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Abstract: High exercise loading causes intricate and ambiguous proteomic and metabolic changes.
This study aims to describe the dataset on protein and metabolite contents in plasma samples collected
from highly trained athletes across different sports disciplines. The proteomic and metabolomic
analyses of the plasma samples of highly trained athletes engaged in sports disciplines of different
intensities were carried out using HPLC-MS/MS. The results are reported as two datasets (proteomic
data in a derived mgf-file and metabolomic data in processed format), each containing the findings
obtained by analyzing 93 mass spectra. Variations in the protein and metabolite contents of the
biological samples are observed, depending on the intensity of training load for different sports
disciplines. Mass spectrometric proteomic and metabolomic studies can be used for classifying
different athlete phenotypes according to the intensity of sports discipline and for the assessment of
the efficiency of the recovery period.

Dataset: Denis Petrovskiy (2023); “Proteomic and Metabolomic Analyses of Blood Samples of Highly
Trained Athletes”, Figshare. Dataset. https://doi.org/10.6084/m9.figshare.24541366.v6.

Dataset License: CC BY 4.0
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1. Summary

The molecular profile of an athlete is the result of a comprehensive analysis of proteins,
endogenous metabolites, and other biomolecules performed using omics technologies [1].
Annotating the features of the molecular profile of biological samples allows one to de-
tect new predictors and candidate biomarkers in sports medicine, including personally
recommending changes in the athletes’ training process [2]. By analyzing the contents of
proteins and low-molecular-weight components in biological samples, one can formulate a
hypothesis about the effect of physical load on changes in the metabolic processes occurring
in an athlete’s body [3,4]. Other fields where the results of omics research can be applied
include assessing the acute effects of hydration, managing oxidative stress, inflammation,
and immune responses [5], as well as identifying the long- or short-term effects of training
load on the proteome and metabolome [6].

Physical activity is a potent stimulus modulating metabolism in the body. Research
is currently ongoing into the features of the metabolomic and proteomic profiles of the
biological samples of athletes. Regular prolonged physical activity alters the levels of
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metabolites, mostly those participating in carbohydrate, lipid, amino acid, and nucleoside
metabolism in bodily fluids (plasma, urine, and capillary blood) (Figure 1) [7–12].
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Figure 1. The metabolic features of strength and endurance sports disciplines: (a) changes in me-
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Figure 1. The metabolic features of strength and endurance sports disciplines: (a) changes in
metabolites during peak training load, 2 h after training load, and after the training load is completed
(study participants leading a sedentary lifestyle are used as the control); (b) metabolic indicators of
strength and endurance training.
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Protein metabolism (synthesis/degradation) is a continuous process that is intensi-
fied during and after training and is characterized by the changing rate of amino acid
release and elimination from the bloodstream [13]. During regular long-term training loads,
protein metabolism acts as an additional source of energy [14], ensures organism recov-
ery after muscle injuries (aspartate aminotransferase, alanine aminotransferase, lactate
dehydrogenase, gamma-glutamyl transferase, creatine kinase, and myoglobin) [15,16] and
inflammation (C-reactive protein, interleukins IL-6 and IL-1β, tumor necrosis factor-α) [17],
ensures the endocrine response (cortisol and testosterone) [18,19], as well as regulates the
immune response [20,21] and the oxidative status [22,23].

2. Data Description

Plasma samples were collected from trained athletes engaged in sports disciplines
of different intensities and were treated to acquire proteomic and metabolomic data by
using HPLC-MS/MS. The results are reported as two datasets, each containing the findings
obtained by analyzing 93 mass spectra. Variations in the protein and metabolite contents
of the biological samples are observed depending on the intensity of the training load for
different sports disciplines (Table 1) [24].

Table 1. Sports disciplines and type and intensity of training load for the study participants.

Kind of Sport Load Type Intensity Number of Athletes

Sailing Strength Endurance High 11
Kayaking and Canoeing 1

Freestyle Wrestling Endurance Above Average 20
Sambo Speed-strength

Moderate

2
Figure Skating Strength Endurance 1

Rowing

Technical

16
Beach Soccer 4

Football 3
Ski Race 6

Biathlon Endurance
Low

7
Greco-Roman Wrestling

Technical
20

Athletics 2

The first dataset contains the findings obtained by measuring and analyzing the
protein compositions of the analyzed biological samples (Table 2). The comparison groups
were formed in accordance with training load intensity for an athlete: “High”, “Above
Average”, “Moderate”, and “Low” groups.

Table 2. Protein compositions of the plasma samples.

Intensity
Number of Proteins Number of Proteins in the

GroupMin Max Mean SE

Above
Average 61 122 84.4 4.2 232

High 71 106 88.1 5.1 169
Low 61 103 81.5 2.3 200

Moderate 60 111 83.5 2.9 270
Min and max—the minimum and maximum number of identified proteins in the biological samples in a cer-
tain comparison group; mean—the mean number of identified proteins in the biological proteins in a certain
comparison group; SE—standard error.

Data were combined into spectral libraries according to the isolated groups (Table 2,
“Intensity”). After a meticulous assessment of the measurement results, we selected
108 proteins shared by all the investigated groups and fractions of group-specific pro-
teins. A total of 38 unique proteins were identified for the “High” group; 82 unique
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proteins were identified for the “Above Average” group; and 114 and 57 unique proteins
were identified for the “Moderate” and “Low” groups, respectively (Figure 2).
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Figure 2. The UpSet plots of proteins shared among the studied groups. Set size denotes the number
of proteins identified in a particular group. Intersection size denotes the number of proteins unique
to a certain comparison group (a single point in the diagram) and shows the number of proteins
shared by at least two comparison groups (dots connected with a line).

Supplementary Materials Tables S1 and S2 show the data on the levels of differentially
expressed serological proteins and the frequency of their occurrence in the biological
samples of the comparison groups.

The second dataset contains the results of the quantitative measurements and analyses
of the compositions of 40 endogenous metabolites (canonical and noncanonical amino
acids and carboxylic acids) in the investigated biological samples organized into spectral
libraries in accordance with the identified comparison groups. The reduced levels of
ascorbic acid and pyruvate were observed in the “High” group compared to the other
groups. Supplementary Materials Table S3 lists the data on the quantitative content of the
analyzed metabolites in the comparison groups.

Figure 3 shows the contents of the endogenous metabolites in the comparison groups.
Among the analyzed low-molecular-weight metabolites, increased contents of
4-hydroxyproline (p = 0.0121), alanine (p = 0.0138), histidine (p = 0.0001), leucine (p = 0.0001),
and phenylalanine (p = 0.0007) were observed in the biological samples of the “High” group
compared to other groups (see Supplementary Materials Table S4).
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Figure 3. The levels of the low-molecular-weight metabolites in the comparison groups (OX, µg/mL).

A sparse partial least-squares discriminant analysis (sPLS-DA) was conducted to
determine the variations between the data and classify the samples into comparison groups.

The analysis demonstrated that the “High” group was segregated with respect to
the “Low” group, with 0.95 confidence in the proteome (Figure 4A) and metabolome
(Figure 4B), correspondingly. The discriminant analysis explained the variability of 7% and
7% for the total proteome and 45% and 12% for the summarized metabolome.
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Figure 4. Sparse partial least-squares discriminant analysis (sPLS-DA) with a 0.95 ellipse confidence
level for the most significantly differed features in the proteome (a) and metabolome (b). The scatter
plots demonstrate the explanation for the between-group variation of PC1 = 7% and PC2 = 7% in
the proteomic data (a) and PC1 = 45% and PC2 = 12% in the metabolome. The selected metabo-
lite/proteins of the first component and their weighting factors are presented in Supplementary
Materials Table S5.

3. Methods
3.1. Ethics Statement

The participants in the study were informed about the possible risks and discomforts
that could have emerged during the investigation, and signed consent was obtained from
each participant. A local board for Ethical Questions in the A.I. Burnazyan State Research
Center of the Federal Medical-Biological Agency of the Russian Federation approved the
protocol of the study (Protocol No. 40 dated 18 November 2020) in accordance with the
WMA Declaration of Helsinki.

3.2. Subjects

In total, 93 athletes were enrolled to participate in the study. The applied exclusion
criteria were the presence of cardiac, muscle, or kidney disease, ongoing use of anti-
inflammatory medications, antibiotics, or nicotine. The participants were selected according
to the exclusion criteria after they completed a survey about their medical history and
training experience. The sports disciplines included endurance (n = 28), speed-strength
(n = 2), strength endurance (n = 12), and technical sports (n = 51). The basic anthropometric
characteristics are shown in Table 3.

Table 3. Anthropometric, clinical, and psychometric characteristics of the participants (see
Supplementary Materials Table S3).

Intensity Number of
Athletes %, Men Age, Years Allergy, % Bad Habits,

%

High 12 83 33.2 ± 6.3 33 –
Moderate 32 72 25.5 ± 2.8 13 –

Above
Average 20 100 29.2 ± 2.5 – –

Low 29 76 30.0 ± 3.7 7 –
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• Sample information: the unique identifier of the study participant;
• Information about the anthropometric characteristics of the participant: the sex, age at

the time of the examination, age at which their career began, and type of sport;
• Information about the clinical characteristics of the participant: allergies, infectious

diseases, and sports injuries;
• Information about the training regime: main sports activities; the dynamics of sports

results, number of training sessions per day during tapering and competition periods,
number of rest days per week during tapering and competition periods, and training
status self-assessment.

3.3. Preanalytical Stage of Analysis

A chain of custody for the preparation of the plasma samples is described in detail
in [25].

The following reagents were used to prepare the samples: ethyl acetate (Carlo Erba,
Val-de-Reuil, France), orthophosphoric acid (Sigma, Darmstadt, Germany), triethylammo-
nium bicarbonate (Sigma, Buchs, Switzerland), methanol (J.T. Baker, Landsmeer,
The Netherlands), acetonitrile (Carlo Erbo, Val-de-Reuil, France), urea (Sigma, Darmstadt,
Germany), 4-vinylpyridine (Aldrich, Gillingham, UK), deoxycholic acid sodium salt (Sigma,
Fermo, Italy), sodium chloride (Fluka-Honeywell, Maintal, Germany), tris-(2-carboxyethyl)
phosphine (Sigma, St. Louis, MO, USA), isopropanol (Fisher Chemical, Loughborough,
UK), trypsin (Promega, Madison, WI, USA), acetic acid (Carlo Erba, Val-de-Reuil, France),
and formic acid (Sigma, Germany).

The reagents and reference standards used to prepare the samples for the metabolite
analysis were as follows: d5-betamethasone (catalog number B327002, Toronto Research
Chemicals; Toronto, ON, Canada), WAX cartridge (Oasis™ series, Waters, UK), HPLC
grade water (ITW Reagents PanReac AppliChem, Barcelona, Spanish), acetonitrile (Carlo
Erba, France), formic acid (Sigma, Germany), trifluoroacetic acid (Acros Organics, Geel,
Belgium), heptafluorobutyric acid (Acros Organics), ammonium acetate (Fluka-Honeywell,
Germany), methanol (J.T Baker, Landsmeer, The Netherlands), amino acid, and keto acid
reference standards (Sigma, catalog number A9906, Germany).

3.4. HPLC-MS/MS Analysis

The analysis was performed on a quadrupole time-of-flight mass spectrometer Xevo™
G2-XS Q-tof (Waters, Wilmslow, UK) equipped with an Acquity™ UPLC H Class Plus
chromatography system (Waters, Wilmslow, UK).

Both peptides and metabolites were separated on an Acquity™ UPLC BEH C18 column
(1.7 µm particle size, geometry 2.1 × 50 mm; Waters, UK) at a flow rate of 0.2–0.3 mL/min for
the proteomic analysis and a flow rate of 0.4 mL/min for the metabolomic analysis.

Peptide precursor ions were surveyed in the hybrid information-independent (DIA)
MSE-SONAR mode, whereas the information-dependent (DDA) mode was utilized to
survey the metabolite ions.

Proteomic data were treated using PLGS software (Protein Lynx Global Server, version
3.0.3, Waters, UK) using the UniProt KB database (version dated March 2021) with preset
parameters for the SONAR/MSE scanning mode and a preset correction for the calibration
mass. In the analysis of the proteomic data, we were guided by the requirements of the
Human Proteome Organization–Proteomics Standards Initiative Quality Control Working
Group [26]. We utilized amino acid and keto acid reference standards (Sigma, catalog
number A9906, Germany) as an external standard to evaluate the retention time matching,
generated spectral library to match features in full-MS and tandem-MS scans, and on-line
calibration using Warfarin lock-mass (m/z = 309) to control the mass tolerance of the
instrumental analysis.

The details of the modes and conditions of the HPLC-MS/MS measurements are
presented in [25].
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The measurement results (proteomic data in a derived mgf-file and metabolomic data
in processed format) are available on Petrovskiy D. (2023). Proteomic and Metabolomic
Analyses of Blood Samples of Highly Trained Athletes. Figshare. Dataset. https://doi.org/
10.6084/m9.figshare.24541366.v6 [27].

3.5. Data Analysis

The proteomic and metabolomic datasets were handled using the Wilcoxon test in the
R statistical package (v4.1.2; R Core Team 2021). To demonstrate the variable selection and
classification of the studied cohort, we chose to undertake a sparse partial least-squares
discriminant analysis (sPLS-DA) with 0.95 ellipse confidence. The acceptance criteria for
protein identification were based on the Human Proteome Project Mass Spectrometry Data
Interpretation Guidelines 3.0 [28]. A candidate feature in the proteomic data had to meet
the unicity criterion, meaning that certain proteins had to be covered by more than one
unique protein-specific peptide without interference from any other proteins.

4. User Comments

Mass spectrometric proteomic and metabolomic studies can be used for classifying
different athlete phenotypes according to the intensity of sports discipline and for the as-
sessment of the efficiency of the recovery period using machine learning algorithms [29,30].
This phenotype classification can be performed in two variants. The first one is to employ
non-correlated data (i.e., the raw data before identification) using the machine learning
approaches of a 1D or 3D convolutional neural network [29,31]. The processed data (i.e.,
the data after biomolecule identification) are used in the second variant. Machine learning
approaches, such as logistic regression, support vector classifier, decision tree, multinomial
naive Bayes, random forest, and multinomial regression, can be utilized in the second
variant, depending on the study objectives [32–35].

We use the presented dataset in two ways: (1) for classifying athlete phenotypes
depending on physical load intensity and (2) for identifying phenotype-specific signa-
tures describing the observed metabolomic changes and the presence of post-translational
modifying groups in proteins.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/data9010015/s1, Table S1: Differentially expressed proteins in
comparison groups; Table S2: Frequency of occurrence of protein identifications for each comparison
group; Table S3: Metadata for Study Participants; Table S4: Differences in metabolite content between
comparison groups (p-values); Table S5: Metabolite/proteins on the first component along with their
weighting factors.
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the published version of the manuscript.
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Engaged in Different Sport Disciplines. Bosn. J. Basic Med. Sci. 2014, 14, 56–62. [CrossRef] [PubMed]
23. Marin, D.P.; Bolin, A.P.; Campoio, T.R.; Guerra, B.A.; Otton, R. Oxidative Stress and Antioxidant Status Response of Handball

Athletes: Implications for Sport Training Monitoring. Int. Immunopharmacol. 2013, 17, 462–470. [CrossRef]
24. Havermale, L.A. Nutrition Knowledge of Collegiate Athletes in Endurance and Non-Endurance Sports; Southern Illinois University:

Carbondale, IL, USA, 2017; 38p.
25. Stepanov, A.A.; Malsagova, K.A.; Kopylov, A.T.; Rudnev, V.R.; Karateev, D.E.; Markelova, E.I.; Luchikhina, E.L.; Borisova, E.E.;

Kaysheva, A.L. Determination of Heterogeneous Proteomic and Metabolomic Response in Anti-TNF and Anti-IL-6 Treatment of
Patients with Rheumatoid Arthritis. Life 2023, 13, 596. [CrossRef] [PubMed]

https://doi.org/10.3390/diagnostics11061095
https://www.ncbi.nlm.nih.gov/pubmed/34203902
https://doi.org/10.26355/eurrev_201912_19807
https://doi.org/10.1371/journal.pone.0072215
https://doi.org/10.1021/pr100684t
https://doi.org/10.1371/journal.pone.0037479
https://doi.org/10.23736/S0022-4707.20.11200-3
https://www.ncbi.nlm.nih.gov/pubmed/32936572
https://doi.org/10.3390/metabo10030087
https://www.ncbi.nlm.nih.gov/pubmed/32121570
https://doi.org/10.1093/cvr/cvaa051
https://doi.org/10.1155/2020/2073803
https://doi.org/10.1021/acs.jproteome.5b00470
https://doi.org/10.1126/scitranslmed.3001006
https://doi.org/10.1186/s40798-017-0114-z
https://doi.org/10.1016/j.jchromb.2008.04.031
https://doi.org/10.3390/ijerph18094963
https://doi.org/10.1111/j.1365-2125.2007.03001.x
https://www.ncbi.nlm.nih.gov/pubmed/17764474
https://doi.org/10.1249/01.mss.0000210192.49210.fc
https://www.ncbi.nlm.nih.gov/pubmed/16679975
https://doi.org/10.1007/s42978-022-00186-w
https://doi.org/10.14814/phy2.15291
https://doi.org/10.1006/hbeh.1998.1496
https://doi.org/10.3390/ijerph19116777
https://doi.org/10.1152/japplphysiol.00008.2007
https://www.ncbi.nlm.nih.gov/pubmed/17303714
https://doi.org/10.17305/bjbms.2014.2262
https://www.ncbi.nlm.nih.gov/pubmed/24856375
https://doi.org/10.1016/j.intimp.2013.07.009
https://doi.org/10.3390/life13020596
https://www.ncbi.nlm.nih.gov/pubmed/36836953


Data 2024, 9, 15 10 of 10

26. Bittremieux, W.; Walzer, M.; Tenzer, S.; Zhu, W.; Salek, R.M.; Eisenacher, M.; Tabb, D.L. The Human Proteome Organization–
Proteomics Standards Initiative Quality Control Working Group: Making Quality Control More Accessible for Biological Mass
Spectrometry. Anal. Chem. 2017, 89, 4474–4479. [CrossRef]

27. Petrovskiy, D. Proteomic and Metabolomic Analyses of Blood Samples of Highly Trained Athletes. Figshare 2023. [CrossRef]
28. Deutsch, E.; Lane, L.; Overall, C.; Bandeira, N.; Baker, M.; Pineau, C.; Moritz, R.; Corrales, F.; Orchard, S.; Eyk, J.; et al. Human

Proteome Project Mass Spectrometry Data Interpretation Guidelines 3.0. J. Proteome Res. 2019, 2019, 9b00542. [CrossRef]
29. Kopylov, A.T.; Petrovsky, D.V.; Stepanov, A.A.; Rudnev, V.R.; Malsagova, K.A.; Butkova, T.V.; Zakharova, N.V.; Kostyuk, G.P.;

Kulikova, L.I.; Enikeev, D.V.; et al. Convolutional Neural Network in Proteomics and Metabolomics for Determination of
Comorbidity between Cancer and Schizophrenia. J. Biomed. Inform. 2021, 122, 103890. [CrossRef]

30. Petrovsky, D.V.; Pustovoyt, V.I.; Nikolsky, K.S.; Malsagova, K.A.; Kopylov, A.T.; Stepanov, A.A.; Rudnev, V.R.; Balakin, E.I.;
Kaysheva, A.L. Tracking Health, Performance and Recovery in Athletes Using Machine Learning. Sports 2022, 10, 160. [CrossRef]

31. Petrovsky, D.V.; Kopylov, A.T.; Rudnev, V.R.; Stepanov, A.A.; Kulikova, L.I.; Malsagova, K.A.; Kaysheva, A.L. Managing of
Unassigned Mass Spectrometric Data by Neural Network for Cancer Phenotypes Classification. J. Pers. Med. 2021, 11, 1288.
[CrossRef]

32. Ahsan, M.M.; Luna, S.A.; Siddique, Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare 2022,
10, 541. [CrossRef] [PubMed]

33. Choi, S.B.; Kim, W.J.; Yoo, T.K.; Park, J.S.; Chung, J.W.; Lee, Y.; Kang, E.S.; Kim, D.W. Screening for Prediabetes Using Machine
Learning Models. Comput. Math. Methods Med. 2014, 2014, 618976. [CrossRef] [PubMed]

34. Hsieh, C.-H.; Lu, R.-H.; Lee, N.-H.; Chiu, W.-T.; Hsu, M.-H.; Li, Y.-C.J. Novel Solutions for an Old Disease: Diagnosis of Acute
Appendicitis with Random Forest, Support Vector Machines, and Artificial Neural Networks. Surgery 2011, 149, 87–93. [CrossRef]

35. Balasubramanian, J.B.; Boes, R.D.; Gopalakrishnan, V. A Novel Approach to Modeling Multifactorial Diseases Using Ensemble
Bayesian Rule Classifiers. J. Biomed. Inform. 2020, 107, 103455. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acs.analchem.6b04310
https://doi.org/10.6084/m9.figshare.24541366.v6
https://doi.org/10.1021/acs.jproteome.9b00542
https://doi.org/10.1016/j.jbi.2021.103890
https://doi.org/10.3390/sports10100160
https://doi.org/10.3390/jpm11121288
https://doi.org/10.3390/healthcare10030541
https://www.ncbi.nlm.nih.gov/pubmed/35327018
https://doi.org/10.1155/2014/618976
https://www.ncbi.nlm.nih.gov/pubmed/25165484
https://doi.org/10.1016/j.surg.2010.03.023
https://doi.org/10.1016/j.jbi.2020.103455

	Summary 
	Data Description 
	Methods 
	Ethics Statement 
	Subjects 
	Preanalytical Stage of Analysis 
	HPLC-MS/MS Analysis 
	Data Analysis 

	User Comments 
	References

