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Abstract: Developing a driver monitoring system that can assess the driver’s state is a prerequisite
and a key to improving the road safety. With the success of deep learning, such systems can achieve
a high accuracy if corresponding high-quality datasets are available. In this paper, we introduce
DriverMVT (Driver Monitoring dataset with Videos and Telemetry). The dataset contains information
about the driver head pose, heart rate, and driver behaviour inside the cabin like drowsiness and
unfastened belt. This dataset can be used to train and evaluate deep learning models to estimate the
driver’s health state, mental state, concentration level, and his/her activity in the cabin. Developing
such systems that can alert the driver in case of drowsiness or distraction can reduce the number of
accidents and increase the safety on the road. The dataset contains 1506 videos for 9 different drivers
(7 males and 2 females) with total number of frames equal 5119k and total time over 36 h. In addition,
evaluated the dataset with multi-task temporal shift convolutional attention network (MTTS-CAN)
algorithm. The algorithm mean average error on our dataset is 16.375 heartbeats per minute.

Keywords: driver monitoring dataset; driver state; driver activity recognition; driver drowsiness
detection

1. Introduction

Road accidents cause the death of hundreds of thousands of people every year. Ac-
cording to the World Health Organization, they are considered in the top ten of death
causes in the low and middle income countries [1], because they affect not only the drivers
and passengers but also the pedestrians. Human error is the main reason for most of these
accidents. To eliminate the human factor, huge attention has been drawn to developing
automated vehicles that are fully operated by Artificial Intelligence (AI).

With the advance of automated vehicle spreading in the world, driving will become a
shared activity between the human and the machine, which generates demand for systems
that can evaluate the driver state and his/her ability to take control of the vehicle at
any moment.

Developing a driver monitoring system that can estimate the driver’s state has drawn
the researchers’ attention lately. These systems aim to increase the safety level on the roads
by alerting the driver. They systems include:

1. The detection of the driver’s vital signs like heart rate, blood pressure, oxygen satura-
tion, and respiratory rate.

2. The detection of the driver’s mental state like fatigue.
3. Measurement of the driver’s attention and concentration levels.
4. Detection of the driver’s activity inside the cabin.

Over last decades, researchers investigated the drivers’ behaviours to estimate the
crash risk using the naturalistic driving data like speed, acceleration, and braking. The
data was collected using Global Positioning System (GPS) and On Board Diagnostics
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(OBD) [2], accelerometers [3], and smartphones [4] to identify risky and abnormal driving
events and evaluate the crash risk. Researchers [5] developed a driver assessment and
recommendation system to evaluate individual driving performance and improve the
traffic safety. The researchers used features like the trip distance and duration, the average
and maximum speed, the number of hard brake and speed up to adopt Gaussian mixture
model-universal background model and the maximum likelihood method to capture driver
signature. Researcher [6] developed a driving behavior-based relative risk evaluation model
using a non-parametric optimization method taking into consideration the frequency and
the severity level of the different risky driving behaviors.

Researchers [7–9] have studied the driver behaviour factors like: road traffic violation,
lapses, fail to maintain a safe gap, errors related to visual perception failure, and others.
Different methods were used to evaluate and prioritize the significant driver behavior
factors related to road safety. paper [7] designed an analytic hierarchy process with best-
worst method (AHP-BWM) model to evaluate driver behavior factors within a designed
three-level hierarchical structure. Paper [8] introduced to combine the best-worst method
with the triangular fuzzy sets as a supporting tool for ranking and prioritizing the critical
driver behavior criteria. While paper [9] performed Pythagorean Fuzzy Analytic Hierarchy
Process to assess and prioritize the driver critical behavior criteria designed into a hierar-
chical model based on data gathered from observed driver groups in Budapest city. This
evaluation is valuable to make drivers aware of individual traffic risks and it may assist in
the implementation of effective local road safety policies.

Researchers have developed different methods to detect the driver fatigue. Some of
these methods depends on detecting biological signal like the heart rate [10,11], others
depends on physhical features like the face and eyes [12,13].

In this paper, we present an annotated dataset DriverMVT (Driver Monitoring dataset
with Videos and Telemetry). for monitoring the driver inside the vehicle cabin. This dataset
can be used to train and evaluate deep learning models to estimate the driver’s state like
the fatigue, the distraction, bad health situation, etc. Developing models to detect such
critical behaviour and alert the driver can prevent many accidents and increase the safety
on the road.

The rest of the paper is organized as follows: A review of the methods and datasets
used for driver monitoring is presented in Section 2. Section 3 contains detailed information
about our proposed dataset and how to use it. Section 4 shows the experiments for data
evaluation. Finally, the conclusion is presented in Section 5.

2. Related Work

In this section, we present a small overview of the methods and datasets used for driver
monitoring. The authors of paper [14] introduced a diverse benchmark with 2000 video
sequences and over 650,000 frames that contain normal, critical, and accidental situations
together in each video sequence. The dataset is for the scenes outside the vehicle. The
researchers are answering the following question: Can we predict a driving accident if we
know the driver’s attention level?

The authors of paper [15] proposed a dataset called DrivFace that contains images
sequences of subjects while driving in real scenarios. The dataset consists of 606 samples
with resolution 640 × 480 pixels, acquired by 4 drivers (2 women and 2 men) with different
facial features like glasses and beards. This dataset is annotated with head pose angles and
the view direction. The authors also proposed a method to estimate the attention level from
the head pose angles.

The authors of paper [16] introduced MPIIGaze dataset which contains 213,659 images
collected from 15 participants during natural everyday computer use over more than three
months with corresponding ground-truth gaze positions. The dataset has a large variability
in appearance and illumination but it was not recorded in real driving scenarios. The main
purpose for the dataset is to estimate the gaze angle from monocular camera in order to
determine the attention level.



Data 2022, 7, 62 3 of 13

The authors of paper [17] introduced DriveAHead dataset, which contains more than
10 h of infrared (IR) and depth images of drivers’ head poses taken in real driving situations.
The dataset provides frame-by-frame head pose labels obtained from a motion-capture
system, as well as annotations about occlusions of the driver’s face. The dataset was
collected from 20 persons (4 females and 16 males) using Kinect v2.

The authors of paper [18] introduced a dataset, collected from 14 young people
(11 females, 3 males) who performed three successive experiments (the duration of each
experiment was 10 min) in conditions of increasing sleep deprivation induced by acute,
prolonged waking. The dataset contains different types of datas (images, signals, and
etc.) and aims to help the resesrchers in the field of monitoring drowsiness, but it wasn’t
recorded inside the car cabin.

The authors of paper [19] introduced a dataset that consists of videos of drivers
performing actions related to different driving scenarios. The dataset was acquired from
35 participants (10 females, 25 males) in different lightning conditions according to the
time the session was recorded (morning or afternoon) with different speeds and both in
simulations and real scenarios. The dataset was recorded using 3 of Intel RealSense Depth
Camera D400-Series in different locations to capture the face, the body, and the hands of
the driver.

The authors of paper [20] published a DMD dataset, consisting of videos of the drivers
performing distraction actions in an automated driving scenario. The dataset contains
over 9.6 million frames of people recorded using 5 near-infrared cameras in different
perspectives, and 3 channels from a side camera (RGB, depth, IR).

The authors of paper [21] proposed a dataset called Multimodal Spontaneous Ex-
pression Heart Rate (MMSE-HR) dataset which is composed of videos and associated
information about the heart rate and the blood pressure. The dataset was collected by
140 participants (58 males and 82 females) of different ages and ethnics. The data were
acquired from different face sensors (high-resolution, 3D dynamic imaging, high-resolution
2D video, and thermal sensing), and contact sensors (electrical skin conductivity, respiration,
blood pressure, and heart rate).

In contrast to our DriverMVT dataset, most of the datasets found in the literature
concentrate on a particular tasks like head pose, gaze angles, action classification, drowsi-
ness. Our dataset provides detailed and diverse information that make it useful for a wider
range of tasks related to the drivers. Our dataset provides frame by frame annotation of
the driver health indices like the heart rate, the mental state like fatigue, and the head
pose estimation, alongside with driver activities. In addition, our dataset was recorded in
real environment while subjects were driving home or to work. The dataset is diverse in
terms of lightning conditions and speed. Table 1 shows a comparison between the available
datasets and our dataset.

Table 1. Comparison between Driver monitoring public datasets.

Dataset Size Drivers Usage Environment

DrivFace [15] 606 images 4 Head pose Car
MPIIGaze [16] ∼214K images 15 Gaze position Simulator
DriveAHead [17] 10 h 20 Head pose Car
Dataset [18] 500k frames 14 Drowsiness Simulator
DMD [19] 41 h 35 Head pose/drowsiness/hands/action/classification Car/simulator
MMSE-HR [21] 10TB 140 Vital signs Laboratory
DriverMVT (ours) 1506 videos 9 Head pose/distraction/fatigue/action classification/heart rate Car

3. Dataset

In this section, an overview of the dataset is presented. Section 3.1 addresses the
methodology used for collecting the proposed dataset, while Section 3.2 provides the
description of the dataset and finally in Section 3.3 an exploratory analysis of the datasets
is presented.
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3.1. Collection Methodology

In this section, we introduce the collection methodology. In Section 3.1.1, we describe
the devices used for data collection, while in Section 3.1.2, we describe the acquiring
process.

3.1.1. Collection Devices

The dataset was collected using different camera types: a USB camera produced by
ELP (see Figure 1), Samsung Galaxy S10 camera, and Samsung Galaxy S20 camera. The
USB camera’s sensor is OV7725, a single-chip VGA camera with an image processor. The
lens size is 1/4 inch with view angle 30–150 degree, the sensor incorporates a 640 × 480
image array operating at frame rate 30 fps. The USB camera also has a high speed USB 2.0
interface module. For the smartphones, videos were recorded with resolution 1080 × 1920
and frame rate 60 fps.

Figure 1. USB camera used for collecting the dataset.

For the heart rate recording we used Xiaomi Mi Band 3. This is not a medical device
but it provides possibilities to precisely estimate heart rate that can be used for tasks
mentioned in the paper.

3.1.2. Data Collection

The dataset was acquired from 9 drivers of different ages and genders (2 females,
and 7 males) with total number of frames equal 5119k and total time over 36 h using
different conditions of car speed and light. We included drivers with different facial
features (with/without beard, with/without mustache, long/short hair, etc.). Table 2
presents the demographic data of the participants.

Table 2. Demographic data of the participants.

Demographic Data Number of Participants Percentage

Gender
male 7 77.78

female 2 22.22
Ages
<25 2 22.22

25–34 3 33.33
35–45 3 33.33
>45 1 11.11

Special Features
with glasses 5 55.56
with beard 4 44.44

with mustache 3 33.33

The drivers are all from St. Petersburg, Russia. We chose the participants to be diverse
and balanced regarding to different facial features and different ages.

The videos were recorded and saved with the exact date and time, while the metadata
was saved to the database with additional information like the user id, the measurement
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time and time when the ride started. These additional information is used later for synchro-
nization as shown in Section 3.3.2. Figure 2 shows the scheme of acquiring the information.

Figure 2. The scheme of Data collection.

3.2. Data Description

The dataset consists of 1506 videos of drivers inside the vehicle cabin and is divided
into three sub-categories (see Figure 3):

• Imprecise synchronization: the category contains videos of mean length of 1 min and
meta data for each video, the video is frame by frame annotated but the synchro-
nization between the video and the metadata is not precise with maximum delay of
1 s.

• Precise synchronization and heart rate information: the category contains videos of
mean length of 30 min and meta data for each video, the video is frame by frame
annotated with perfect synchronization, The dataset also contains information about
the driver’s heart rate.

• Precise synchronization and no heart rate information: the category contains videos of
mean length of 30 min and frame by frame annotation for each video, the synchro-
nization between the video and the information is precise.

For each video, meta data information are given in an CSV file. The file contains
the general information about the video (see Table 3), like the geographic coordinates
(latitude, longitude, and altitude), the driving trip starting time presented in milliseconds
Unix timestamp, the date time (milliseconds Unix timestamp) which describes the time of
recording the video, the car speed, the light level, and illuminance, the head pose angles
(roll, pitch, and yaw) calculated using the method in paper [22], the data from the gyroscope
(accelerometer data, gyroscope data, and magnetometer data), the mouth openness ratio,
the seat belt state to detect whether the belt is fastened or not [23], and the heart rate
measured using smart watch Xiaomi Mi Band 5.
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Figure 3. The hierarchy of the dataset.

Table 3. Metadata information describing the recorded drivers’ videos.

Column Name Description Notation/Unit Possible Values

filename the video name - -
framenumber the video frame number to be descibed - -
latitude north-south position decimal degree [0, 60.120796]
longitude east-west position decimal degree [0, 37.6103415]
altitude the distance above sea level meter [−565.5, 251.3]
datetime the time the video recorded Unix Time stamp (ms) -
datetimestart the driving trip starting time Unix Time stamp (ms) -
speed the vehicle speed km/h [0, 161.208]
lightlevel the light level lux [0, 7760]
illuminance the illuminiace - Bright/Dark
head_pose the Euler angles (pitch, yaw, roll) degrees -
accelerometer_data changes in velocity m/s2 -
gyroscope_data angular velocity ◦/s -
magnetometer_data the magnetic field intensity tesla -
face_mouth mouth openness ratio - [0,1]
heart_rate driver’s heart rate heartbeats per minute [51, 114]

dangerousstate the critical event -
{cellphone_use, distraction_no_attention,
camera_sabotage, belt_not_fasten,
drowsiness, eating, distraction_no_face}

3.3. Data Distribution

In this section, we present an exploratory analysis of the proposed dataset. Section 3.3.1
shows information about the meta data like the data type and the number of missing values
in each columns columns. In addition, a visualization on the distribution of data like heart
rate, and speed is presented. In Section 3.3.2 the synchronization method between the
videos and the meta data is explained.

3.3.1. Data Exploration

In this section we provide a basic understanding of the dataset by showing the statistics
and the distribution of the data.

Table 4 shows information about the metadata of the driver video and HR information.
The table shows that there is some missing information in the face_mouth, head_pose, and
heart_rate columns. Face_mouth column is calculated based on the Faceboxes framework.
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Head_pose column is calculated based on the proposed image processing approach dis-
cussed in paper [22]. Some frames do not have suitable exposure and in some cases the
driver head can not be determined. In this case some values from this columns can be
missing. Heart_rate column contains the data from Xiaomi Mi Band 3. Since not all the
driver used the device one also can see that some values are missing. For dangerous state
the column has values when there is some critical events like fatigue otherwise the state is
considered to be normal.

Table 4. Number of missing values in the dataset.

Column Data Type Number of Missing Values

filename object 0
framenumber int64 0

latitude float64 0
longitude float64 0
altitude float64 0
datetime int64 0

datetimestart int64 0
speed float64 0

acceleration float64 0
lightlevel int64 0

illuminance object 0
head_pose object 59,320

accelerometer_data object 0
gyroscope_data object 0

magnetometer_data object 0
face_mouth object 199,089
heart_rate float64 466,228

dangerousstate object 0

Figure 4 shows examples of different critical events from the dataset.

(a) Phone using while driving (b) Driving with unfastened belt (c) Fatigue while driving

Figure 4. Examples of critical events from the dataset.

Figure 5 shows the the distribution of the data according to speed. Around 29% of our
datasets was recorded when the car was not moving (like the case when the driver stopped
on the traffic light).
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(a) The distribution of the data according to speed (b) Distribution for data with speed > 0

Figure 5. Video Statics according to speed.

Figure 6 shows the distribution of the critical events in the dataset in log scale.

Figure 6. Distribution of the critical events.

Figure 7 shows the distribution of the heart rate in the dataset. The dataset contains
samples in the range [75, 95], which is the normal resting heart rate for adult people.
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Figure 7. Distribution of the heart rate.

3.3.2. Data Synchronization

As we mentioned earlier, the names of the video files represent the recording starting
time of the video either in the exact Unix time stamp in milliseconds or using the date and
time in seconds. The meta data were saved using the Unix time stamp on the database. To
synchronize the metadata with the exact video frame, we used Equation (1):

f rame = (datetime − video_recording_time) ∗ 1000 ∗ f ramerate (1)

where frame represent the frame number that is described by the metadata, datetime
represent the Unix time stamp in ms of the metadata, video_recording_time represent the
Unix time stamp in ms of the recording video, and f ramerate represent the video frame rate.
This way, the videos saved by the Unix timestamp will be perfectly synchronized, while
the videos that were saved by the date and time will be shifted. The maximum difference is
1 s or 10–60 frames. For efficient usage of the data, we performed the synchronization for
the whole dataset. Each video is frame by frame annotated, the metadata is saved in a CSV
file that contains the frame number alongside with the additional information.

4. Data Evaluation

To validate our dataset, we carried out expirements with multi-task temporal shift
convolutional attention network (MTTS-CAN) [24], one of the state-of-the-art algorithms
in heart rate estimation. The architecture is presented in Figure 8.

We tested the algorithm on subset of our dataset that contains heart rate information.
This dataset consists of 12 videos. The MTTS-CAN showed a mean average error of
16.375 heartbeats per minutes and Root mean square error equal to 19.495, which considered
a high error.
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Figure 8. MTTS-CAN architecture [24].

In addition, we carried a separate experiment to evaluate the respiratory rate. We used
our algorithm proposed by paper [25] to detect the respiratory rate when the car speed is
zero or around the zero. We made experiments of the proposed method on the presented
dataset and conclude that we can measure respiratory rate then the the vehicle speed is less
than 3 Km/h. The algorithm can be summarized in the following steps:

1. Estimate the position of the chest keypoint using Openpose human pose estimation
model.

2. Calculate the keypoint displacement using an optical flow-based neural network
(SelFlow).

3. clean the displacement signal using filtering and detrending. Then count the number
of peaks/troughs in a time window of one minute.

Figure 9 shows the algorithm scheme.

Recorded video using 
smartphone camera

Detecting the chest point 
using Openpose

Preprocessing the signal and 
calculate the breathing rate

Driver breathing rate
Caculating the absolute chest 

point displacements using 
selflow for 30s unless a large 

movement detected or the 
video ends.

Large 
movement detected or 

30 sec passed?

video ends?

Yes

No

Yes

No

Figure 9. Respiratory rate algorithm scheme [25].

Figure 10 shows the produced heart rate signal produced by MMTS-CAN and respira-
tory rate signal.
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(a) The heart rate signal produced by MTTS-CAN. The predicted pulse is 89 BPM

(b) The respiratory rate signal produced by our algorithm. The predicted RR is 30 BPM

Figure 10. The predicted heart rate and respiratory rate signal for a video of a driver inside the car
with vehicle speed is zero and heart rate 112.

In our experiment, we divide the videos into three classes depending on the heart rate,
then we used our algorithm to calculate the respiratory rate of the driver.

Table 5 shows the mean respiratory rate for each class.

Table 5. Respiratory rate calculation for each category.

Heart Rate Class (Heartbeats per Minute) Respiratory Rate Mean Value (Breaths per
Minute)

51–71 14.5
71–91 19

92–114 27

As we can see from the table, there is a direct relationship between the heart rate and
the respiratory rate. With increasing the heart rate, the respiratory rate increases as well.

5. Conclusions

In this paper, we introduced a new extensive, diverse dataset called DriverMVT de-
signed to allow researchers to develop a contactless real-time monitoring system. The
dataset contains 1506 videos collected using monocular camera from 9 subjects in real
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driving scenarios with total number of frames equal 5119k and total time over 36 h. For
each video, the dataset contains the following time-synchronized information: geographic
coordinates, speed, acceleration, light conditions, magnetic orientation, angular velocity,
Driver head pose, driver mouth openness ratio, driver heart rate and driver actions. The
dataset can be used to train and evaluate models for detecting Drowsiness/Fatigue, Dis-
traction based on the head pose information, and predicting the driver heart rate to detect
the driver health state. These models can reduce the accidents and increase the safety on
the road. In addition we evaluated the dataset with MTTS-CAN algorithm. The algorithm
mean average error on our dataset is 16.375 heartbeats per minute. We hope that other
researchers will use our dataset in other innovative ways. Of course the main goal is that
the research and models based on the DriverMVT dataset will one day help save lives on
the roads.
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