
e.g., for temperatures of atmospheric layers around 20,000 and 25,000 K, respectively. For the other
two lines, Doppler broadening remains dominant even for layers with larger optical depth, e.g., higher
temperatures of considered atmospheric layers.

It is obvious from Figures 1–4 that Stark broadening has larger impact on Co II spectral lines in the
infrared spectral range, and this impact will be larger for DB dwarfs than on the rest of the considered
objects. So, we decided to investigate how effective temperature and surface gravity of DB WD affect
the relationship between Stark and Doppler widths for a particular spectral line.

In Figure 5, comparison of Stark and Doppler broadening of Co II line λ9969 in white dwarf
atmospheres is presented as a function of layer temperature for five different models [34] of DB white
dwarf atmospheres with effective temperatures from 14,000 to 30,000 K with a step of 4000 K, and
log g = 8. The effective temperature is approximately taken as the temperature of the surface of the
star. As effective temperature increases, the Stark broadening becomes more prominent in layers of the
DB atmosphere, with temperatures which are more and more smaller than the effective temperature,
because in these layers temperature becomes high enough to ionize helium more efficiently, so
that electron density is higher. For example the difference between the effective temperature and
temperature where Stark and Doppler broadening are approximately equal increases from the model
with Teff = 14,000 K where it is several thousand kelvins to the model with Teff = 30,000 K, where it is
larger than 10,000 K.

Finally, in Figure 6, this comparison for the same line is shown for four model atmospheres of DB
white dwarfs [34] with effective temperatures Teff of 12,000 and 30,000 K, with two different values of
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log g for each temperature. We can see that electron-impact broadening becomes more important in
DB white dwarf atmosphere than thermal broadening with the increase in surface gravity.

4. Conclusions

In this work, the usefulness and applicability of calculated set of data with Stark widths of 46 Co
II lines for the investigations of spectra from atmospheres of stellar type A and hydrogen-rich (DA)
and helium-rich (DB) white dwarfs are investigated. One can conclude that Stark broadening is very
important for white dwarfs and for the same plasma conditions, its influence is larger for the DB than
for the DA type. For A-type stars, Stark broadening may be non-negligible in comparison with thermal
Doppler width, especially for higher wavelengths in the red part of the spectrum. Additionally, the
influence of Stark broadening increases with the increase in the effective temperature and surface
gravity analyzing as an example the DB type of WD.

We hope that the calculated set of 46 Co II Stark widths and these results will be useful for
their use for hot star and WD spectroscopy, and also contribute to more accurate cobalt abundance
determination. There are no other experimental or theoretical data for Stark broadening of Co II
spectral lines analyzed here. As follows from our work, measurements of Stark broadening of Co II
spectral lines will be of interest not only for comparison with the results obtained here but also for
analysis and synthesis of stellar Co II spectral lines. This set of data, previously published as a hard
copy in Ref. [3], is available online here in computer readable form. It will be implemented later and in
the STARK-B database [35–38], which is also a part of the Virtual Atomic and Molecular Data Center
(VAMDC) [39,40] and may be accessed through its portal [41].

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5729/5/3/74/s1,
Table S1: MSE Stark Full Width at Half Intensity Maximum (WMSE) calculated for Co II transitions for five
different temperature values Table S2: Coefficients for fitting formula.
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