Article

Multi-Layer Web Services Discovery Using Word Embedding
and Clustering Techniques

Waeal J. Obidallah *, Bijan Raahemi ? and Waleed Rashideh !

check for
updates

Citation: Obidallah, W.J.; Raahemi,
B.; Rashideh, W. Multi-Layer Web
Services Discovery Using Word
Embedding and Clustering
Technique. Data 2022, 7,57. https://
doi.org/10.3390/ data7050057

Academic Editor: Panagiotis Karras

Received: 2 April 2022
Accepted: 28 April 2022
Published: 4 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh 11673, Saudi Arabia; wmrashideh@imamu.edu.sa

Knowledge Discovery and Data Mining Lab, Telfer School of Management University of Ottawa,
Ottawa, ON K1H 8M5, Canada; braahemi@uottawa.ca

Correspondence: wobaidallah@imamu.edu.sa

Abstract: We propose a multi-layer data mining architecture for web services discovery using word
embedding and clustering techniques to improve the web service discovery process. The proposed
architecture consists of five layers: web services description and data preprocessing; word embedding
and representation; syntactic similarity; semantic similarity; and clustering. In the first layer, we
identify the steps to parse and preprocess the web services documents. In the second layer, Bag
of Words with Term Frequency-Inverse Document Frequency and three word-embedding models
are employed for web services representation. In the third layer, four distance measures, namely,
Cosine, Euclidean, Minkowski, and Word Mover, are considered to find the similarities between
Web services documents. In layer four, WordNet and Normalized Google Distance are employed
to represent and find the similarity between web services documents. Finally, in the fifth layer,
three clustering algorithms, namely, affinity propagation, K-means, and hierarchical agglomerative
clustering, are investigated for clustering of web services based on observed similarities in documents.
We demonstrate how each component of the five layers is employed in web services clustering using
randomly selected web services documents. We conduct experimental analysis to cluster web
services using a collected dataset consisting of web services documents and evaluate their clustering
performances. Using a ground truth for evaluation purposes, we observe that clusters built based on
the word embedding models performed better than those built using the Bag of Words with Term
Frequency-Inverse Document Frequency model. Among the three word embedding models, the
pre-trained Word2Vec’s skip-gram model reported higher performance in clustering web services.
Among the three semantic similarity measures, path-based WordNet similarity reported higher
clustering performance. By considering the different word representations models and syntactic and
semantic similarity measures, we found that the affinity propagation clustering technique performed
better in discovering similarities among Web services.

Keywords: web services clustering; web services discovery; word embedding; clustering; semantic
similarity; syntactic similarity

1. Introduction

Web services are a set of loosely coupled software components that are developed, de-
scribed, published, discovered, utilized, and reused to achieve particular functionalities [1].
Web services are of different types, and provide various functionalities over the internet.
Types of web services include SOAP-based, REST-based, XML-RBC-based, and JSON-RBC-
based web services. The most prevalent forms are REST-based and SOAP-based services.
Recently, global and local enterprises have leveraged their assets by widely publishing
their web services or application programming interfaces (APIs), allowing for scaling of
their functionalities over the internet using different business models.

Web service discovery involves finding and locating existing web services based on a
service requester’s requirements. The discovery process must match services’ functional

Data 2022, 7, 57. https:/ /doi.org/10.3390/data7050057

https://www.mdpi.com/journal /data

https://doi.org/10.3390/data7050057
https://doi.org/10.3390/data7050057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-5086-3950
https://orcid.org/0000-0001-5045-7322
https://doi.org/10.3390/data7050057
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data7050057?type=check_update&version=1

Data 2022, 7, 57

2 of 21

and non-functional descriptions. Functional requirements refer to the elements and fea-
tures that indicate the system’s capabilities, including interfaces, protocol bindings, and
operations. These features are typically described in the service profile and its description.
Non-functional requirements refer to the elements and features that indicate the system’s
performance parameters, including quality of service (QoS) considerations as well as ser-
vice policies such as service cost and security features [2,3]. QoS considerations can include
parameters such as availability, reputation, privacy, price, response time, and usability.

Web services providers publish their newly developed web services in diverse online
repositories and portals to allow for their use. Newly developed web services are added
to the list of web services, which consists of previously identified groups and categories
on the portal. In the absence of automation, the process of adding new web services
to the right category within the portal is carried out manually by a domain expert who
reviews the web services and categorizes them based on their functionalities. This process
requires more time and effort as the number of added web services increases. In a real
scenario, a web services aggregator or collector gathers the description of web services
along with their details from different repositories and portals to allow users to access
them. After the web services descriptions are collected, the web services files need to be
indexed and categorized. The process of categorizing collected web services based on their
domain (e.g., functional and non-functional similarity) is performed by a domain expert.
Artificial intelligence, data and text mining, and NLP techniques can be employed instead
of a domain expert to cluster the collected web services into categories (e.g., WSDL, text,
etc.) while considering their descriptions. Clustering techniques can automatically cluster
Wwb services based on different similarity measures, with similar web services being
assigned to the same cluster [4]. Furthermore, having clusters of web services based on
their functional or non-functional specifications minimizes the search space for the query
matching algorithm.

The large number of web services available over the internet with different formats
and functionalities motivated us to develop a web services discovery approach based on
clustering similar web services with syntactic- and semantic-based similarities in order to
minimize the search space. By clustering related web services, service matchmakers do
not need to match user queries against all the service offerings; instead, the matchmaker
can match user queries against web services clusters. We propose the use of text and data
mining methods to find similarities between web services while considering various word
representations, embedding models, and similarity measures.

2. The Proposed Multi-Layer Architecture for Clustering of Web Services

In Figure 1, we identify the components and the characteristics by relating them to the
conceptual model and typology of building Web services discovery systems [5]. The stor-
age and location characteristics of Web services discovery systems are demonstrated by
a centralized approach in Web services storage. The formalization characteristics of Web
services discovery systems are demonstrated through the ability to use both syntax and
semantic Web services descriptions. This configuration emphasizes the need for a Web
services discovery system that works with all types of Web services description languages.
The proposed solution to cluster Web services based on employing different word represen-
tation models, similarity measures, and clustering algorithms is part of the matchmaking
characteristics. The matchmaker, supported by a matching algorithm, responds to the
service requester’s query with a list of Web services by referring to the clustered Web ser-
vices, which is where we propose our solution. The selection characteristics of Web services
discovery systems are demonstrated by allowing the user to express the functional and non-
functional requirements with the discovery interface. The automation characteristics are
demonstrated by allowing the service requester to manually invoke the discovery process.

Data 2022, 7, 57

30f21

Web Services Providers

Publish

Web Crawler

OWL-S
o WSDL
Web Service Description WSMO

WADL
Text

Discovery Interface and
Users' Requirements

Service Requester I——

Web Services Web Service Storage

Listof g —))
Re\:\rje;ed BC— Slmt_la:uy and Clus_(erlng Alg_or_llhm
e — —

mC—— Send Query l

Services
mC—
Matching Algorithm

@
Matchmaker

Query Respon |

Figure 1. The General Architecture of Web Services Discovery.

The proposed clustering-based multi-layer Web services discovery architecture is

demonstrated in Figure 2 based on five layers. It is multi-layer because it consists of various
layers, including representation and the embedding models and similarity measures within
each layer. The proposed solution uses natural language processing (NLP), text and data
mining models, and various similarity measures and clustering techniques to cluster Web
services. It should be noted that the focus of the proposed architecture is only on clustering
Web services based on their functional requirements, not on matching the query with the
final results; i.e., query is not part of the proposed architecture.The proposed architecture
includes a stack of five layers, as follows:

1.

Web Services Description and Data Preprocessing: In this layer, NLP techniques are
applied to select and extract terms (features) from Web services description files. This
includes several different steps, starting with parsing selected features from the Web
services description files, then tokenizing, removing stopwords, and lemmatizing
words. Feature selection depends on the type of Web services description documents.
Word Representation, Embedding, and Transformation: In this layer, two types
of NLP models are considered to transform the extracted terms into a computer-
understandable and processable form. This includes Bag of Words (BOW) with
Term Frequency-Inverse Document Frequency (TFIDF) as a weighted scheme as well
as three word-embedding models; these models include two pre-trained models and
one self-trained model.

Syntactic Similarity: Four syntactic similarity measures are implemented in this layer
to find the similarity between Web services, namely, Cosine, Euclidean, Minkowski,
and Word Mover’s distance;

Semantic Similarity: In this layer, two WordNet-based similarity measures are em-
ployed to find similarities between Web services, including path and WUP similarities.
Normalized Google Distance (NGD), sometimes called Normalized Web Distance
(NWD), is employed to find the semantic similarity between Web services.

Web Services Clustering: In this layer, affinity propagation (AP), K-means, and hi-
erarchical agglomerative clustering (HAC) are studied and implemented in order to
cluster Web services into a certain number of clusters based on their functionalities.
Search engines or matchmakers use this step as a precursor by categorizing Web
services based on their functionality in Web services sources.

Data 2022, 7, 57

4 0f 21

Extracted Documents

Web Services Description Files

Web Services Description
Parser

Feature

Web Services Description and Data Preprocessing Layer

Machine Readable Parser and Tags Identifier Module

{definilions }{ service }{ message }
WSDL
{ portType } { operation }-{documen[aliun}

XML-Path

WSDL Elements/Tags

'

Plain Text - Service Name - Service Deseription Crawled Web Service
Description

Attribute and
Strip Tags Content
Extraction

Human Readable

T

izati ization and Removal Module
— Tokenization Punctuation Accented
Removal Characters
Removal

Stopwords
st) J

Li:
Stopwords. Numbers Lowercase
Removal Removal
Extended List

‘WordNet
Camel Case Whitespace _
[Splitter] [Removal] LLemmatlzanon -
Word Representation, Embedding, and Transforming Laye
BOW Model Word Embedding Models S |:

Directory

For document D
multiple features

Vectorization

: Pretrained Training Word
: [i] [=7] [Word Vectors] [Vectors J

Syntactic Similarity Layer

Semantic Similarity Layer

Documents

Similarity

WordNet WordNet .
[Path Similarity] [WUP Similarity] [RCES Aty imilai

i i i i Di Word Mover's : Documents
[Cosine Distance] [Euclldean Dlstance] [Mlnkowskl Dlslance] [B] - ‘ Similarity
: Matrix

~—

Web Services Clustering Layer

Affinity Propagation HAC K-means -

Figure 2. The Proposed Clustering-based Multi-Layer Web Services Discovery Architecture.

2.1. Layer 1: Web Services Description and Data Preprocessing

The first layer is intended to prepare Web services description files for the mining
process. Web services have different types of formalization based on the markup language
or other description languages utilized to describe Web services, which can be either
syntax-based or semantic-based description languages [6]. This layer consists of two
modules, namely, the parser and tags identifier module and the tokenization, normalization,
and removal module. The parser and tags identifier module relies on the type of Web
services description language. The features (i.e., tags or terms) are identified, including their
attributes and the content to be selected and extracted. The tokenization, normalization,
and removal module applies several operations to the extracted text in order to prepare
it for the mining process. Figure 3 illustrates the four main steps in Web services data
preprocessing. The collected Web services data include WSDL, which is a machine-readable
format, and a textual, human-readable Web services description. The proposed solution
uses text mining and various similarity calculations to cluster Web services; this makes
the solution applicable to any type of Web services description, such as WADL or OWL-S.
The key is to parse and identify from the Web services files the related data which best help
in the process of Web services clustering. This layer works to identify and select the most
important and useful features (terms), extract them from any Web services description files,
and then apply NLP preprocessing techniques.

Data 2022, 7, 57

50f21

Extended List

Start Data Step One Step Two Step Three Step Four Terms Extracted
Preprocessing s acte:
) . Stopwords Words
Parsing Tokenization Removal Lemmatization ——O
bifferent Web Services What Features? Vector of Words Meaningless Waords Out Lemma Vector Reduced

Description Files

Figure 3. Data Preprocessing Steps.

The parsing step focuses on identifying which data and features are to be extracted
from the Web services description file. A parser is employed to extract the required features
and terms from the Web services description in cases where the extracted features are
different based on different considerations and strategies. For WSDL, a variety of XML-
based parsers are available to provide such functions, including Beautiful Soup [7], a Python
XML-based parser utilized here to extract WSDL elements that contain meaningful and
useful information. The first step depends on identifying useful information in Web services
descriptions, which can then be parsed and extracted for use in the mining processes.
The collected Web services description dataset is based on WSDL. However, this is an
implementation detail; any format of Web services description language or documentation
can be selected for this purpose. We identified the WSDL elements Definition, Message,
PortType, and Service as well as their attributes, including all Names, Parts, Operations,
and the Documentation contents to be extracted.

The tokenization step splits the text into a string (sequence of characters) and sub-
units called tokens to identify the boundaries and breaks between words [3]. To extract
tokens from Web services description, we include the sequence of uppercase and lower-
case letters (e.g., GetAddress to “get” “address”) based on camel case splitting and the
sequence of words with symbols in between (e.g., money-amount-transfer to “money”,
“amount”, “transfer”) based on punctuation removal. All words are transformed to lower-
case, and numbers, and whitespace and accent marks are removed. The result of this step is
a vector of words extracted from the Web services description which includes meaningful
parts (e.g., words) while discarding other meaningless chunks (e.g., whitespace).

The Stopwords removal step is thought to improve the performance of clustering by
eliminating words such as ‘the’, ‘is’, ‘at’, “‘which’, and “on’ for dimensionality reduction.
The list of stopwords can be created based on sorting the terms in Web services document
collection by frequency of occurrence, then titling the number of high-frequency terms as
stopwords [8]. We employed the publicly available NLTK [9] stopwords list to eliminate
very frequent and rarely useful words from Web services-extracted text. We then updated
this list by adding and removing words based on the WSDL specification and its elements.
For example, words such as “http”, “get”, “post”, “soap”, “cfc”, “service”, “webservice”,
and “port” were added to the list of stopwords. The extended stopwords list contains
213 words.

The WordNet lemmatization step reduces words into their root form, known as
lemma, in order to save time and memory space. In natural language processing (NLP)
both stemming and lemmatizing can be utilized for this purpose, which represents a special
case of normalization [10]. The main difference between the two processes is that stemming
is based on rules which trim word beginnings and endings. In contrast, lemmatization uses
more complex morphological analysis and dictionaries. A stemmed word might not be
an actual word (i.e., nonexistent words), whereas a lemma is always an actual word. We
chose to apply WordNet lemmatization to all extracted words instead of Porter stemmer.
As we consider different similarity measures that require a dictionary and hierarchy-based
measures, lemmatization is more suitable. The reason for this is that while we can find and
locate a lemma in a dictionary, the root stem may not always be available.

This layer concerns the selection and extraction of features (terms) from the Web
services description files. The process of selecting features is based on their usefulness

Data 2022, 7, 57

6 of 21

and meaningfulness in differentiating between the various Web services. This is important
in the process of measuring the similarities between Web services, as similar features
indicate similar or related Web services. The extracted and preprocessed terms are stored
in the feature directory for future similarity and clustering analysis. The feature directory
contains all the extracted words from the Web services document collection, which are
stored in a way that facilitates future text mining and analysis tasks, allowing simple or
more complicated analyses to be run with different techniques and models.

2.2. Layer 2: Word Representation, Embedding, and Transforming

In order to convert the unstructured text extracted from the Web services documents
into a format acceptable to algorithms. We convert these documents to vectors of words,
a numerical array in which values are specific weights for each word that could be its
frequency, its occurrence, or various other representations. For a Web service document
(WSd),

WSd = wsd;,i =1,2,3,...n 1)

where wsd; represents a Web service document and # is the number of the Web service
documents. The vector space model (VSM) [11] is employed to represent each wsd; of WSd
as a numerical value or point #s; in the numerical space (NS). In the VSM, each Web service
document wsd; is represented as a vector of term/feature weights as:

wsd; = tj, toj, t3i, - - - i (2)

where t}; represents a real number indicating the weight and importance of the term j in
the Web service document i. The process of vectorization converts textual information
into numbers.

Bag-of-Words (BOW) with the Term Frequency-Inverse Document Frequency (TFIDF)
term weighting scheme is utilized in part of this layer to represent the extracted Web
services features from the feature directory. Furthermore, word embedding, which is the
new state-of-the-art approach in NLP, is employed to represent the words extracted from
the Web services documents. Word embedding provides a dense vector representation of a
word based on its context [12]. Word embedding models focus on representing the idea of
a word (looking to the context) by a vector. On the other hand, BOW with TFIDF focuses
on representing a word (looking to the frequency) as a vector.

TFIDF uses real values to capture the term distribution among Web services docu-
ments in the collection in order to assign a weight to each term in every member Web
services document. The TFIDF perception is that the more times a term occurs in a Web
service document, the more important this term is to this Web service document. Conse-
quently, the assigned weight increases corresponding to the number of times (frequency
of occurrence) this term appears in the document. On the contrary, a term that appears
in many Web service documents in the collection will be penalized by assigning a lower
weight to it [13]. The following are the steps and equations for calculating BOW with
TFIDF.

Term Frequency (TF): measures the number of times a term occurs in a Web service
document.

TF,; = —1— 3)

Inverse Document Frequency (IDF): measures the importance of a term by consider-

ing all documents.
[Wsd |

IDF; = log I{j : tiewsd;} |

(4)

Term Frequency-Inverse Document Frequency (TFIDF): for a term (¢;) in an ex-
tracted word vector of a document (wsd;)

TFIDFZ‘/]' = TFZ',]' X IDF; (5)

Data 2022, 7, 57

7 of 21

where n;; represents the number of occurrences of a term (¢;) in a Web service docu-
ment (wsdj), |Wsd| is the total number of Web services documents in the collection,
and |{j: tiewsd;} | represents the number of Web service documents where the term ;
occurs. After calculating the TFIDF for all terms in the Web services documents, it can
be represented by an m by n matrix AeR™*", where n represents the number of unique
terms occurring in the Web service documents and m represents the number of Web service
documents in the collection.

Because measuring the similarity between Web services documents with TFIDF de-
pends on the word overlap [14], the probability of having common words decreases,
especially in the present case where the length of the extracted text is relatively short. Limi-
tations of TFIDF include ignoring synonyms, any semantic relatedness, and the correlation
between words in the process of text representation [15]. However, BOW with the TFIDF
term weighting scheme remains one of the most frequently cited text representations [13].
To minimize these limitations, we consider word embedding for representation learning as
an additional and supporting step in finding the similarities between Web services.

Word embedding models such as Word2Vec, FastText, and GloVe [12] provide a dense
vector representation of words that capture words” meaning based on context. Based on
the generated vectors, words are placed in such a way that words having similar meanings
appear together and dissimilar words are placed far away from each other. We incorporated
word embedding to represent extracted words from the Web services documents for several
reasons. First, word embedding models are capable of representing each extracted word as a
dense vector instead of one number, as is the case with the BOW and TFIDF model. Second,
the word embedding representation allows for adding the word’s semantic meaning by
considering its context. Third, we use word embedding for text enrichment, as we have a
limited amount of extracted text from the Web service documents. We use two approaches:
a pre-trained word embedding model and a self-trained word embedding model trained
based on a specific domain and on corpora we created and collected.

Pre-trained word embedding models are a set of word vectors that have been created
and trained, usually on a general-purpose corpus such as Wikipedia [16] and English
Gigaword [17]. The first employed word embedding model is based on training the
Word2Vec-based skip-gram model on text from English Wikipedia. The corpus has 3.5
billion tokens and knows 249,212 English words. The preprocessing step was applied to
the corpus before training, which includes splitting it into sentences, tokenizing, lemmatiz-
ing, part of speech (POS) tagging, and removing stopwords. The second employed word
embedding model is based on training a GloVe model on the Common Crawl corpus [18].
The result of the learning process, which is the representation of words (aka word embed-
ding) depends on the corpus utilized in the learning process. One drawback of pre-trained
models is that when working on an application or a specific domain, the result of the model
will not be optimal due to the generality of the word embedding.

We trained a word embedding model with the Word2Vec skip-gram model based on a
collected corpus in a domain-specific area related to Web services, which fit this problem-
specific domain. The corpus was collected from the description of Web services from
different Web services repositories and portals such as PW and GitHub. The Web services
documents include both a human-readable description and a machine-readable description
of Web services. The preprocessing step was applied to the corpus before training, including
tokenizing, lemmatizing, and removing stopwords and numbers. Table 1 illustrates the
details of the pre-trained and self-trained models.

Table 1. Word Embedding Models Details.

Name Algorithm Vector Size Window Vocabulary Size
English Wikipedia Word2Vec 300 3 249,212
ENC3 Common Crawl GloVe 300 10 2,000,000

Web Services Documents Word2Vec 50 3 5563

Data 2022, 7, 57

8 of 21

The process of training the Word2Vec model involves the following steps:

1. Preprocessing and conversion of text into a suitable format for training: the col-
lected Web services corpus include 918 Web services documents utilized for training
purposes. The documents need to go through preprocessing steps, which include
tokenization and removal of accent marks, stopwords, punctuation, and white space.
Then, the lowercase and lemmatization steps are applied. Training a Word2Vec model
requires that every Web service document is represented as a list and every list contain
a list of tokens/words in that document. This requirement leads to the conversion of
all text into a list of lists for each token in the collected corpus.

2. Choosing the right Word2Vec models: the choice of the right training algorithm is a
task-specific decision [19]. The Word2Vec algorithm has two models for representing
words as a dense vector, the CBOW (Continuous Bag of Words) and skip-gram
models [20]. Both models use shallow neural networks to map words to the target
variable considering the context. We selected the skip-gram architecture to train our
model based on the fact that we had a limited amount of text for training purposes.
According to [19-21], the process of learning is faster for CBOW than for skip-gram,
which takes a long time. Skip-gram works better for a small amount of training data
due to its ability better represent rare words. As we had a small amount of text for
training purposes, skip-gram was a better choice to train our model based on the
collected corpus, despite the added time and resource restrictions.

3. Setting up the learning hyperparameter configurations. We adjusted the following hy-
perparameters:

* Size: each word or token is represented as a dense vector, and the size of the
vector is significant in the learning process. As we had limited data, the size
of the vector was set to a smaller value. This was because there are only a few
unique neighbors for any given word. We set the size of the vector as 50.

e Window: this is related to the maximum distance between the target word
and its surrounding words (neighbors). The value of the window indicates the
number of neighbors to the left and right of the target word. As such, considering
our limited data a smaller window can result in words that are more closely
related [20]. We selected value three as the window size for training the model.

* Minimum count: this is related to the frequency count of words, with uncommon
words usually being unimportant. As our data had a small amount of text, we
set the minimum count as one to allow all words to be considered when training
the model.

2.3. Layer 3: Syntactic Similarity

The distance between two Web services documents’ vectors can be utilized to show
how similar or dissimilar the two documents are. For syntactic similarity, we use Cosine
distance to measure the similarity between Web services (vector of words) in the vector
space model. Furthermore, Euclidean distance and Minkowski distance are employed to
measure the distance between Web services by utilizing the generated Web services’ vectors.
The Word Mover’s Distance (WMD), which is a specific distance metric for word embed-
ding, is utilized as well. In order to find the similarities between Web services, we process
the TFDIF document-term matrix and document embedding matrix. The outputs of this
layer are different document similarity matrices based on four different distance measures.

Cosine distance measures the similarity or distance between two vectors of an inner
product space. It is measured by the cosine of the angle between two vectors projected in
a multidimensional space, and determines whether two vectors are pointing in roughly
the same direction [22]. Euclidean distance is a measure of the actual straight line distance
between two points or vectors in Euclidean space. Minkowski distance is a generalization
of the Euclidean and Manhattan distances for calculating distance similarity between two
points or vectors in the normed vector space [22]. The word vectors extracted from Web
services documents are converted into numbers with weights, making them ready to apply

Data 2022, 7, 57 9o0f21

the similarity measure; the similarity can then be calculated. The vector representations of
Web services documents are utilized in measuring the similarity and distance. To measure
the syntactic similarity /distance between Web services documents, we use

Cosin(%, 7) = 7? = i1 %Y (6)

|7||7| ,/Zﬂzlx22ﬂ:1y2

EuclideanD(?,?) = ||7 - 7” = \/(xl — 1) et (0 —)2 @)

n
MinkowskiD(%, 7) = (Y. 15 —yiD)7 = {/1x1 =y 1P 4t It —yul? (®)
i=1
where 7,? refer to the word vectors and # refers to the number of attributes. The result is
a document-document matrix showing similarity /distance between Web services docu-
ments.

Word Mover’s Distance (WMD) has been proposed by [23] as a distance function
between text documents based on word embedding, which shows that the distance between
embedded word vectors is semantically related. WMD measures the dissimilarity between
two documents based on the minimum amount of distance that an embedding word in
one document needs to travel to reach another embedding word in the other document.
The word embedding in each Web service document is utilized to find the distance between
other word embedding belonging to other Web services documents. Based on the provided
word embedding, WMD works by generating a normalized Bag of Words (nBow) and
calculating word travel cost, which is the distance between words based on Euclidean
distance. Finally, document distance is calculated as the minimum (weighted) cumulative
cost required to move all words from one document to another.

2.4. Layer 4: Semantic Similarity

Words extracted from the Web services documents are consumed in this layer without
transforming the text into numbers with the VSM. In this layer, we consider knowledge-
based approaches based on WordNet [24] and Normalized Google Distance (NGD) [25,26]
to find the similarities between Web services.

WordNet is an extensive lexical database of English which includes nouns, verbs, adjec-
tives, and adverbs. Words are grouped into sets of cognitive synonyms called synsets, each
expressing a distinct concept, employed to find the relations between different synsets [24].
WordNet-based similarities depend on the lexical semantics, sense relations, and additional
information to identify the similarities between words. Each synset in WordNet is labeled
with three parts, namely, the word, part of speech (POS), and index of the word’s sense.
For example, the synset “service.n.01” indicates the first meaning of “service” as a noun.
WordNet’s structure makes it a useful tool for computational linguistics and natural lan-
guage processing (NLP). To measure the similarities between Web services, we utilize two
WordNet-based similarities, the path and Wu-Palmer [27] similarities

Path similarity measures the similarity of two-word senses based on the shortest path
that connects the senses in the WordNet hypernym and hyponym taxonomy. Two words
in the Web service vector of words are similar to each other if they are near each other in
the WordNet hierarchy. Wu-Palmer (WUP) semantic similarity measures the similarity
and relatedness between two-word senses based on the path length between their senses
located in the taxonomy along with the depth of their Least Common Subsumer (LCS),
which is the closest ancestor to both senses. The returned score denotes how similar and
related two-word senses are, ranging from 0 to 1, where 0 is least similar and 1 is identical.
In order to measure the similarity between two words’ synsets, we use

1
P ; pr—
athSzm(S1,Sz) EdgeDistance + 1 ®

Data 2022, 7, 57

10 of 21

. 2 x depth(LCS)
WUPS ,82) = 10
im(s1,52) depth(sy) + depth(sy) (19
The process of generating the Web service documents’ similarity matrix is not straight-
forward; several processes are needed, as the WordNet similarity measures are based on the
words’ similarity. Figure 4 illustrates the pseudocode for generating the semantic similarity

matrix between Web services documents with both WordNet’s path and WUP.

Input: Web services Documents
Output: Semantic Similarity Matrix between Web services

FOR each Web service document:
FOR words in a Web service document:
Tokenize each word
Get NLTK POS tagging
Convert NLTK’s POS tag into WordNet tags
Get the first synset from WordNet
END FOR
END FOR
Output: list of synsets for all words in Web service documents
To generate the pairwise similarity matrix between Web service documents.
FOR each Web service documents:
To calculate normalized similarity score between pair of Web service documents
using the list of synset based on Path and WUP similarity metric.
FOR each synset in Web service document 1:
Get similarity score to synset in Web service document 2
Sum all largest score
Divide the sum by the number of synsets
END FOR
Quitput 1: similarity score document 1 to document 2
FOR each synset in Web service document 2
Get similarity score to synset in Web service document 1
Sum all largest score
Divide the sum by the number of synsets
END FOR
Quitput 2: similarity score document 2 to document 1
Take the sum of Qutput 1 and Output 2, then divide by 2 for averaging.
Quitput 3: normalized similarity score between a pair of Web services.
END FOR
Output: pairwise semantic similarity matrix between Web service documents gen-
erated based on Output 3.

Figure 4. Pseudocode for generating Similarity Matrix between Web Services Documents.

Normalized Google Distance (NGD) is a semantic similarity proposed by [26] which
measures the semantic distance between words based on the number of search hits returned
by search engines for a given set of words. Words with the same, similar, or related
meanings in the natural language sense tend to be close in terms of NGD units. On the
other hand, words with dissimilar meanings tend to be farther apart. We utilized NGD to
measure the similarity between words in the Web services documents to obtain a similarity
matrix between the words in two Web services. Search engines such as Google or Bing
work for NGD (i.e., Normalized Web Distance) as the frequency count extractor, and the
corpus is the Web NGD between two words w;, w; calculated with

max{log f(t;), log £ (;)} — log f (w;,)
NGD (w;,wj) = log N — min{logf(éu,v),logf(wj)} :

where f(w;) is the number of hits returned for the first word w;, f(w;) is the number of hits
returned for the second word wj, and f(w;, w;) is the number of hits returned for both w;
and w;. N is the total number of pages indexed by the search engine; if NGD(w;, w;) = 0,
then the two words are as alike as possible; however, if NGD(w;, wj) > 1, then the two

(11)

Data 2022, 7, 57

11 of 21

words are very different. The similarity between two words in Web service documents
based on NGD is
NGDSim(w;, w;) =1 - NGD(w;, w;) (12)

2.5. Layer 5: Web Services Clustering

Three clustering methods are studied and implemented to cluster Web services based
on the observed similarity and dissimilarity matrices. The first method uses the affinity
propagation (AP) clustering algorithm [28]. The second method uses a partition-based
clustering method where K-means clustering is employed to cluster Web services. The third
method uses a hierarchical-based clustering method where hierarchical agglomerative
clustering (HAC) is employed to cluster Web services.

The affinity propagation (AP) clustering algorithm can find the number of clusters
simultaneously and automatically based on the similarity matrix (S) received as an input.
Web services are treated as data points and sending messages between all Web services
can find the exemplars, which are the most significant Web services to their clusters. These
messages are stored in responsibility and availability matrices. Three matrices are needed
to cluster Web services based on AP. The first (input) matrix consists of the Web services’
generated similarity matrix (S), where similar Web services have larger values. The second
(initialized) matrix is the responsibility matrix r(w;, wj), where the similarities between
two Web services are utilized to calculate the responsibility for Web service w; to be the
cluster center (exemplar) for another Web service w;. The third (initialized) matrix is
the availability matrix a(w;, ;) to calculate how appropriate it is for a Web service w; to
select a Web service w; as its cluster center. The number of clusters is influenced by the
preference values S(w;, w;) and the messaging procedures defined in the r(w;, w;) and
a(w;, w;) calculations [28]. Both responsibility and availability matrices are initialized to all
zeroes and then updated with the input from the similarity matrix; for example:

r(wir w]) — S(wil w]) max {a(wi/ ZU],) + S(wil w;)} (13)
w;#w/-
a(w;, wj) < min {O,r(wj, w]-) + Z max(0, r(w!, w]))} (14)
w; ¢ (w;,w;)
a(wj, wj) 2 max (0, r(w!, w;)) (15)
w'#w;

The agglomerative clustering algorithm is utilized for clustering Web services based
on the observed distance matrix. Hierarchical agglomerative clustering (HAC) is a bottom-
up clustering method that starts assigning each Web service to its own cluster (singleton
cluster) [29], then iteratively finds the most similar pair of clusters and merges them into a
single cluster until the stop conditions are met or until all clusters have been merged into a
single cluster that contains all Web services documents. K-means [30] is a partition-based
clustering algorithm utilized to organize Web services documents into clusters. The first
step is initialization, which starts by identifying the number of Web services clusters (k)
to be found. The second step is choosing k random points as the initial clusters” centers.
The third step is to assign Web services to their nearest cluster center. The fourth step is
to update the cluster centers by replacing them with the mean of the coordinates of all
Web services assigned to that cluster. The third and fourth steps are then repeated until
the clusters converge. The final clustering result depends on the first and second steps,
where we need to select the best number of clusters to find and to select the initial centroids.
However, in the present case we already have the number of clusters k as part of the
ground truth.

Data 2022, 7, 57

12 of 21

3. Performance Evaluation and Analysis

Most studies [4] in the area of Web services discovery systems rely on different eval-
uation methods to determine the effectiveness of the proposed solutions. We follow the
evaluation methods and metrics used in similar research as specified in [4] to measure the
performance of Web services clustering. An offline evaluation is usually employed to mea-
sure how the proposed solution facilitates Web services discovery. With its different models
and methods, the proposed architecture facilitates the process of Web services discovery
by focusing on Web services clustering based on different similarity measures, algorithms,
and considerations prior to the matchmaking steps. We use offline experiments to cluster
Web services considering a collected dataset that contains Web services description files to
measure the clustering performance based on the clustering algorithms.

Our performance evaluation strategy is to find the agreements and disagreements
between the ground truth and the Web services clusters resulting from the proposed archi-
tecture. This requires a ground truth that specifies each Web service classification based on
their similarity, primarily employing human labeling for this task. This strategy is the most
widely employed for evaluating Web services clustering performance, with accuracy, recall,
precision, and F-measure evaluation metrics being used [4]. We need to find the best cluster-
to-class association between the resulting clusters and the ground truth classes in this
strategy. The proposed architecture contains various models, similarity measures, and three
clustering algorithms. We measure Web services clustering performance based on the
different models and similarity measures by considering the selected clustering algorithm.

3.1. Datasets

One of the critical challenges in clustering Web services considering the proposed
architecture is to find publicly available Web services description files that provide balanced
and less sparse data. As the proposed architecture is configured to work with Web services
description files based on text and WSDL, we scraped Web service documents, including
text and WSDL files, from PW and GitHub. WSDL files represent a machine-readable for-
mat, and text represents a human-readable format. In general, the Web services description
format can be in any format and is not restricted to WSDL and text. As stated in layer one
of the proposed architecture, the parser and tags identifier module identifies the required
text (features) to be extracted from the Web services descriptions for the mining process.

The initially collected Web services dataset contains 459 human-readable files and
459 machine-readable (WSDL) files. We reviewed the Web service documents to identify
any duplication and invalid WSDL formats. The overall collected Web services dataset was
employed to train the Word2Vec model as part of the self-trained word embedding model
used in layer two. We selected 102 Web service documents to evaluate the performance of
clustering based on the proposed architecture. We manually labeled the 102 Web services
into different domains and classes based on their functionality to serve as ground truth.
The generated ground truth was utilized to measure Web services clustering performance
by comparing the ground truth with the resulting clusters (agreements and disagreements)
using external evaluation methods.

3.2. Experimental Environment

The experiments were conducted on Microsoft Windows 10 with an Intel Core i7-
10510U 1.8 GHz CPU and 16 GB of RAM. Python was employed as the programming
language. Various Python-based data mining and text mining libraries were utilized in
the implementation of the proposed architecture. The libraries utilized included NLTK [9],
Gensim [31], and scikit-learn [32]. Modifications to the built-in functions were occasionally
needed to control the input and the output of each layer of the proposed architecture.

3.3. Evaluation Metrics

We followed the external evaluation strategy by employing accuracy, precision, recall,
and F-measure based on the developed ground truth. Accuracy measures the overall

Data 2022, 7, 57

13 of 21

performance of a model and is calculated as the number of correct predictions (agreements)
divided by the total number of predictions. Precision measures exactness and quality
by showing how many Web services were predicted correctly out of the ones that were
predicted as belonging to a given cluster. Recall measures the completeness, correctness,
and quantity by showing how many Web services were predicted correctly out of the ones
that should have been predicted as belonging to a given cluster. F-measure is a harmonic
mean of precision and recall which provides a better indicator of clustering algorithm
performance by considering both misplaced and missed Web services. The evaluation
metrics can be calculated using

number of members of C; in CL;

Accuracy(C;, CLj) = total number of members (16)

B TP+TN
~ TP+ TN+ FP+FEN

number of members of C; in CL;

Precision(C;, CL;) = _
recision(C;, CLj) number of members in CL;

B Successfully (CL;)
~ Successfully(CL;) 4+ Misplaced(CL;)

(17)

number of members of C; in CL;

Recall(C;, CLj) = number of members C;

B Successfully (CL;)
~ Successfully(CL;) + Missed(CL;)

Precision(C;, CLj) x Recall(C;, CL;)
" Precision(C;, CL;) + Recall(C;,CL;)

(18)

F-measure(C;, CL;) =2 (19)

where C; represents the class and CL; is the cluster.

3.4. Experiments and Discussions

We ran five experiments to demonstrate how the proposed artifacts of Web services
clustering can provide improvement by employing various word representation models
and syntactic and semantic similarity measures in the process of Web services discovery.

Experiment I aimed to measure clustering performance when the BOW with TFIDF
model is employed in the word representation, embedding, and transformation layer. We
measured clustering performance considering syntactic similarity measures and clustering
algorithms. The results indicate that among the tested clustering algorithms, AP provided
better performance in clustering Web services. It shows greater agreement with the ground
truth, as illustrated in Figure 5. With Cosine, Euclidean, and Minkowski, almost similar
accuracy and F-measure scores were reported for AP clustering. Both K-means and HAC
performed poorly in clustering Web services when compared to ground truth. K-means
performed better than HAC based on two of the three syntactic similarity measures.

Experiment II aimed to measure the performance of clustering when the pre-trained
Word2Vec model was employed. Four syntactic similarity measures were employed to
cluster Web services with AP, K-means, and HAC. The results indicate that AP performed
better in clustering Web services based on syntactic similarities methods. Furthermore,
considering a specialized similarity measure for dense vector representations, such as Word
Mover’s Distance (WMD), Web service clustering performance improved compared to
Cosine, Euclidean, and Minkowski similarity measures. In Figure 6, we report the accuracy
and F-measure performance metrics.

Experiment III aimed to measure clustering performance when the pre-trained GloVe
model was employed. Four syntactic similarity measures were employed to cluster Web
services with AP, K-means, and HAC. In this experiment, AP performed better in clustering
Web services based on syntactic similarities measures. By considering WMD, Web service

Data 2022, 7,57 14 of 21

clustering performance improved compared to Cosine, Euclidean, and Minkowski similar-
ity measures. We report accuracy and F-measure metrics for the performance evaluation in
Figure 7.

4 N
Accuracy and F-measure

Accuracy F-measure Accuracy F-measure Accuracy F-measure
Cosine Euclidean Minkowski

EAP mK-means m®mHAC
o _J

Figure 5. Accuracy and F-measure for Experiment I (BOW with TFIDF Model).

Accuracy and F-measure

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Accuracy F-measure | Accuracy F-measure| Accuracy F-measure| Accuracy F-measure
Cosine Euclidean Minkowski WMD

mAP mK-means mHAC
. J

Figure 6. Accuracy and F-measure for Experiment II (Pre-trained Word2Vec Model).

~
Accuracy and F-measure
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1
0.0
(o] [o (0]
= @ 3 @© =] @© = @
8 g 8 g 8 g 8 £
< L < L < L < L
Cosine Euclidean Minkowski WMD
mAP mK-means m=mHAC
J

Figure 7. Accuracy and F-measure for Experiment III (Pre-trained GloVe Model).

Data 2022, 7,57

15 of 21

Experiment IV aimed to measure Web services clustering performance when the
self-trained Word2Vec model was employed. In this experiment, four syntactic similarity
measures were employed to cluster Web services by employing AP, K-means, and HAC
clustering algorithms. Based on the reported performance metric, as illustrated in Figure 8,
AP performed better in clustering Web services based on the syntactic similarity measures.
Furthermore, Web services clustering performance improved compared to the other simi-
larity measures when WMD was employed. K-means performed better than HAC across
all syntactic similarity measures.

-
Accuracy and F-measure

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

[H] (0] [0 [0]

5 © 5 @ 5 © 5 @

8 g 8 g 8 g 8 £

< W < u < w < 0

Cosine Euclidean Minkowski WMD
mAP mK-means mHAC

Figure 8. Accuracy and F-measure for Experiment IV (Self-trained Word2Vec Model).

Experiment V aimed to measure the performance of clustering when semantic simi-
larity measures were employed. WordNet’s Path and WUP and NGD were employed as
semantic similarity measures to cluster Web services with AP, K-means, and HAC. The re-
sults indicate that AP performs better in clustering Web services based on the employed
semantic similarities, while WordNet Path similarity provides a better similarity measure to
cluster Web services among the three semantic similarity measures. In Figure 9, we report
accuracy and F-measure to evaluate the clustering performance.

Accuracy and F-measure
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
Accuracy F-measure Accuracy F-measure Accuracy F-measure
Path WUP NGD
mAP mK-means mHAC

Figure 9. Accuracy and F-measure for Experiment V (WordNet and NGD).

Based on the conducted experiments, we demonstrate that the clustering of Web
services is best aligned with the ground truth when the AP clustering algorithm is employed,

Data 2022, 7, 57

16 of 21

showing high accuracy and F-measure. Table 2 provides additional details about clustering
performance among the employed word representation, embedding, and transformation
models, syntactic and semantic similarity measures, and clustering algorithms. To provide a
summary of the conducted experiments, AP with the Euclidean similarity measure reported
the best performance considering the various syntactic similarity measures, referring to
experiment I in Figure 10. In experiment II, AP with WMD reported the best performance,
with high accuracy, precision (minimized false positive), recall (minimized false negative),
and F-measure. In experiment III and experiment IV, considering WMD with AP improved
clustering performance. In experiment V, employing WordNet’s path similarity reported
the best performance for AP clustering. Word embedding models reported the best result
in clustering Web services when specialized similarity such as WMD was employed.

«@- AP (Affinity Propagation) K-means HAC (Hierarchical Agglomerative Clustering)
1
WMD Path
09 : 088 wmD 0.87
Euclidean 0.85 WMD
0.83 0.82
0.8
Q
S Cosine
e 0.7
507 WMD Path
E 0.65 0.65
Qo
:
- 0.6 Cosine whD .
0.63 0.6
WMD ‘g’g;
05 0.56 -
WMD Euclidean
0.51 0.52
04
Experiment I: BOW with TFIDF Experiment II: Pre-trained Experiment IlI: Pre-trained Glove Experiment IV: Self-trained Experiment V: WordNet and NGD
Model Word2Vec Model Model Word2Vec Model

Figure 10. The Best F-measure scores from five experiments using different clustering techniques
and similarity measures: WMD, Word Mover’s Distance; WUP, Wu-Palmer Semantic Similarity.

While the AP clustering algorithm has not been studied in previous research on
clustering of Web services documents, as indicated in [4], we achieved good performance
with it in clustering Web services compared to other clustering algorithms such as K-means
and HAC. Based on the same datasets and configurations, as part of the proposed multi-
layer data mining architecture we reported the performance of K-means and HAC in
clustering Web service documents.

Data 2022, 7, 57

17 of 21

Table 2. Performance Evaluation for Clustering Web services (WUP (Wu-Palmer Semantic Similarity), WMD (Word Mover’s Distance), and NGD (Normalized

Google Distance)).
Clustering Algorithms AP
Syntactic Similarity Cosine Euclidean Minkowski WMD Cosine Euclidean Minkowski WMD Cosine Euclidean Minkowski WMD
First Experiment: BOW with TFIDF Model

Accuracy 81 0.82 0.82 0.66 0.66 0.47 0.68 0.58 0.54

Precision 83 0.84 0.84 0.81 0.81 0.89 0.86 0.77 0.65

Recall 81 0.82 0.82 0.66 0.66 0.46 0.68 0.58 0.54

F-measure 81 0.83 0.83 0.63 0.63 0.30 0.70 0.61 0.55

Second Experiment: Pre-trained Word2Vec Model
Accuracy 0.70 0.74 0.72 10.881 0.59 0.38 0.56 0.51 0.51 0.51 0.43 0.56
Precision 0.76 0.78 0.76 10911 0.70 0.68 0.70 0.61 0.73 0.70 0.57 0.73
Recall 0.70 0.74 0.72 10.88 | 0.59 0.38 0.56 0.51 0.51 0.51 0.43 0.56
F-measure 0.70 0.73 0.70 10.881 0.49 0.25 0.48 0.51 0.56 0.52 0.46 0.56
Third Experiment: Pre-trained Glove Model
Accuracy 0.64 0.74 0.74 0.85 0.48 0.42 0.52 0.57 0.43 0.42 0.43 0.57
Precision 0.73 0.79 0.79 0.88 0.59 0.53 0.62 0.77 0.81 0.81 0.81 0.61
Recall 0.64 0.74 0.74 0.85 0.48 0.42 0.52 0.57 0.43 0.42 0.43 0.56
F-measure 0.65 0.74 0.74 0.85 0.48 0.44 0.53 0.60 0.31 0.29 0.29 0.56
Fourth Experiment: Self-trained Word2Vec Model

Accuracy 0.76 0.76 0.76 0.80 0.48 0.53 0.52 0.49 0.57 0.59 0.55 0.61
Precision 0.80 0.82 0.81 0.82 0.60 0.61 0.61 0.60 0.73 0.68 0.72 0.81
Recall 0.76 0.76 0.76 0.80 0.48 0.53 0.52 0.49 0.57 0.59 0.55 0.61
F-measure 0.75 0.75 0.75 0.80 0.49 0.52 0.52 0.49 0.59 0.57 0.56 0.65

Data 2022, 7, 57 18 of 21
Table 2. Cont.
Clustering Algorithms AP HAC K-Means
Syntactic Similarity Cosine Euclidean Minkowski WMD Cosine Euclidean Minkowski WMD Cosine Euclidean Minkowski WMD
Fifth Experiment: WordNet and NGD
Semantic Similarity Path WUP NGD Path WUP NGD Path WUP NGD
Accuracy 10.871 0.73 0.83 0.55 0.58 0.58 0.65 0.50 0.53
Precision 10.891 0.78 0.84 0.55 0.67 0.75 0.84 0.67 0.71
Recall 10.851 0.72 0.82 0.55 0.58 0.58 0.65 0.50 0.53
F-measure 10.871 0.73 0.82 0.48 0.57 0.55 0.65 0.53 0.54

Data 2022, 7, 57

19 of 21

4. Conclusions

Data mining, text mining, and machine learning can provide solutions to facilitate
the process of web services discovery. We proposed a multi-layer data mining architecture
for Web services discovery to cluster web services based on five layers: Web services
description and data preprocessing; word representation, embedding, and transforma-
tion; syntactic similarity; semantic similarity; and Web services clustering. We utilized
BOW with TFIDF and three word-embedding models for the word representation, embed-
ding, and transformation layers. Four syntactic similarity measures (Cosine, Euclidean,
Minkowski, and Word’s Mover) along with three semantic similarity measures (WordNet
Path, WordNet WUP, and NGD) were employed to estimate the similarity between web ser-
vices. Finally, three clustering algorithms (AP, K-means, and HAC) were studied to cluster
web services based on their similarities. We ran five different experiments considering the
different layers employed. According to their respective agreements and disagreements
with ground truth, their respective clustering performance was reported based on several
evaluation metrics, namely, accuracy, precision, recall, and F-measure. The results indicate
that clusters built based on word embedding models perform better than clusters built
based on Bag of Words with TFIDF models. Among the three word embedding models,
the pre-trained Word2Vec model reported higher performance in clustering Web services.
Consideration of the WMD based on word embedding models increased clustering per-
formance compared to other syntactic measures. Among the three semantic similarity
measures, WordNet path similarity showed higher clustering performance. AP performed
better in clustering web services and discovering hidden relations between previously
assigned clusters among the clustering algorithms.

Our contributions in this paper include the design and verification of a multi-layer
data mining architecture for web services discovery based on clustering web services; this
can speed up the matchmaking process, as we focused on matchmaking characteristics.
The proposed architecture consists of five layers: Web service description and data pre-
processing; representation, embedding, and transformation; syntactic similarity; semantic
similarity; and clustering. Its implementation and performance evaluation are discussed
using appropriate evaluation measures with the aim of clustering web services based
on different similarities in order to minimize the search space and measure performance.
The results indicate that consideration of word embedding models combined with Affini-
tive Propagation (AP) clustering can improve clustering performance compared to the
K-means and HAC clustering algorithms, which are the most cited in the literature. We pro-
pose exploiting the Affinity Propagation (AP) clustering algorithm to cluster web services
based on various syntactic and semantic similarity measures, as it showed higher perfor-
mance than the most cited clustering algorithms (baseline) in the literature for clustering
web services.

The proposed multi-layer data mining architecture employed three-word embedding
models, two pre-trained and one self-trained model. However, the self-trained Word2Vec
model’s training process was based on extracted text from a limited number of web services
compared to the two pre-trained models. In future works, training the Word2Vec model
based on extensive extracted text from web services would improve performance in finding
similarities between Web services. However, the performance of clustering based on the
self-trained word embedding model is comparative to the other models. We evaluated web
services clustering performance based on external evaluation metrics, which requires the
existence of ground truth, which we achieved by collecting web services documents and
employing human labeling to build a ground truth. Although the collected dataset was
based on WSDL and auxiliary text, the proposed solution can work with any format of web
services description language or documentation that needs to be evaluated and tested for
external validity.

Data 2022, 7, 57 20 of 21

Author Contributions: Conceptualization, W.J.O.; Formal analysis, W.J.O.; Investigation, W.J.O.;
Methodology, W.J.O.; Supervision, B.R.; Validation, W.J.O.; Visualization, W.J.O.; Writing—review &
editing, W.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported and funded by NSERC Discovery Grant Nbr RGPIN/341811-
2012.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable, the study does not report any data.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Crasso, M.; Zunino, A.; Campo, M. Easy web service discovery: A query-by-example approach. Sci. Comput. Program. 2008,
71,144-164. https:/ /doi.org/10.1016/j.scico.2008.02.002.

2. Klusch, M. Service Discovery. In Encyclopedia of Social Networks and Mining (ESNAM); Springer: Berlin/Heidelberg, Germany,
2014; pp. 1707-1717. https://doi.org/10.1007/978-1-4614-6170-8_121.

3. Grefenstette, G. Tokenization. In Syntactic Wordclass Tagging; Number October, Springer: Dordrecht, The Netherlands, 1999;
pp. 117-133. https://doi.org/10.1007 /978-94-015-9273-4_9.

4. Obidallah, W].; Ruhi, U.; Raahemi, B. Clustering and Association Rules for Web Service Discovery and Recommendation:
A Systematic Literature Review. SN Comput. Sci. 2020, 1, 27. https://doi.org/10.1007 /s42979-019-0026-8.

5. Obidallah, WJ.; Ruhi, U.; Raahemi, B. Current Landscape of Web Service Discovery: A Typology Based on Five Characteristics.
In Proceedings of the 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Omaha, NE, USA, 13-16 October
2016; pp. 678-683. https://doi.org/10.1109/WI1.2016.0121.

6. Obidallah, W.J.; Raahemi, B. A Taxonomy to Characterize Web Service Discovery Approaches, Looking at Five Perspectives. In
Proceedings of the 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), Oxford, UK, 29 March—2 April 2016;
pp. 458-459. https:/ /doi.org/10.1109/so0se.2016.13.

7. Richardson, L. Beautiful Soup Documentation. 2007. Available online: https://buildmedia.readthedocs.org/media/pdf/
beautiful-soup-4/latest/beautiful-soup-4.pdf (accessed on 1 April 2022).

8. Rasmussen, E. Stoplists. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 2794-2796.
https://doi.org/10.1007 /978-0-387-39940-9_955.

9. Bird, S. NLTK: The Natural Language Toolkit. In Proceedings of the COLING/ACL on Interactive Presentation Sessions; Association for
Computational Linguistics: Stroudsburg, PA, 2006; pp. 69-72. Available online: https://dl.acm.org/doi/10.3115/1225403.1225421
(accessed on 1 April 2022).

10. Stanford-University. Stemming and Lemmatization. 2008. Available online: https://nlp.stanford.edu/IR-book/html/
htmledition/stemming-and-lemmatization-1.html (accessed on 1 April 2022).

11. Salton, G.; Wong, A.; Yang, C.S. A vector space model for automatic indexing. Commun. ACM 1975, 18, 613-620.
https://doi.org/10.1145/361219.361220.

12. Almeida, F.; Xexéo, G. Word Embeddings: A Survey. arXiv 2019, arXiv:1901.09069.

13. Yan, J. Text Representation. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 3069-3072.
https:/ /doi.org/10.1007 /978-0-387-39940-9_420.

14. De Boom, C.; Van Canneyt, S.; Demeester, T.; Dhoedt, B. Representation learning for very short texts using weighted word
embedding aggregation. Pattern Recognit. Lett. 2016, 80, 150-156. https://doi.org/10.1016/j.patrec.2016.06.012.

15. Gudivada, V.N.; Rao, D.L.; Gudivada, A.R. Chapter 11—Information Retrieval: Concepts, Models, and Systems.
In Handbook of Statistics: Computational Analysis and Understanding of Natural Languages: Principles, Methods and Ap-
plications; Gudivada, V.N., Rao, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 38, pp. 331-401.
https://doi.org/https://doi.org/10.1016 /bs.host.2018.07.009.

16. Wikimedia. Wikimedia Downloads. 2005. Available online: https://dumps.wikimedia.org/backup-index.html (accessed on 1
April 2022).

17. Parker, R.; Graff, D.; Kong, J.; Chen, K.; Maeda, K. Gigaword. In English Gigaword Fifth Edition—Linguistic Data Consortium;
Linguistic Data Consortium: Philadelphia, PA, USA, 2011.

18. Crawl, C. Common Crawl. Available online: https://commoncrawl.org/ (accessed on 1 April 2022).

19. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. In Advances in Neural Information Processing Systems 26; Burges, C.J.C., Bottou, L., Welling, M.; Ghahramani, Z.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: New York, NY, USA 2013; pp. 3111-3119.

20. Mikolov, T.; Chen, K,; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013; pp. 1-12.

21. Camacho-Collados, J.; Pilehvar, M.T. From word to sense embeddings: A survey on vector representations of meaning. J. Artif.

Intell. Res. 2018, 63, 743-788. https://doi.org/10.1613/jair.1.11259.

https://doi.org/10.1016/j.scico.2008.02.002
https://doi.org/10.1007/978-1-4614-6170-8_121
https://doi.org/10.1007/978-94-015-9273-4_9
https://doi.org/10.1007/s42979-019-0026-8
https://doi.org/10.1109/WI.2016.0121
https://doi.org/10.1109/sose.2016.13
https://buildmedia.readthedocs.org/media/pdf/beautiful-soup-4/latest/beautiful-soup-4.pdf
https://buildmedia.readthedocs.org/media/pdf/beautiful-soup-4/latest/beautiful-soup-4.pdf
https://doi.org/10.1007/978-0-387-39940-9_955
https://dl.acm.org/doi/10.3115/1225403.1225421
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://doi.org/10.1145/361219.361220
https://doi.org/10.1007/978-0-387-39940-9_420
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/https://doi.org/10.1016/bs.host.2018.07.009
https://dumps.wikimedia.org/backup-index.html
https://commoncrawl.org/
http://xxx.lanl.gov/abs/1805.04032
https://doi.org/10.1613/jair.1.11259

Data 2022, 7, 57 21 of 21

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.
32.

Han, J.; Kamber, M.; Pei, J. Getting to Know Your Data. In Data Mining; Elsevier: Amsterdam, The Netherlands, 2012; pp. 39-82.
https://doi.org/10.1016 /B978-0-12-381479-1.00002-2.

Kusner, M.].; Sun, Y.; Kolkin, N.I.; Weinberger, K.Q. From Word Embeddings to Document Distances. In Proceedings of the 32nd
International Conference on International Conference on Machine Learning, Lille, France, 6-11 July 2015; Volume 37, pp. 957-966.
Miller, G.A. WordNet: A lexical database for English . Commun. ACM 1995, 38, 39—41. https://doi.org/10.1145/219717.219748.
Cilibrasi, R.L.; Vitanyi, PM. The Google Similarity Distance. IEEE Trans. Knowl. Data Eng. 2007, 19, 370-383.
https://doi.org/10.1109/TKDE.2007.48.

Vitanyi, PM.; Cilibrasi, R.L.; Vitanyi, PM.B. Normalized web distance and word similarity. arXiv 2009, arXiv:0905.4039.

Wu, Z.; Palmer, M. Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association
for Computational Linguistics; Association for Computational Linguistics: Stroudsburg, PA, USA, 1994; pp. 133-138.
https://doi.org/10.3115/981732.981751.

Frey, B.J.; Dueck, D. Clustering by Passing Messages Between Data Points. Science 2007, 315, 972-976. https://doi.org/10.1126/
science.1136800.

Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Hierarchical Clustering. In Cluster Analysis; John Wiley & Sons, Inc.: Hoboken, NJ,
USA, 2011; pp. 71-110. https://doi.org/10.1002/9780470977811.ch4.

MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability; University of California Press: Oakland, CA, USA, 1967; Volume 1, pp. 281-297.
Gensim. Gensim: Topic Modelling for Humans. Available online: https:/ /radimrehurek.com/gensim/ (accessed on 1 April 2022).
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://doi.org/10.1145/219717.219748
http://xxx.lanl.gov/abs/0412098
http://xxx.lanl.gov/abs/0412098
https://doi.org/10.1109/TKDE.2007.48
https://doi.org/10.3115/981732.981751
https://doi.org/10.1002/9780470977811.ch4
https://radimrehurek.com/gensim/

	Introduction
	The Proposed Multi-Layer Architecture for Clustering of Web Services
	Layer 1: Web Services Description and Data Preprocessing
	Layer 2: Word Representation, Embedding, and Transforming
	Layer 3: Syntactic Similarity
	Layer 4: Semantic Similarity
	Layer 5: Web Services Clustering

	Performance Evaluation and Analysis
	Datasets
	Experimental Environment
	Evaluation Metrics
	Experiments and Discussions

	Conclusions
	References

